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1 Introduction

The concept of dimension is fundamental to mathematics. Intuitively, if you scale an object O by some
factor c, then the number of times N the original object O fits inside the scaled object O′ is propotional to
cD, where D is the dimension of O. (Think of N as the relative size of O′.) Scaling a line segment l by a
factor of 2 gives two copies of l. Thus, l has dimension 1. On the other hand, scaling a square or a cube by
a factor of 2 gives 4 and 8 copies, respectively. So squares have dimension 2 and cubes dimension 3.

There are a number of formal definitions of dimension, for example the Lebesgue covering dimension
or the inductive dimension. For a reference on these and other topological dimensions see [8]. However,
the intuitive dimension of a fractal or other structurally complicated sets is often non-integral and does
not coincide with these formal definitions. To counter this, we will introduce the Hausdorff and similarity
dimensions, which, unlike the above notions of dimension, can take non-integral values. We will develop
the theory behind these dimensions, with particular regard to fractals, and conclude by showing that these
definitions coincide under mild conditions.

2 The Hausdorff Dimension

Definiton 1. Let k ≥ 0 be a non-negative real number. For every δ > 0 and every subset E ⊂ Rd, define

Hkδ (E) = inf

{ ∞∑
i=1

αk2−k(diamEi)
k : E ⊂

k⋃
i=1

Ei,diamEi ≤ δ

}
,

where diamS = sup{|x − y| : x, y ∈ S} denotes the diameter of the set S and αk is a suitable normalising
constant, defined 2 paragraphs below. Define the exterior k-dimensional Hausdorff measure as the
limit of Hkδ as δ tends to 0:

Hk(E) = lim
δ→0
Hkδ (E).

In other words, Hk(E) is defined in the following way: consider covers of E by countable families {Ej}
of sets with diameter less than δ and take the infimum of the sum

∑
j αk2−k(diamEj)

k. Then Hk(E) is the
limit of these infimums as δ tends to 0.

The normalising constant is αk = Γ( 1
2 )k/Γ(k2 + 1), where Γ is Euler’s gamma function. In particular, for

integral k, we have αk = λk({x ∈ Rk : |x| ≤ 1}), where λk is the k-dimensional Lebesgue measure. That is,
αk is equal to the volume of the k-dimensional unit ball.

Although not obvious, it follows that for any Borel set E ⊂ Rd, we have λd(E) = Hd(E). Moreover,
the fact that Hk(E) is indeed an exterior measure is not immediate. Proofs of these results are given in [9,
section 7.1] along with the result that Hk(E) is countably additive for Borel sets and thus, a measure when
restricted to Borel sets.

We will define the Hausdorff dimension of E ⊂ Rd as the unique real k ≥ 0 with Hj(E) = ∞ for j < k
and Hj(E) = 0 for j > k. To make this definition, we need the following lemma:
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Lemma 1. If Hk(E) <∞ and j > k, then Hj(E) = 0. Also, if Hk(E) > 0 and j < k, then Hj(E) =∞.

Proof. For the first result, suppose Hk(E) <∞ and j > k. Fix δ > 0. If diamEi ≤ δ then,

(diamEi)
j = (diamEi)

j−k(diamEi)
k ≤ δj−k(diamEi)

k.

Note Hkδ (E) ≤ Hk(E). Hence,

Hjδ(E) ≤ δj−k αj2
−j

αk2−k
Hkδ (E) ≤ δj−k αj2

−j

αk2−k
Hk(E).

Taking δ → 0, we get thatHj(E) = 0. The second result follows similarly: Suppose j < k andHk(E) > 0.
Fix δ > 0. We get

(diamEi)
k ≤ δk−j(diamEi)

j ,

by the same reasoning as above. Then

Hj(E) ≥ Hjδ(E) ≥ δj−k αj2
−j

αk2−k
Hkδ (E).

As δ → 0, we have δj−k →∞. Hence, Hj(E) =∞.

Definiton 2. The Hausdorff dimension of E ⊂ Rd, written dimE, is the unique k given by

k = sup{j : Hj(E) =∞} = inf{j : Hj(E) = 0}.

