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Abstract
Differential privacy (DP) is a mathematical standard for
assessing the privacy provided by a data-release mech-
anism. We provide formulations of pure ε-differential
privacy first as a Lipschitz continuity condition and
then using an object from the imprecise probability lit-
erature: the interval of measures. We utilise this second
formulation to establish bounds on the appropriate
likelihood function for ε-DP data – and in turn derive
limits on key quantities in both frequentist hypothesis
testing and Bayesian inference. Under very mild condi-
tions, these results are valid for arbitrary parameters,
priors and data generating models. These bounds are
weaker than those attainable when analysing specific
data generating models or data-release mechanisms.
However, they provide generally applicable limits on
the ability to learn from differentially private data –
even when the analyst’s knowledge of the model or
mechanism is limited. They also shed light on the se-
mantic interpretation of differential privacy, a subject
of contention in the current literature.
Keywords: disclosure risk, prior-to-posterior se-
mantics, Neyman-Pearson hypothesis testing, Lipschitz
continuity, multiplicative distance, transparency, stat-
istical disclosure control

1. Introduction

The world today is witnessing an explosive growth of
large-scale datasets containing personal information. Demo-
graphic and economic surveys, biomedical studies and
massive online service platforms facilitate understanding of
human biological functions and socio-behavioral environ-
ments. At the same time, they pose the risk of exposing con-
fidential information about data contributors. Breaches of
privacy can happen counter-intuitively and without malice.
For example, [37] demonstrated that even coarsely aggreg-
ated SNP (single-nucleotide polymorphisms [47]) data from
genome-wide association studies (GWAS) can still reliably
reveal individual participants. This unsettling revelation led
to the decision by the U.S. National Institute of Health to re-
move aggregate SNP data from open-access databases [64].
This incident, and similar occurrences across science, gov-

ernment and industry [54, 28, 17, 57], have attracted public
attention and sparked debate about privacy-preserving data
curation and dissemination.

Commensurate with the increasing risk of privacy
breaches, the recent decades have also seen rapid advances in
formal approaches to statistical disclosure limitation (SDL).
These methodologies supply a solid mathematical founda-
tion for endeavors that enhance confidentiality protection
without undue sacrifice to data quality. Notably, differential
privacy (DP) [26] puts forth a rigorous and practical stand-
ard for assessing the level of privacy provided by a data
release. Many large IT companies including Google [29],
Apple [3], and Microsoft [19] have been early adopters of
differential privacy. More recently, the U.S. Census Bureau
deployed differential privacy to protect data publications of
the 2020 Decennial Census [2]. The U.S. Internal Revenue
Service is also exploring differentially private synthetic
data methods for the publication of individual tax data [11].
These decisions by statistical agencies and corporations
showcase the growing popularity of differential privacy
among major data curators.

Innovations in privacy protection methods have prompted
quantitative researchers to confront a new reality, as existing
modes, practices and expectations of data access are subject
to renewal. We highlight two points of tension in this devel-
opment. First, DP promises transparency, in the sense that
the design details about the protection method can be made
public without compromising privacy. Transparency is one
of the advantages of DP over tranditional SDC methods
since it supports valid statistical inference by providing the
analyst with the ability to model the privacy noise. However,
this promise often falls short in practice, leaving the statisti-
cian with tied hands [33]. Second, following the high-profile
adoption of differential privacy by the U.S. Census Bureau,
a debate ensued concerning its interpretation, or semantics,
as well as its reconciliation with other notions of statistical
disclosure risk; see e.g. [44, 40, 46].

The current work takes multiple steps toward the res-
olution of these debates by examining DP via the lens of
imprecise probabilities (IP). First we describe the classic
notion of ε-differential privacy as a Lipschitz continuity
condition (Section 2). This enables a re-interpretation of
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ε-DP as an interval of measures [18] induced by the data-
release mechanism (Section 3). From here, we derive some
implications of this interpretation on the problem of statist-
ical inference using privacy-protected data releases. These
results concern the probability model of the observable
privatised data (Section 4), as well as frequentist hypothesis
testing (Section 5) and Bayesian posterior inference (Sec-
tion 6) using these data. These results establish bounds on
key inferential objects while having general validity under
mild assumptions about the data model, privacy mechanism,
and analyst’s prior (when applicable).

Within the current literature on DP, studies that leverage
tools from IP are sparse at best. We mention two branches of
work that are known to us. In [50], the authors propose novel
definitions of local differential privacy using the language of
belief functions, and in subsequent work examine constraints
on DP mechanisms as belief revision and update [51]. Also,
[48] examine the issue of partial identification in inference
from privacy-protected data, where in certain situations the
identification set can be described with a belief function.
The goals and approaches undertaken by the current paper
are substantially different from these existing lines of work.

2. Differential Privacy
Define the data universe X as the set of all theoretically-
possible observable datasets. Let d be a metric on X. Given
data x ∈ X, consider releasing some (potentially random-
ised) summary statistics t ∈ T . To formalise this, equip
T with a σ-algebra F and define a data-release mechan-
ism as a function M : X × [0, 1] → T (whose output is
the summary statistic t) such that M(x, ·) is (B[0, 1],F )-
measurable for each x ∈ X. (We use B[0, 1] to denote the
Borel σ-algebra on [0, 1].) A distribution on the seed U
induces a probability on the summary statistic t = M(x,U).
Without loss of generality, we may take U ∼ Unif[0, 1].
Denote by Px the probability measure of M(x,U) induced
by U, taking x as fixed.

The realised value of the seed U and the observed data
x are assumed to remain secret, while all other details of
M (including the distribution of U) may – and should – be
made public [33]. An attacker is tasked with inferring x
based on observing a draw t = M(x,U) ∼ Px . This set-up
is analogous to fiducial inference [35], with x taking the
role of the parameters, t the data, and M the data-generating
equation.