Note that Hk(E) can take any value in [0,∞] for E with dimE = k.
The Hausdorff dimension is central to the theory of fractals. In fact, Mandelbrot defines fractals as

objects with non-integral Hausdorff dimension. See [6] and [9, chapter 7] for treatments on fractals using
Hausdorff dimension.

3 Similitudes and Invariant Sets

Before we can define the similarity dimension of an object, we need to lay some general groundwork.

Definiton 3. Let (X, d) be a metric space. The Lipschitz constant of F : X → X is

LipF = sup
x 6=y

d(F (x), F (y))

d(x, y)
.

We say F is Lipschitz if LipF <∞ and F is a contraction if LipF < 1.

Definiton 4. A function S : Rd → Rd is a similitude if there is some fixed r ∈ R such that |S(x)−S(y)| =
r|x− y| for all x, y ∈ Rd.

Note that a similitude S is Lipschitz with LipS equal to the constant r in |S(x)−S(y)| = r|x− y|. From
herein, S = {S1, ..., SN} is a finite set of similitudes where LipSi = ri < 1. (So Si is also a contraction.) For

arbitrary E ⊂ Rd, define S(E) =
⋃N
i=1 Si(E).

Theorem 1. There exists a unique compact set K ⊂ Rd which is invariant with respect to S, in the sense
that S(K) = K.

Like many of the results and definitions in this essay, this theorem can be generalised to an arbitrary
complete metric space. See [5] for the more general treatment.

We denote the unique such K by |S|. A typical way of constructing a fractal X is to specify a set of
similitudes S and then define X to be |S|. The similitudes describe how the fractal |S| is ‘self-similar’ (see
[6]).

Since we are now in a position to define the similarity dimension, we will delay the proof of this theorem
until section 5.
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4 The Similarity Dimension

Consider the function f(t) =
∑N
i=1 r

t
i . It’s easy to see that f(0) = N and f is strictly decreasing continuous

function approaching 0 as t→∞. Thus, there exists a unique D such that
∑N
i=1 r

D
i = 1.

Definiton 5. If
∑N
i=1 r

D
i = 1, then we say D is the similarity dimension of |S|.

The similarity dimension is often called the fractal dimension and was introduced by Mandelbrot (see
[6]). An intuitive reasoning behind this definition is as follows. Often, a fractal exhibits a pattern that is
invariant under scaling. That is, some portion of the fractal is a copy of the fractal as a whole. So the fractal
doesn’t lose its detail when repeatedly magnified. The similarity dimension measures the ratio of the change
in detail of such a fractal to the change in scale. Note that the ri are a measure of how |S| scales.

We will prove in section 7 that the similarity and Hausdorff dimensions of |S| are often equal.

5 Proof of existence and uniqueness of |S|
We will prove the existence and uniqueness of |S| using the Banach fixed-point theorem, which states that
a contraction mapping on a complete metric space admits a unique fixed-point [11, theorem 8.3.10]. First
we need to construct the metric space we will use.

Definiton 6. For x ∈ Rd and E ⊂ Rd, the distance between x and A is d(x,E) = inf{|x− y| : y ∈ E}.
Let Cd be the family of non-empty compact subsets of Rd. Define the Hausdorff metric δ on Cd by

δ(E,F ) = max (sup{d(x, F ) : x ∈ E}, sup{d(y,E) : y ∈ F})

for E,F ∈ Cd.

Lemma 2. The Hausdorff metric δ is indeed a metric on Cd and, moreover, (Cd, δ) is complete.

The first part of this lemma is easy to verify. The second part follows from [4, result 2.10.21].

Lemma 3. For Ai, Bi ∈ Cd, we have

δ

(⋃
i∈I

Ai,
⋃
i∈I

Bi

)
≤ sup

i∈I
δ (Ai, Bi) .