Differential privacy is a Lipschitz condition on M:

Definition 1 Given a data universe X equipped with a
metric d, a data-release mechanism M : X × [0, 1] → T
satisfies ε-differential privacy if, for all x, x ′ ∈ X,

dMult(Px, Px′) ≤ εd(x, x ′), (1)

where

dMult(P,Q) = sup
{����ln P(S)

Q(S)

���� : S ∈ F

}
,

is the multiplicative distance1 between measures P,Q on
(T ,F ).

The Lipschitz constant ε ≥ 0 is called the privacy loss
budget. Larger ε intuitively corresponds to less privacy;
smaller ε gives stronger privacy protection. A tenet of
differential privacy (in contrast with other statistical dis-
closure risk frameworks) is that any dependence of M(x,U)
on x implies non-negligible privacy loss ε > 0. Since
dMult(P,Q) = 0 if and only if P = Q, perfect privacy (i.e.
ε = 0) is only possible by releasing pure noise.

Two common choices of the metric d on X are

A) the Hamming distance

dHam(x, x ′) =

{∑n
i=1 1xi,x

′
i

if |x | = |x ′ | = n,
∞ otherwise,

where the data x = (x1, x2, . . . , xn) are vectors and |x |
is the size of x; and

B) the symmetric difference metric

d4(x, x ′) = |x \ x ′ | + |x ′ \ x |,

where the data x, x ′ ∈ X are multisets and x \ x ′ is the
(multi-)set difference.2

Equation (1) with d the Hamming distance is referred
to as bounded DP and with the symmetric difference as
unbounded DP.

The intuition behind differential privacy considers each
record xi in the data x as representing a single distinct
individual. A distance d(x, x ′) = 1 then implies that x and
x ′ differ according to the change in behaviour of a single
individual – a change in the individual’s response, for the
Hamming distance; or a change in whether the individual
responds or not, for the symmetric difference metric. ε-DP
implies that a single individual can change the summary
statistic M(x,U) by at most ε , where “change” is interpreted
probabilistically in terms of the multiplicative distance.

Under the mild assumption that d is a graph distance
with unit edges (Assumption 4, given in Section 3), the

1In defining dMult we set 0/0 = 1.
dMult is strongly equivalent to the density ratio metric δ [61]:

dMult(P,Q) < δ(P,Q) ≤ 2dMult(P,Q),

so that ε -DP can be defined with δ in place of dMult, up to rescaling of ε .
2We formally define a multiset S as a function Dom(S) → N≥0

with S(a) denoting the number of times the element a appears in S. The
multiset difference is defined as (S \ S′)(a) = max{0, S(a) − S′(a)} and
the multiset cardinality is defined as |S | =

∑
a∈Dom(S) S(a).
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converse implication also holds. That is, ε-DP is equivalent
to the Lipschitz condition (1) holding when d(x, x ′) = 1.
(This follows by the triangle inequality; for details see the
proof of Theorem 5.) From herein, we restrict our attention
to the set of such metrics, which includes dHam and d4.

Since DP controls the change in t due to perturbations in
the data x, it can naturally be understood as a robustness
property [23]. This insight hints at its connections to IP.
Measuring the “change in t” with the multiplicative distance
dMult – as compared to more familiar metrics typically seen
in the robustness literature such as Kolmogorov or total
variation distance – is motivated by a strong notion of
privacy as indistinguishability. The formulation of DP as
an interval of measure makes this motivation clear. We
therefore postpone the remainder of this discussion until
the end of Section 3.

Example 1 (Laplace mechanism [26]) Consider the
problem of releasing a sanitised version of a determin-
istic summary statistic q : X → Rk . (The terms ‘sanitised’,
‘privatised’, ‘privacy-protected’ and ‘privacy-preserving’
are synonymous in the DP literature.) The Laplace mech-
anism adds noise with standard deviation proportional to
the global `1-sensitivity of q:

∆(q) = sup
x,x′∈X
d(x,x′)=1

‖q(x) − q(x ′)‖1

Specifically, define M(x, L) = q(x) + bL, where b = ∆(q)
ε

and L is a k-vector of iid Laplace random variables with
density f (z) = 0.5 exp(−|z |). When d(x, x ′) = 1,

Px(S1 × . . . × Sk) =
k∏
i=1

[
0.5b−1

∫
Si

exp
(
−
|z − qi(x)|

b
dz

)]
≥ exp

(
−∆(q)

b

) k∏
i=1

[
0.5b−1

∫
Si

exp
(
−
|z − qi(x ′)|

b
dz

)]
= exp(−ε)Px′(S1 × . . . × Sk).

We will see in Theorem 5 that this suffices to prove that M
is ε-DP.

Example 2 (randomised response [60]) Taking X =⋃
n∈N{0, 1}n as the data universe, the randomised re-

sponse mechanism M flips each bit xi with probability
p = (exp ε + 1)−1. That is, given a binary n-vector x as
input, M outputs another binary n-vector with i-th compon-
ent xi + Bi mod 2 where B1, B2, . . .

iid
∼ Bernoulli(p). This

mechanism is ε-DP when d = dHam.
Moreover, M is an example of local (non-interactive) DP

[22], which requires Px to be a product measure
∏n

i=1 Pxi

(where n = |x | is the number of records in x). In the local
interactive setting, the factors Pxi can depend not only on xi

but also the previous outputs tj for j < i. The local model
is typical of data collection by an untrusted entity (such as
an IT company) where privacy protection must be applied
to each record before it is seen.

DP without the constraint Px =
∏n

i=1 Pxi is referred to as
central, since the raw data can be aggregated by a central,
trusted authority, such as a national statistical office.

3. ε-Differential Privacy as an Interval of
Measures.

We introduce the definition of interval of measures, due to
DeRobertis and Hartigan [18]:

Definition 2 Let Ω be the set of all σ-finite measures
on (T ,F ). For µ, ν ∈ Ω, write µ ≤ ν to denote that
µ(S) ≤ ν(S) for all S ∈ F .

Given L,U ∈ Ω with L ≤ U, the convex set of measures

I(L,U) = {µ ∈ Ω : L ≤ µ ≤ U}

is called an interval of measures. L and U are called the
lower and upper measures, respectively.