Proof. Without loss of generality, assume δ
(⋃

i∈I Ai,
⋃
i∈I Bi

)
= sup{d(x,

⋃
i∈I Bi) : x ∈

⋃
i∈I Ai}. Clearly,

for all x ∈ Aj , we have d
(
x,
⋃
i∈I Bi

)
≤ d(x,Bj) ≤ δ(Aj , Bj). Thus,

δ

(⋃
i∈I

Ai,
⋃
i∈I

Bi

)
= sup

i∈I
sup
x∈Ai

d

(
x,
⋃
i∈I

Bi

)
≤ sup

i∈I
δ(Ai, Bi).

Lemma 4. For f : Rd → Rd and A,B ∈ Cd,

δ(f(A), f(B)) ≤ (Lip f)δ(A,B).

Proof. Firstly note that f(A), f(B) ∈ Cd, so δ(f(A), f(B)) is defined. Without loss of generality we can
assume δ(f(A), f(B)) = sup{d(f(x), f(B)) : x ∈ A}. Now the proof is just a matter of expanding out
definitions and using the Lipschitz property:

δ(f(A), f(B)) = sup{inf{|f(x)− f(y)| : y ∈ B} : x ∈ A}
≤ sup{inf{(Lip f)|x− y| : y ∈ B} : x ∈ A}
= (Lip f) sup{d(x,B) : x ∈ A}
≤ (Lip f)δ(A,B).
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Theorem 2. A set of similitudes S, seen as a function Cd → Cd, is a contraction on (Cd, δ).

Proof. Firstly, note that S sends Cd to Cd. We need to show that S : Cd → Cd has Lipschitz constant less
than 1. From the two lemmas above, we get that for any E,F ∈ Cd,

δ (S(E),S(F )) = δ

(
n⋃
i=1

Si(E),

n⋃
i=1

Si(E)

)
≤ max

1≤i≤N
δ(Si(E), Si(F ))

≤ max
1≤i≤N

riδ(E,F ).

Since ri < 1 for all 1 ≤ i ≤ N , it follows that max1≤i≤N riδ(E,F ) < δ(E,F ). Thus, LipS < 1 as
required.

Theorem 3 (the Banach fixed point theorem). Let (X, d) be a complete non-empty metric space and f :
X → X be a contraction. Then f admits a unique fixed-point. That is, there exists a unique x ∈ X such
that f(x) = x.

This result, also known as the contraction mapping principle, is a standard result in analysis. A proof is
given in [11, section 8.3]. The result that |S| exists and is unique now follows easily:

Proof of Theorem 1. Apply the Banach fixed point theorem to the contraction S : Cd → Cd.

Moreover, the Banach fixed point theorem gives us a constructive method to find |S|: start with an
arbitrary set E0 ∈ Cd and define a sequence {En} by En = S(En−1) for n ≥ 1. Then En → |S| with speed
of convergence described by

δ (|S|, En+1) ≤ (LipS) δ (|S|, En) ≤
(

max
1≤i≤N

ri

)
δ (|S|, En) .

6 Aside: the Scaling Property

In the introduction, we discussed using the notion of scaling as a way of informally defining the dimension
of an object. In this section, we will formalise this property and show that the Hausdorff dimension satisfies
it.

Let Cd = {(x1, ..., xd) ⊂ Rd : 0 ≤ xi ≤ 1} be the unit cude in Rd and let aCd = {(x1, ..., xd) ⊂ Rd :
0 ≤ xi ≤ a} be Cd scaled by some factor a > 0. In the introduction, we said that aCd is ad copies of Cd.
What we technically meant was that we could translate ad copies of Cd so that the disjoint union of the
resulting cubes was aCd. The crucial property here is that aCd ‘occupies the same amount of space’ as the
ad translated copies of Cd. In other words, λd(aCd) = adλd(Cd), where λd is the Lebesgue measure on Rd.

More generally, let f : P(Rd)→ R≥0 be a function that assigns a dimension f(E) to subsets E ⊂ Rd and
let µδ be a measure associated with each dimension δ ∈ R≥0. We say f and µδ satisfy the scaling property if

µf(E)(aE) = af(E)µf(E)(E)

where aE is a scaling of E ⊂ Rd by a factor of a > 0.

Proposition 1. The Hausdorff dimension with the associated k-dimensional Hausdorff measure satisfies the
scaling property. In fact, for all k ∈ R≥0 and a > 0,

Hk(aE) = akHk(E).

Proof. The result follows straightforwardly from the fact that diam(aEi) = a diam(Ei).
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Unfortunately, we do not have an associated measure for the similarity dimension, so we cannot talk about
whether it satisfies the scaling property in general. However, we will see that for sufficiently ‘nice’ subsets
E ⊂ Rd, we can construct a family of similitudes S such that |S| = E and the Hausdorff and similarity
dimensions of |S| agree. Then, for such E, the scaling property is satisfied by the similarity dimension with
the corresponding dimensional Hausdorff measures.

7 Agreement of the Hausdorff and Similarity Dimensions

In this section, we will show that the Hausdorff dimension equals the similarity dimension of |S|, provided
a certain separation condition holds:

Definiton 7. The set of similitudes S satisfies the open set condition if there exists a non-empty open
set O such that Si(O) are pairwise disjoint and contained in O:

1.
⋃N
i=1 Si(O) ⊂ O, and

2. Si(O) ∩ Sj(O) = ∅ if i 6= j.

Theorem 4. Suppose S satisfies the open set condition. Then the Hausdorff dimension of |S| equals the
similarity dimension of |S|.

This theorem was first given in this form in [5], however an equivalent result was proven in [7]. We need
to develop some more theory before we can prove it but first, we will apply it to an example.

8 Example: the Generalised Cantor Set

Let d = 1 and Sr = {S1r, S2r} where

S1r : R→ R : x 7→ rx,

S2r : R→ R : x 7→ r(x− 1) + 1.

If r = 1
3 , then Sr(C) = C where C is the Cantor set. So |Sr| = C. For 0 < r < 1

2 , the invariant set |Sr|
is called the generalised Cantor set. For a reference on the generalised cantor set see [2, chapter 1.7].

We can further consider the case 1
2 < r < 1. Here Sr([0, 1]) = [0, 1] so |Sr| = [0, 1]. The Hausdorff

dimension of the closed interval [0, 1] is 1 (by a result in [9, p. 329]) but the similarity dimension is D =
− log 2/ log r > 1. Thus, the two notions of dimensions do not agree in this case. Intuitively, we need the
open set condition so that S1r((0, 1)) and S2r((0, 1)) do not overlap. Otherwise, their intersection ‘gets
counted twice’ in the calculation of the similarity dimension.

We will show explicitly that the open set condition doesn’t hold: We will first show that any non-empty
open interval (a, b) cannot satisfy the open set condition. Suppose (a, b) satisfied the open set condition.
Then S1r(a, b) ⊂ (a, b) implies a ≤ 0 and S2r(a, b) ⊂ (a, b) implies b ≥ 1. Moreover, S1r(a, b) ∩ S2r(a, b) = ∅
implies br ≤ ar + (1− r). Combining these facts we get

r ≤ br ≤ ar + (1− r) ≤ (1− r),

which is a contradiction as r > 1
2 . The case for arbitrary non-empty open sets follows: Suppose U ⊂ R is

a non-empty open set. By [3, theorem 4.6], U can be written as the countable union of disjoint non-empty
intervals In. If U satisfies the open set condition, then so would each In.

In the case 0 < r < 1
2 , the interval (0, 1) satisfies the open set condition. Thus, we can apply theorem 4

to calculate the Hausdorff dimension:

dim|Sr| =
− log 2

log r
.

For a reference on the Hausdorff dimension of the Cantor set and other fractals see [10, p. 146-156].
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9 Densities and Invariant Measures

Definiton 8. The lower k-dimensional density of the measure µ at the point x ∈ Rd is defined as:

θk∗(µ, x) = lim inf
ρ→0

µ(B(x, ρ))

αkρk
,

Similarily, the upper k-dimensional density is:

θk∗(µ, x) = lim sup
ρ→0

µ(B(x, ρ))

αkρk
.

where αk = Γ( 1
2 )k/Γ(k2 + 1) is a normalising constant equal to the volume of the k-dimensional unit ball.