As a direct consequence of the above definition, the odds
ratio P(A)/P(B) – for any P ∈ I(L,U) and any A, B ∈ F –
is bounded between L(A)/U(B) and U(A)/L(B), whenever
the ratios are well-defined.

An equivalent concept is the density ratio class [8],
defined as follows: Fix some ν ∈ Ω and pick ν-densities
l ≤ u. The density ratio class I(l, u) consists of ν-densities
f satisfying l ≤ f ≤ u. (This is equivalent to Definition 2
since every µ ∈ I(L,U) is absolutely continuous with
respect to U and so will always have a ν-density when
ν = U.) Density ratio class are often used as prior neigh-
borhoods in robust Bayesian analysis due to their attractive
properties [61]. Moreover, interval of measures can also
represent neighborhoods of sampling distributions [49].
When used in conjunction with other prior neighborhoods
it augments Bayesian robustness beyond prior robustness,
without resorting to trivial posterior bounds.

Theorem 5 establishes an equivalence between the ε-DP
property of a data-release mechanism M and the interval
of measures M induces.

Definition 3 Two datasets x, x ′ ∈ X are connected – or
more precisely, d-connected – if d(x, x ′) < ∞. In this case,
we say that x is a connection of x ′, and that the probability
measures Px and Px′ are connected. More generally, S ⊂ X
is connected if all x, x ′ ∈ S are.

The data universe X is partitioned into connected com-
ponents [x] = {x ′ ∈ X | d(x, x ′) < ∞}.

Since the Lipschitz condition (1) is vacuous when
d(x, x ′) = ∞, DP only constrains a mechanism M to act
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similarly on connected datasets x, x ′; it makes no restric-
tions between M(x,U) and M(x ′,U) for unconnected x, x ′.
That is, there is no privacy guarantee of indistinguishability
between unconnected datasets.

When d = dHam, any dataset x, x ′ of different dimension
(i.e. |x | , |x ′ |) are unconnected, so DP does not protect
against, for example, an attacker determining |x |. Uncon-
nected datasets also arise in the presence of invariants
[6, 34].

Assumption 4 d(x, x ′) is equal to the length of a shortest
path between x and x ′ in a graph on X with unit-length
edges.

When d(x, x ′) > 1, the Lipschitz condition (1) is called
group privacy. Since each xi represents an individual, con-
dition (1) with d(x, x ′) > 1 is intuitively protecting multiple
individuals simultaneously. We prove in Theorem 5 that
Assumption 4 and individual-only privacy (i.e. condition
(1) for x, x ′ with d(x, x ′) = 1) together imply group privacy.

Theorem 5 Let M : X × [0, 1] → T be a data-release
mechanism with the seed U ∼ Unif[0, 1] inducing a prob-
ability Px on M(x,U) (where x is taken as fixed).

For 0 ≤ ε < ∞, the following statements are equivalent
given Assumption 4:

I M is ε-differentially private.

II Px′(S) ≤ eεPx(S) for all S ∈ F and all x, x ′ ∈ X with
d(x, x ′) = 1.

III For all δ ∈ N and all x, x ′ ∈ X with d(x, x ′) = δ,

Px′ ∈ I
(
Lx,δε,Ux,δε

)
,

where Lx,δε = e−δεPx and Ux,δε = eδεPx .

IV For all x ∈ X and all measures ν ∈ Ω, if Px has a
density px with respect to ν, then every d-connected
x ′ ∈ [x] also has a density px′ (with respect to ν)
satisfying

px′(t) ∈ px(t) exp(±εd(x, x ′)), (2)

for all t ∈ T .

In (2), the notation a ∈ exp(±b) is shorthand for

exp(−b) ≤ a ≤ exp(b).

II is the standard definition of ε-differential privacy [26]
and is listed here to justify our novel formulation of DP
given in Definition 1. Without Assumption 4, group privacy
is not implied by II. Hence Assumption 4 is needed only
to extend II to provide group privacy; the equivalences
between I, III and IV are automatic. Without Assumption 4

(which almost always holds in practice, such as for d = dHam
or d4), our definition of ε-DP is more stringent than the
standard formulation.
Proof “I ⇔ II”: Since d is a graph distance, there is
a path x = x0, . . . , xn = x ′ such that d(x, x ′) = n and
d(xi, xi+1) = 1. By the triangle inequality,

dMult(Px, Px′) ≤

n−1∑
i=0

dMult(Pxi , Pxi+1 ).

Hence ε-DP is equivalent to the Lipschitz condition (1)
holding only when d(x, x ′) = 1. The equivalence between I
and II then follows by the fact

e−εPx(S) ≤ Px′(S) ≤ eεPx(S), ∀S ∈ F ,

if and only if dMult(Px, Px′) ≤ ε .
“I⇔ III” is immediate by noting P ∈ I(e−εQ, eεQ) if

and only if dMult(P,Q) ≤ ε .
“III ⇔ IV”: The direction ⇒ is straightforward since

the densities in an interval of measure I(L,U) are bounded
by the densities of L and U. In the other direction, Px is
always absolutely continuous with respect to itself, hence
taking Px to be the dominating measure ν, we have that (2)
implies Px′ ∈ I(Lε,Uε ).

IV is a strong property. It implies that, for an ε-DP mech-
anism, all connected Px are mutually absolutely continuous.
Further, for all connected x, x ′ ∈ X, either px(t) and px′(t)
are both zero or both non-zero (regardless of the dominating
measure). Thus, if any x is plausible (i.e. px(t) > 0) then all
its connections x ′ ∈ [x] are also plausible. This is a strong
notion of privacy: regardless of the output t = M(x,U), it’s
impossible for an attacker to distinguish between connected
x, x ′ with certainty. In other words, the fiducial distribution
for x is never degenerate (assuming that every x has at least
one connection).

This notion of privacy is the motivation for dMult in
place of more standard concepts in the robustness literature
such as total variation distance or ε-contamination classes.
Indeed, indistinguishability requires that px(t)/px′(t) is
bounded away from zero and infinity, which is equivalent
to Px′ ∈ I(aPx, bPx) for some 0 < a ≤ 1 ≤ b < ∞. Yet
Theorem 5 shows that Px′ ∈ I(aPx, bPx) if and only if

dMult(x, x ′) ≤ max(− log a, log b).

Therefore, dMult is necessary to encode the idea of privacy
as indistinguishability between connected x, x ′.

This argument demonstrates that the Lipschitz condition
(1) with another metric δ in place of dMult will not ensure
indistinguishability (except in the trivial case where αδ ≥
dMult for some constant α). This is why all the common
variants of DP – such as (ε, δ)-DP [25], zero-concentrated
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DP [zCDP; 24, 13], and Rényi DP [53] – do not guarantee
this strong notion of privacy, even though they may be
preferred over pure ε-DP for data utility reasons.

The observations of Theorem 5, specifically the equi-
valent characterization of ε-DP via intervals of measures
established by III and IV, bear important consequences for
statistical inference from privacy-protected data. Notably,
they impose meaningful bounds on both the probability
of the privatised query and on relevant quantities in the
fequentist and Bayesian inference from the privatised quer-
ies. These bounds are valid under arbitrary statistical models
for the unknown confidential database, assuming only mild
conditions on the models’ support. The next three sections
explore these consequences in detail.

4. Bounds on the Privatised Data Probability
Consider the situation of statistical inference, where a data
analyst supplies a parametric model P = {Pθ | θ ∈ Θ}
of data generating distributions Pθ . Nature generates data
X ∼ Pθ according to some unknown θ ∈ Θ. (We use capital
X to emphasise that the dataset is now random, whereas
in the previous Sections, it was considered fixed.) In the
typical (non-private) setting, the data analyst observes X
directly. In the private setting, the data analyst only sees
the summary statistic t = M(X,U) ∼ PX outputted from
an ε-DP data-release mechanism M . (We now require that
the data universe X is equipped with a σ-algebra G and
that every data-release mechanism M is (G ⊗ B[0, 1],F )-
measurable, where B[0, 1] is the Borel σ-algebra on [0, 1].)

The relevant vehicle for inference in the private setting is
the marginal probability of the observed data t:

P(t ∈ S | θ) =
∫
X

Px(S)dPθ (x). (3)

We call P(t ∈ S | θ) the privatised data probability. Viewed
as a function of θ, it is termed the marginal likelihood of θ.
All frequentist procedures compliant with likelihood theory
and all Bayesian inference from privacy-protected data hinge
on this function. The crucial role of (3) for inference from
privacy-protected data was first recognized in the differential
privacy literature by Williams and McSherry [63], and has
since been utilized extensively to derive likelihood and
Bayesian methodologies [e.g. 4, 5, 9, 10, 32, 42].

When M is ε-DP and X is d-connected, the existence
of a density p(t | θ) is implied by Theorem 5. The fol-
lowing result proves this density exists in an interval of
measures under the weaker assumption that (informally)
the support of “P(x | t, θ)” is d-connected. Other than this
weak assumption, the following results hold for arbitrary
data generating models {Pθ } and ε-DP mechanisms M .

To state this assumption more precisely, define supp(x |
t, θ) as the set of databases x ∈ X which could both generate

t and be generated by Pθ . That is, supp(x | t, θ) is informally
the intersection of supp(Pθ ) ≈ {x | pθ (x) > 0} and {x |
px(t) > 0}. See Appendix A for an exact definition.

Theorem 6 Let M be an ε-DP mechanism. Suppose that
supp(x | t, θ) is d-connected. Then, for any x∗ ∈ supp(x |
t, θ),

p(t | θ) ∈ px∗ (t) exp(±εd∗), (4)

where d∗ = supx∈supp(x |t,θ) d(x, x∗).
Now assume that supp(x | t, θ) is d-connected for P(t |

θ)-almost all t ∈ T . Then

P(t | θ) ∈ I(Lε,Uε ) (5)

where Lε and Uε have densities

ess sup
x∗∈supp(x |t,θ)

exp(−εd∗)px∗ and ess inf
x∗∈supp(x |t,θ)

exp(εd∗)px∗

respectively.

Proof Existence of p(t | θ) follows from the fact that
all Px(t) with x ∈ supp(x | t, θ) are mutually absolutely
continuous by Theorem 5. For the upper bound of (4),

p(t | θ) =
∫

supp(x |t,θ)
px(t)dPθ (x)

≤

∫
supp(x |t,θ)

eεd(x,x∗)px∗ (t)dPθ (x)

≤ eεd∗px∗ (t).

The lower bound follows similarly. The proof of (5) is left
to Appendix B.

Surprisingly, the interval of measure I(Lε,Uε ) in (5)
depends on the data generating distribution Pθ only through
supp(x | t, θ). When supp(Pθ ) is constant,I(Lε,Uε ) is com-
pletely free of θ. Alternatively, one may take the essential-
infimum of Lε over θ ∈ Θ to obtain a bound on P(t | θ)
which is free of θ.

Theorem 6 is only meaningful when d∗ < ∞. Typically
d(x, x ′) is unbounded for x, x ′ ∈ X, which one might
presume would imply that d∗ = ∞. But supp(Pθ ) can be
much smaller than the data universe X when the analyst
has prior knowledge of the data X . The analyst is free to
restrict supp(Pθ ) to the set of plausible datasets; the tighter
this restriction, the stronger Theorem 6 is. For example,
the analyst may have an upper bound N on the number of
records |X |. Moreover, supp(x | t, θ) can be much smaller
than X when t restricts the possible values of X , such as
in the presence of invariants [34, 6]. For example in local
DP, the number of records |t | is invariant; this restricts
supp(x | t, θ) to data x satisfying |x | = |t |.