A result in [4, section 2.10] states that if 0 < µ(A) < ∞ and the upper density θk∗(µ, a) is uniformly
bounded away from 0 and ∞ for all a ∈ A, then 0 < Hk(A) <∞. In particular, A has Hausdorff dimension
k. Thus, to prove theorem 4, we need only show that the upper D-dimensional density of µ is uniformly
bounded away from 0 and ∞, when D is the similarity dimension of |S|. But first we need to construct a
suitable measure µ.

Definiton 9. An exterior measure µ on Rd is Borel regular if all Borel sets are measurable and for every
A ⊂ X there exists a Borel B ⊃ A with µ(A) = µ(B).

Definiton 10. The support of an (exterior Borel regular) measure ν is:

sptν = Rd − {V : V open, ν(V ) = 0}.

Denote the set of finite Borel regular exterior measures with bounded support by M:

M = {µ : µ(Rd) <∞ and µ Borel regular with bounded support}.

Denote the subset of M of exterior measures µ with mass 1 by M1:

M1 = {µ ∈M : µ(Rd) = 1}.

For the rest of this section, assume µ ∈M.

Definiton 11. Suppose f : Rd → Rd is continuous and sends bounded sets to bounded sets. Then the induced
map f# :M→M sends µ to the pushforward of µ:

f#µ(E) = µ(f−1(E)).

Recall that S = {S1, ..., SN} is a finite set of similitudes with LipSi = ri < 1 and
∑N
i=1 r

D
i = 1.

Definiton 12. Define S(µ) =
∑N
i=1 r

D
i Si#µ to be the convex combination of the pushforward measures Si#µ

with coefficients rDi .

Theorem 5. There exists a unique µ ∈M1 that is invariant with respect to S in the sense that:

S(µ) = µ.

The proof of this theorem involves constructing a metric onM1, showing S :M1 →M1 is a contraction
map in this metric space and applying Banach’s fixed point theorem. The proof will be deferred to appendix
A (section 11).
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10 Proof of Hausdorff and Similarity Dimensions Agreement

In this section we prove theorem 4, which states that, under the open set condition, the Hausdorff and
similarity dimensions agree.

First, we need some notation. Denote Si(Sj(A)) by Sij(A) forA ⊂ Rd. Similarly, denote Si1(Si2(...(Sip(A)...)
by Si1...ip(A) for A ⊂ Rd and i1, ..., ip ∈ {1, ..., N}. For the rest of this section, let i1, ...ip, ... be a sequence
with each element ip ∈ {1, ..., N}. Below are some technical lemmas needed for theorem 4. Their proofs are
in appendix B (section 12).

Lemma 5. For A ⊂ Rd, we have the bound

diamSi1...ip(A) ≤ ri1 · ... · rip diamA.

Furthermore, if A is bounded then,

diamSi1...ip(A)→ 0 as p→∞.

Lemma 6. We have the following inclusions:

|S| ⊃ Si1(|S|) ⊃ ... ⊃ Si1...ip(|S|) ⊃ ...

Moreover,
⋂∞
i=1 Si1...ip(|S|) is a singleton set whose member is denoted xi1...ip.... |S| is the union of these

singletons.

Lemma 7. Let O be the open set given by the open set condition and I be a finite set of tuples with elements
in {1, ..., N}:

I = {(j1, ...jp, ..., jM ) : M ∈ N and jp ∈ {1, ..., N}}.

Suppose that for every sequence β with elements in {1, ..., N}, there exists exactly one α ∈ I such that α
is an initial segment of β, that is:

α = (j1, ..., jM ) and β = j1, ..., jM , jM+1, ...

Then the family of sets {Sj1...jM (O) : (j1, ..., jM ) ∈ I} is pairwise disjoint.

Lemma 8. Suppose 0 < s1 < s2 <∞ and 0 < ρ <∞. Let {Ui} be a family of disjoint open sets such that
each Ui contains a ball of radius ρs1 and is contained in a ball of radius ρs2. Then, for any x ∈ Rd, at most
(1 + 2s2)ds−d1 of the U i meet B(x, ρ).