5



Bailie Gong

0.00

0.02

0.04

0.06

0.08

-20 -10 0 10 20 30

t

d
e
n
s
ity

density bounds for p( t | θ )

n = 10, ε = 0.1

0.0

0.1

0.2

0.3

0.4

-20 -10 0 10 20 30

t

d
e
n
s
ity

density bounds for p( t | θ )

n = 10, ε = 0.25

Figure 1: Upper and lower density bounds for the privatised data probability p(t | θ), as a function of t (the privatised
binary sum), for ε = 0.1 (left) and ε = 0.25 (right) from Example 3. These bounds do not depend on θ nor the
assumed data model Pθ . The bounds are tighter and more informative when privacy protection is more stringent
(smaller ε).

Remark 7 Theorem 6 only relies on the single assumption
that supp(x | t, θ) is connected. This assumption is weak. In
fact, we can always augment the data-release mechanism M
so that this assumption is satisfied without increasing M’s
privacy loss budget ε . Specifically, the (deterministic) mech-
anism x 7→ [x] (which publishes the connected component
[x] of the observed data x) is trivially ε-DP with ε = 0. Pub-
lishing [x] alongside M(x,U) ensures that supp(x | t, θ) is
always connected.

We illustrate Theorem 6 with two examples.

Example 3 (privatised binary sum) Suppose the data-
base x ∈ X = {0, 1}n consists of n records of binary
features, and its sum q(x) =

∑n
i=1 xi is to be queried. Con-

sider sanitising q(x) using the Laplace mechanism defined
in Example 1. For every privacy loss budget ε > 0 and
every database x,

px(t) =
ε

2∆q
exp

(
ε |t − q(x)|

∆(q)

)
,

where the global `1-sensitivity ∆(q) = 1 in this case. The
data analyst posits an arbitrary statistical model X ∼ Pθ
for θ ∈ Θ, and considers the confidential and unknown
database x to be a realization from this model.

Figure 1 displays the upper and lower densities, corres-
ponding respectively to Lε and Uε in Theorem 6, for the
privatised data probability p(t | θ). The total record length
n is upper bounded by 10, so that d∗ = 10. (In general,

restrictions on supp(x | t, θ) such as this are imposed by the
data analyst as they set the support for the data model Pθ .)
The left and right panels display bounds under two different
settings of ε . The bounds are tighter and more informative
when privacy protection is more stringent (ε = 0.1), and
looser as the privacy loss budget increases (ε = 0.25).
Notice that these bounds for p(t | θ) are functions of the
value of the privatised query t. In particular, they do not
depend on θ nor the form of the posited data model Pθ .

Example 4 (local DP) In the local (non-interactive) pri-
vacy model, the distribution Px of the published summary
statistic M(x,U) factors as

∏n
i=1 Pxi , where n = |x |. This

implies |t | = |x |. If d = dHam, as is typical for local DP,
d∗ ≤ |t | regardless of the choice of x∗. Hence, for any x,

p(t | θ) ∈
n∏
i=1

pxi (ti) exp(±εn),

under local ε-DP. For randomised response, minxi pxi (ti) =
(exp ε + 1)−1 and maxxi pxi (ti) = eε (exp ε + 1)−1, so that

1
(exp ε + 1) |t |

≤ p(t | θ) ≤
exp(|t |ε)
(exp ε + 1) |t |

. (6)

The bounds in (6) depend on t only through |t | (the number
of records), regardless of the records’ values. Figure 2
displays these bounds as a function of |t | for ε = 1. As more
records are released (larger |t |), both bounds tend to zero
with a narrowing gap.
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5. Frequentist Privacy-Protected Inference
The interval of measures formulation of DP also shows
that Neyman-Pearson hypothesis testing is restricted in the
private setting, as demonstrated by the following Theorem.

Theorem 8 Consider testing H0 : θ = θ0 versus H1 :
θ = θ1 for some θ0 , θ1 ∈ Θ. Let Si = supp(x | t, θi)
and suppose that every x ∈ S0 is d-connected to every
x ′ ∈ S1. In the private setting, the power of any level-α test
is bounded above by α exp(d∗∗ε) where

d∗∗ = sup
x∈S0,x′∈S1

d(x, x ′).

Proof By IV of Theorem 5,

p(t | θ1)

p(t | θ0)
=

∫
S1

px(t)dPθ1 (x)∫
S0

px′(t)dPθ0 (x ′)

=

∫
S1

[∫
S0

px′(t)
px(t)

dPθ0 (x
′)

]−1
dPθ1 (x)

∈ exp(±εd∗∗).

Let R be the rejection region of a test with size P(t ∈ R |
θ0) ≤ α and let ν be the dominating measure of the densities
p(t | θ0) and p(t | θ1). Then

P(t ∈ R | θ1) =

∫
R

p(t | θ1)dν(t) (7)

≤ exp(d∗∗ε)
∫
R

p(t | θ0)dν(t)

≤ α exp(d∗∗ε).

Compare Theorem 8 to the hypothesis test H0 : x1:m = y

versus H1 : x1:m = y′ where m ≤ |x |. This test models
an attacker trying to distinguish the first m records of the
database. Wasserman and Zhou [62] showed that any level-
α test of x1:m has power at most α exp(εm) when Xi are
iid.

If the data analyst restricts S0 and S1 to datasets of
length m, then typically d∗∗ = m. Thus, any level-α test
on the parameter θ has the same bound α exp(εm) on its
power (under an arbitrary data generating model, not just
iid Xi). This highlights the fundamental tension between
data privacy and data utility: bounding an attacker’s power
necessarily bounds the power of a legitimate analyst.

Theorem 8 strictly generalises the result of Wasserman
and Zhou [62]. By taking Θ ⊂ X and setting Pθ as degen-
erate point masses, we recover the set-up of an attacker’s
hypothesis test.3 Thus, Theorem 8 is applicable to both the
attacker testing x (like [62]) and the analyst testing θ (with
non-degenerate Pθ ).

3This ignores one minor technicality: the attacker may take some
records as nuisance parameters, which they do not want to test. It is
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Figure 2: Upper and lower density bounds for p(t | θ) under
randomised response (Example 4) with ε = 1.
These bounds are a function of t only through |t |
(the number of observed records).

6. Bayesian Privacy-Protected Inference
Following the set-up from the previous Sections, we further
assume that the analyst is Bayesian and places a (proper)
prior π on Θ. This setting can be seen as a Bayesian
hierarchical model where the raw data X acts as latent
parameter in the Markov chain θ → X → M(X,U).

The Theorem below establishes bounds on the ana-
lyst’s prior predictive distribution P(t ∈ S) =

∬
Px(t ∈

S)dPθ (x)dπ(θ) for the privatised data t.
We make the following Assumption throughout this

Section.

Assumption 9 Suppose that

supp(x | t) :=
⋃

θ∈supp(π)
supp(x | t, θ),

is d-connected for P(t)-almost all t ∈ T . Further, assume
the prior π on θ is proper.

By the same reasoning as in Remark 7, the first half of
Assumption 9 is weak because it can always be satisfied
by augmenting the data-release mechanism M without
additional privacy loss.

straightforward to generalise Theorem 8 to this situation. Without loss of
generality, suppose xm:n are nuisance parameters when testing x1:m−1
against x′1:m−1. By assigning a conditional probability on xm:n satisfying
π(xm:n | x1:m−1) = π(xm:n | x′1:m−1), the nuisance parameters can
be integrated out in (7). This gives the same power bound α exp(d∗∗ε ),
except now with

d∗∗ = sup
xm:n

d
( [
x1:m−1, xm:n

]
,
[
x′1:m−1, xm:n

] )
.

7
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Theorem 10 The analyst’s prior predictive probability for
t ∼ M(X,U) (with M an ε-DP mechanism) satisfies

p
ε
(t) ≤ p(t) ≤ pε (t),

for every t ∈ T , where p
ε

and pε are defined as

ess sup
x∗∈supp(x |t)

exp(−εd∗)px∗ and ess inf
x∗∈supp(x |t)

exp(εd∗)px∗

respectively, with d∗ = supx∈supp(x |t) d(x, x∗).

Proof Since p(t) =
∫
Θ

p(t | θ)dπ(θ), Theorem 10 follows
by showing p(t | θ) is bounded by p

ε
(t) and pε (t). The

proof of this is analogous to (5).

The prior predictive distribution p(t) plays an important
role in Bayesian inference and model checking. Before
observing the data, p(t) captures the analyst’s implied spe-
cification on the data generation process. After observing
the data, this quantity assessed at their value is called model
evidence where low p(t) reveals potential conflict between
the data and the prior [30, 59]. In addition, it is also the
normalizing constant for the posterior distribution p(θ | t)
and is useful for computation.

As an illustration, we can see from Figure 1 of Example 3
that when ε = 0.1, the prior predictive probability of the
privatised query is lower-bounded at ≈ 0.02 whenever
0 ≤ t ≤ 10, and can never exceed ≈ 0.08 even when
t = 5. On the other hand, when privacy protection is less
stringent (ε = 0.5), the upper bound on the prior predictive
probability increases to more than 0.4.

An important observation on Theorem 10 is the following:
While p(t) is a function of both the data model Pθ and the
prior π, the density bounds p

ε
(t) and pε (t) are free of both.

In this sense, these bounds provide a non-trivial yet almost
assumption-free prior predictive model sensitivity analysis.
Non-trivial bounds on p(t) are not possible in general; in
this case they are a consequence of the data t being ε-DP.

The following Theorem provides general bounds limiting
the learning of a Bayesian analyst.

Theorem 11 The analyst’s posterior probability given (a
realisation of an ε-DP mechanism) t satisfies

π(θ | t) ∈ π(θ) exp(±εd∗∗), (8)

where d∗∗ = supx,x′∈supp(x |t) d(x, x ′).

Proof As in the Proof of Theorem 8, we can show

p(t | θ)
p(t | θ ′)

∈ exp(±εd∗∗),

for all θ, θ ′ ∈ Θ. Plugging this into π(θ | t) = π(θ)p(t |θ)∫
Θ

p(t |θ′)dπ(θ′)

gives the result.

Theorem 11 contributes to what is called the prior-to-
posterior semantics of differential privacy, in the sense
that (8) describes the extent to which a Bayesian agent’s
posterior about a parameter can depart from their prior
when learning from an ε-DP data product.4 Analogous to
the discussion in Section 5, Theorem 11 demonstrates the
balance between restricting a Bayesian attacker while allow-
ing for legitimate Bayesian learning: By setting Θ ⊂ X and
Pθ as degenerate point masses, we strictly generalise the
result of Gong and Meng [34] which bounds an attacker’s
prior-to-posterior change in a single record xi .5 We there-
fore have illustrated the privacy-utility tradeoff which is
fundamental to ε-DP under both frequentist and Bayesian
inference.

Theorem 11 is powerful because it holds for arbitrary
specifications of the data model Pθ and is applicable to
the agent’s arbitrary (proper) prior π(θ). So long as d∗∗ is
finite (see the discussion after Theorem 6 on why this is not
unreasonable), the bounds in (8) are non-trivial.

With that said, whenever d∗∗ is large, the bounds provided
by Theorem 11 are wide, rendering the results weakly
informative at best. Indeed, rather than a pair of wide
posterior bounds, the agent would be better off with a
precise Bayesian posterior, which is theoretically derivable
via the simple relation

π(θ | t) ∝ π(θ)p(t | θ), (9)

where p(t | θ) can in turn be derived from the convolu-
tion of the data model Pθ and the privacy mechanism Px

according to (3). In practice, however, direct computation
or sampling from (9) is not always possible or feasible.
Difficult situations include A) when the privacy mechanism
Px is not fully transparent to the analyst due to its complex
dependence on x, whether by design or by post-processing
[33]; B) when the data model Pθ is intractable, such as if
defined algorithmically or treated as a black-box; and C)
when their convolution (3), an n-dimensional integral, is
intractable. Under any of these situations, the analyst may
still rely on Theorem 11 to obtain bounds on their posterior.