Lemma 9. Let O be the open set asserted to exist by the open set condition. We have the following inclusion:

Si1...ip(|S|) ⊂ Si1...ip(O).

Lemma 10. If µ ∈M1 is the measure invariant with respect to S, then the support of µ is |S|:

sptµ = |S|.

We can now prove the main result of this essay.

Proof of theorem 4. Let D be the similarity dimension of |S| and µ ∈ M1 be the measure invariant with
respect to S. Assume without loss of generality that r1 ≤ ... ≤ rN .

Recall that it suffices to show that θD∗(µ, x) is uniformly bounded away from 0 and ∞ for all x ∈ |S|.
We will find constants λ1 and λ2 such that

0 < λ1 ≤ θ∗D(µ, x) ≤ θD∗(µ, x) ≤ λ2 <∞,

for all x ∈ |S|.
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First, determine λ1: Given x ∈ |S|, using lemma 6 we can write x = xi1...ip... for some sequence i1, ..., ip, ....
Let ρ > 0 and consider B(x, ρ). Using lemmas 5 and 6, there exists q such that Si1...iq (|S|) ⊂ B(x, ρ). Choose
the least such q.

We have that ri1 · ... · riq diam|S| ≥ ρr1. (Recall that |S| is bounded so diam|S| is finite.) Why? Suppose
not. Then,

ri1 · ... · riq−1
diam|S| =

ri1 · ... · riq
riq

diam|S| ≤
ri1 · ... · riq

r1
diam|S| < ρ. (1)

So Si1...iq−1
(|S|) ⊂ B(x, ρ), which is a contradiction.

By lemma 10, µ(|S|) = 1. Now, note that

µ(A) =

N∑
j=1

rDj Sj#µ(A) ≥ rDk Sk#µ(A) = rDk µ(S−1k (A)),

for any k = 1, ..., N and A ⊂ Rd.
Applying this repeatedly to A = Si1...iq (|S|):

µ(Si1...iq (|S|)) ≥ rDi1µ(S−1i1 (Si1...iq (|S|))) = rDi1µ(Si2...iq (|S|))
≥ ... ≥ rDi1 · ... · r

D
iqµ(|S|)

= rDi1 · ... · r
D
iq .

Hence,

µ(B(x, ρ))

αDρD
≥
µ(Si1...iq (|S|))

αDρD
≥
rDi1 · ... · r

D
iq

αDρD
≥ rD1
αD(diam|S|)D

.

Therefore, we have found our λ1: we have θD∗ (µ, x) ≥ rD1 α−1D (diam|S|)−D > 0 for all x ∈ |S|.
We will now find λ2. Again fix ρ > 0 and x ∈ |S|. Let O be the open set given by the open set condition

and suppose O contains a ball of radius s1 and is contained in a ball of radius s2.
Consider a sequence j1, j2, ..., jp, ... such that each jq ∈ {1, ..., N}. Select the least q such that rj1 ·...·rjq ≤

ρ. (We can do this as ri < 1 for all i = 1, ..., N .) Then by the analogous reasoning as above (see equation
1), r1ρ ≤ rj1 · ... · rjq . Let I be the set of all such tuples (j1, ..., jq):

I = {(j1, ..., jq) : j1, ..., jq ∈ {1, ..., N} and r1ρ ≤ rj1 · ... · rjq ≤ ρ}.

Notice that I satisfies the conditions in lemma 7 so {Sj1...jq (O) : (j1, ..., jq) ∈ I} is pairwise disjoint.
Additionally, each Sj1...jq (O) contains a ball of radius rj1 · ... · rjqs1 and consequently also contains a
ball of radius r1ρs1. Similarly, each Sj1,...,jq (O) is contained in a ball of radius rj1 · ... · rjqs2 and con-
sequently is also contained in a ball of radius ρs2. Then by lemma 8, at most (1 + 2s2)d(r1s1)−d elements of
{Sj1...jq (O) : (j1, ..., jq) ∈ I} meet B(x, ρ). It follows from lemma 9 that at most (1 + 2s2)d(r1s1)−d elements
of {Sj1...jq (|S|) : (j1, ..., jq) ∈ I} meet B(x, ρ).