Despite their width, these bounds are optimal whenever
ε is the smallest constant satisfying the Lipschitz condition
(1). Without adding further assumptions on M, Pθ , or π,
these bounds cannot be shrunk. (This also applies to the

4An alternative type of semantics for differential privacy is the
posterior-to-posterior semantics [20, 43], whose focus is on the extent to
which a Bayesian agent’s posterior may vary were it derived from privacy-
protected queries based on different (counterfactual) confidential databases.
Previous literature in differential privacy predominantly adopted posterior-
to-posterior semantics [46]. However, prior-to-posterior semantics have
recently attracted increasing attention as they circumvent counterfactuals
and are closely connected with the literature on statistical disclosure risk
[34, 40].

5By fixing some x ∈ X and setting π(x−i ) = 1, we get d∗∗ = 1 and
thereby rederive the result from [34].
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bounds from Sections 4 and 5. We prove this in Section 7.)
Yet they are not necessarily tight at a given θ. This defi-
ciency is an inevitable consequence of our analysis, which
replaced the average case (

∫
px(t)dPθ (x)) with the extreme

case (px∗ (t) exp[εd∗]). Such an analysis is necessarily loose
whenever there is any variation away from the extreme. But
the analysis cannot be tightened without making assump-
tions about the nature of this variation – i.e. by making
further assumptions on M, Pθ , or π.

We illustrate the posterior bounds of Theorem 11 with
an example of Bayesian inference for a privatised count.

Example 5 (privatised single count) Suppose the data-
base consists of a single count record x ∈ N. We wish
to query the value of x after it has been clamped to a
pre-specified range [a0, a1]. That is, q(x) = a0 if x < a0,
q(x) = a1 if x > a1, and q(x) = x otherwise. In differen-
tially private mechanism design, clamping is a necessary
procedure when the intended query has otherwise unboun-
ded global sensitivity. Under clamping, the sensitivity is
reduced to ∆(q) = a1 − a0.

The analyst’s Bayesian model is

θ ∼ Gamma(α, β),

x | θ ∼ Pois(θ),

t | x ∼ Lap
(
q(x); ε−1∆(q)

)
.

For illustration, set a0 = 0, a1 = 6,α = 3, β = 1. Figure 3
depicts in blue solid lines the upper and lower density
bounds on the analyst’s posterior distribution p(θ | t)
as given by Theorem 11. With ε = 1 and d∗∗ = 1, they
are equal to the Gamma(3, 1) prior density (blue dashed
line), scaled by exp(±1). Overlaid in grey are Monte Carlo
posterior densities p(θ | t(k)), k = 1, . . . , 10, produced
via the exact sampling algorithm proposed by [32]. Each
t(k) is independently simulated from the prior predictive
distribution of the above Bayesian model.

Several aspects of Example 5 are worth noting. First,
the posterior density bounds (solid blue) are functions of
the analyst’s chosen prior π(θ) and the privacy mechanism
parameters ε and d∗∗ only. They are valid for any data
model Pθ that the analyst wishes to employ, including (but
not limited to) the Poisson data model that underlie the
depicted precise posteriors densities p(θ | t(k)) in grey.
On the other hand, while these precise posterior densities
display moderate variations among each other, they do not
depart much from the prior density (dashed blue). This
is due to the heavy-handedness of the privacy mechanism
employed for this analysis, resulting in poor statistical utility
of the privatised count t. Indeed, the mechanism injects
Laplace noise with standard deviation of

√
2ε−1∆(q) = 8.48

into a statistic clamped between a0 = 0 and a1 = 6. That
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Figure 3: Upper and lower density bounds (solid blue) for
the Bayesian posterior p(θ | t) from Example 5,
based on a privatised single count. Dashed blue
is density of the Gamma(3, 1) distribution, the
analyst’s prior for θ. In grey are simulation-based
posterior densities based on 10 realizations of t
from its prior predictive distribution under the
Poisson data model.

t cannot be highly informative for the inferential problem
at hand is correctly identified by the full Bayesian analysis
which precisely accounts for the uncertainty induced by the
privacy mechanism (grey lines). Furthermore, these precise
posterior distributions are generally far from the bounds
implied by Theorem 11; this re-enforces the shallowness of
these bounds due to their validity for very general classes
of the data model Pθ and priors π.

7. Optimality of this Paper’s Results

The bounds presented in this paper cannot be improved
without additional assumptions on the data-release mechan-
ism M, the data generating model Pθ or the prior π. This
is illustrated by the Laplace mechanism M (Example 1)
for the count query q(x) =

∑
i xi . The density of M is

px(t) = ε
2 exp(−ε |t − q(x)|) when X = {0, 1}n and the met-

ric d on X is the Hamming distance dHam. The bound (4) in
Theorem 6 is tight if px(t) = exp(εd∗)px∗ (t) for Pθ -almost
all x ∈ supp(x | t, θ). Hence p(t | θ) can be arbitrarily close
to exp(εd∗)px∗ (t) as Pθ concentrates on x = (0, . . . , 0) with
x∗ = (1, . . . , 1) and t ≤ 0. To see the tightness of The-
orem 8, set θ0 = (0, . . . , 0) and θ1 = (1, . . . , 1) with Pθ (x)
the point mass on θ = x. The Neyman-Pearson (NP) test
has rejection region R = {t > t0}. For small enough ε ,
we must have t0 ≥ n = d∗∗ (assuming α < 0.5). Then,
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p(t | θ1) = exp(εn)p(t | θ0) for all t ∈ R, which means the
NP test has power exactly α exp(εn). For Theorem 11, take
Θ = [0, 1] with π = Unif[0, 1] and Pθ (x) the point mass on
(1, . . . , 1) if θ = 1 and the point mass on (0, . . . , 0) other-
wise. For t > n, we have π(θ = 1 | t) = π(θ = 1) exp(εn).
Thus, the bound in Theorem 11 is achieved since d∗∗ = n.