A result in [5, section 4.5] states, for (j1, ..., jq) ∈ I,

µ =
∑

(j1,...,jq)∈I

rDj1 · ... · r
D
jqSj1...jq#µ ≤

∑
(j1,...,jq)∈I

ρDSj1...jq#µ.

(The inequality follows easily from rj1 · ... ·rjq ≤ ρ.) Using lemma 10, the support of Sj1...jq#µ is Sj1...jq (|S|).
Therefore,

µ(B(x, ρ)) ≤
∑

(j1,...,jq)∈I

ρDSj1...jq#µ(B(x, ρ) ∩ Sj1...jq (|S|)).

At most (1+2s2)d(r1s1)−d of these summands are non-zero. We know Sj1...jq#µ(B(x, ρ)∩Sj1...jq (|S|)) ≤
Sj1...jq#µ(Rd) ≤ 1 since µ ∈M1. Hence,

µ(B(x, ρ))

αDρD
≤ 1

αDρD
· ρD · (1 + 2s2)d

rd1s
d
1

=
(1 + 2s2)d

αDrd1s
d
1

.
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Thus, we have found our λ2: we have that θD∗(µ, x) ≤ (1 + 2s2)d(αDr
d
1s
d
1)−1 for all x ∈ |S|.

11 Appendix A - the L metric on M1

For a reference see [1, section 2.6].

Definiton 13. Define the L metric on µ, ν ∈M1 by:

L(µ, ν) = sup

{∫
ϕdµ−

∫
ϕdν

∣∣∣∣ϕ : Rd → R Lipschitz with Lipϕ ≤ 1

}
.

Verifying that L is indeed a metric is straightforward, except for checking the condition L(µ, ν) < ∞
which we will do now. Since µ and ν have bounded support, we can suppose sptµ∪ sptν ⊂ B(a, ρ) for some
a ∈ Rd and ρ > 0. Let ϕ : Rd → R with Lipϕ ≤ 1. We have∫

ϕdµ−
∫
ϕdν =

∫
(ϕ− ϕ(a) + ϕ(a))dµ−

∫
(ϕ− ϕ(a) + ϕ(a))dν =

∫
(ϕ− ϕ(a))dµ−

∫
(ϕ− ϕ(a))dν,

since
∫
ϕ(a)dµ =

∫
ϕ(a)dν = ϕ(a). As ϕ has Lipschitz constant at most one, |ϕ(x) − ϕ(a)| ≤ ρ for all

x ∈ B(a, ρ). Hence ∫
(ϕ− ϕ(a))dµ−

∫
(ϕ− ϕ(a))dν ≤

∫
ρdµ+

∫
ρdν = 2ρ.

So we have a bound on L(µ, ν).

Proposition 2. The metric L is complete.

This proposition follows from [5, section 4.3].
We use the metric L and Banach’s fixed point theorem to prove that there is a unique invariant measure

µ ∈M1 with respect to S.

Proof of theorem 5. It suffices to show S : M1 → M1 is a contraction map in the L metric. Firstly, we
need to verify that S(µ) ∈ M1 for µ ∈ M1. Since Si ∈ S is a similitude, Si#µ has bounded support. It
is straightforward to check that Si#µ is Borel regular and Si#µ(Rd) = 1. Thus, Si#µ ∈ M1 and hence

S(µ) =
∑N
i=1 r

D
i Si#µ ∈M1.

To show S :M1 →M1 is a contraction map, let ϕ : Rd → R with Lipϕ ≤ 1 and let r = max1≤i≤N ri.
(Recall ri < 1 is the Lipschitz constant of Si ∈ S.)

In [5, section 2.5], Hutchinson shows
∫
ϕd(Si#µ) =

∫
ϕ ◦ Sidµ. Thus, for µ, ν ∈M1,

L(S(µ),S(ν)) =

∫
ϕd(S(µ))−

∫
ϕd(S(ν)) =

∫
ϕd

(
N∑
i=1

rDi Si#µ

)
−
∫
ϕd

(
N∑
i=1

rDi Si#ν

)

=

N∑
i=1

rDi

(∫
(ϕ ◦ Si)dµ−

∫
(ϕ ◦ Si)dν

)

=

N∑
i=1

rDi r

(∫
(r−1ϕ ◦ Si)dµ−

∫
(r−1ϕ ◦ Si)dν

)
.

Realise that r−1ϕ ◦ Si is Lipschitz with Lipschitz constant at most r−1 · 1 · ri ≤ 1. Hence,∫
(r−1ϕ ◦ Si)dµ−

∫
(r−1ϕ ◦ Si)dν ≤ L(µ, ν).

Therefore, L(S(µ),S(ν)) ≤
∑N
i=1 r

D
i rL(µ, ν) = rL(µ, ν).

9



12 Appendix B - Proofs of Lemmata in Section 10

Proof of lemma 5. The first part follows easily from the fact that Si has Lipschitz constant ri:

diamSi(A) = sup{|Si(x)− Si(y)| : x, y ∈ A} ≤ sup{ri|x− y| : x, y ∈ A} = ri diamA.

The second part follows from the first part and the fact ri < 1 for all i = 1, ..., N .

Proof of lemma 6. Using the invariance of |S|:

|S| =
N⋃
i=1

Si(|S|) =
⋃
i,j

Sij(|S|) = ... =
⋃

i1,...,ip

Si1...ip(|S|).

Thus, |S| ⊃ Si1(|S|) ⊃ ... ⊃ Si1...ip(|S|) ⊃ .... By lemma 5, diamSi1...ip(|S|) → 0 as p → ∞. Therefore,⋂∞
p=1 Si1...ip(|S|) is a singleton set.

Proof of lemma 7. Let γ, δ ∈ I and suppose γ 6= δ. Consider the tuples (j1, ..., jq) that are initial segments
of both γ and δ. Chose the longest such tuple (j1, ..., jq). (It is possible that q = 0.) By assumption there
exist jq+1 6= j′q+1 such that (j1, ..., jq, jq+1) is an initial segment of γ and (j1, ..., jq, j

′
q+1) is an initial segment

of δ. By 1. in the open set condition, Sγ(O) ⊂ Sj1...jqjq+1
(O) and Sδ(O) ⊂ Sj1...jqj′q+1

(O). Hence, by 2. in
the open set condition,

Sγ(O) ∩ Sδ(O) ⊂ Sj1...jq (Sjq+1
(O) ∩ Sj′q+1

(O)) = ∅.

Proof of lemma 8. Suppose without loss of generality that U1, ..., Um meet B(0, ρ) and all other U i do not.
Then each U1, ..., Um is a subset of B(x, (1 + 2s2)ρ). Hence, we have m disjoint balls of radius ρs1 inside
B(x, (1 + 2s2)ρ). The sum of their volumes must be less than the volume of B(x, (1 + 2s2)ρ):

mαdρ
dsd1 ≤ αd(1 + 2s2)dρd.

(Recall αd = Γ( 1
2 )d/Γ(d2 + 1) is the volume of the unit ball.) This gives us the result.

Proof of lemma 9. First note that Si1...ip(O) = Si1...ip(O). By the open set condition, S(O) ⊂ O. Then

O ⊃ S(O) ⊃ S2(O) ⊃ ... ⊃ Sp(O) ⊃ ....
Let a ∈ O. By the above reasoning, limp→∞ Si1...ip(a) ∈ O. But realise that Banach’s fixed point theorem

applied to the contraction S : Cd → Cd gives us a way of constructing |S| (see remark after proof of theorem
1). In particular, limp→∞ Si1...ip(a) = xi1...ip.... By lemma 6, S is the union of the xi1...ip.... Thus |S| ⊂ O.

Finally, we get Si1...ip(|S|) ⊂ Si1...ip(O) by applying Si1...ip to both sides of |S| ⊂ O.

The proof of the final lemma of section 10 requires more theory on invariant measures and is given in [5,
section 4.4(4)].
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