8. Discussion
The results we obtain in this paper make novel contributions
to the differential privacy literature in the following ways.
Firstly, the bounds we obtain in Theorems 6, 8, 10 and 11
are non-trivial, due to the validity of these results across
a broad range of data models, privacy mechanisms and
prior distributions. When the analyst has little knowledge
or is only willing to make minimal assumptions about their
model, these bounds are useful representations of the limits
of statistical learning under privacy constraints. This draws
a contrast with the existing DP literature, which has largely
focused on asymptotic lower bounds or on constructing
(asymptotically-)optimal data-release mechanisms for spe-
cific data use cases [56, 14, 16, 22, 7, 58, 27, 62, 5]. This
literature aligns with query-based access [40] where the
user can choose what statistics are released. Our results,
on the other hand, are finite-sample and apply to the dis-
semination mode of data release where the mechanism
is not tailored for the analyst’s use case. This setting is
typical of official statistics (e.g. censuses and surveys) and,
more generally, data products with multiple users, and is
more common in the research community than query-based
access [40].

Secondly, the generality of our bounds implies that they
are inherent consequences of ε-DP itself. Specifically, these
bounds stem only from the requirement that the mechanism
M is ε-DP and not on any particularities of Pθ, M or π.
That these bounds are typically wide in practice – as can
be seen from Examples 3 and 5 – is in part due to the
near-total lack of assumption under which they are derived.
While these bounds can approach vacuity as the data size
n grows, in practical examples that need not be the case if,
for example, the data analyst has probabilistic knowledge
about the privacy mechanism (see e.g. Example 5) or the
data space X. For a given choice of Pθ, M and π, we may
obtain tighter bounds than those in this paper. In addition to
the asymptotic results in the aforementioned papers, sharp
bounds for specific Pθ, M and π may be derivable from
the existing literature on measurement errors (errors-in-
variables) in statistics and econometrics, particularly in the
case of point identification problems (see e.g. [15, 38]).

Through the lens of Theorems 8 and 11, we obtain
a valuable insight into the privacy-utility trade-off of ε-
DP [40]. Qualitatively speaking, there exists an inherent
tension between protecting private information and deriving

scientific knowledge. To date, quantitative approaches to
this trade-off predominantly rely on the privacy loss budget
as the sole metric to balance this trade-off [1, 41, 36].
However, from the suite of IP analyses presented here, we
see that other building blocks – notably the metric structure
(X, d) of the data universe, the associated database distances
(such as d∗ and d∗∗), and the clamping parameters – are all
relevant factors that, together with the privacy loss budget
ε , collectively determine the limits to statistical learning for
attackers and scientists alike. Therefore, ε is not the only
parameter of concern – and perhaps not even the central
concern – when assessing and trading-off privacy and utility
[6].

While this paper does reveal the tradeoff of ε-DP, it nar-
rowly conceives privacy and utility as the extent of statistical
estimation attainable under either frequentist or Bayesian
paradigms. There are, of course, many other aspects of
utility that are worth examining – such as the ease of ana-
lysis, use of computational resources, facial validity and
logical consistency [12, 39, 55] – and other paradigms (in
particular decision theory) with which the concepts of pri-
vacy and utility can be quantified. In fact, both notions are
multi-faceted and context-specific and, as one of our review-
ers pointed out, a judicious conceptualisation of privacy
and utility may improve their tradeoff’s efficiency frontier.
Acknowledging the complex makeup of this tradeoff, we
advocate for future privacy mechanism design and analyses
to treat the conceptualisation of privacy and utility – and
the choice of X, d and dMult – with scrutiny, given their
scarcity in the current literature [6].

One direction for immediate future research is to explore
IP characterisations of common variants of DP, in particular
(ε, δ)-DP [25], zero-concentrated DP [24, 13], and Gaussian
DP [21], which are popular in practice due to flexible privacy
mechanism design, better privacy budget accounting and
increased statistical efficiency. Since these variants, and
others such as Pufferfish [45] and subspace DP [31], stem
from reconceptualising X, d and the metric dMult on Ω
(the set of σ-finite measures on (T ,F )), a key question is
how the Ω-metric corresponding to a DP variant can be
characterised as an IP object [6]. Our preliminary analysis
shows that (ε, δ)-probabilistic DP [52] cannot be described
by an interval of measures, at least not alone. However, it
can be interpreted as restricting Px′ to the union of δ-total
variation neighbourhoods of P, where the union is over all
P ∈ I(e−εPx, eεPx) – i.e. the ε-density ratio neighbourhood
of Px (with d(x, x ′) = 1).

Appendix A. Definition of supp(x | t, θ)
Denote the support of Pθ by

supp(Pθ ) =
⋂
{S ∈ G | S closed, Pθ (S) = 1} ⊂ X. (10)
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Here we mean ‘closed’ with respect to an appropriate
topology τ on X, not necessarily the topology induced by
the metric d. Typically τ would be such that G is the Borel
σ-algebra of τ. A standard example would beX =

⋃
n∈N Rn

(i.e. the universe of real-valued datasets with length n ∈ N)
with the topology induced by the map

X → RN

x 7→ (x, 0, 0, . . .),

where RN is equipped with the product topology.
(Generally we should not use the topology induced by

d. Since d is typically discrete, it would give supp(Pθ ) = ∅
whenever X is uncountable and then Theorems 6 and 11
would be vacuous.)

Similar to (10), define supp(Px) ⊂ T . Write supp0(x |
t) = {x | t ∈ supp(Px)} and finally define

supp(x | t, θ) = supp(Pθ ) ∩ supp0(x | t).

In general, the topologies on X and T should be chosen
so that supp(x | t, θ) is as small as possible without being
empty, so that Theorems 6 and 11 are as strong as possible.

Appendix B. Proof of (5)
By Theorem 5, we can fix a measure ν ∈ Ωwhich dominates
all Px for x ∈ supp(x | t, θ). Take the essential supremum

ess sup
x∗∈supp(x |t,θ)

exp(−εd∗)px∗, (11)

with respect to ν. (11) exists and is measurable as ν is σ-
finite. Thus, (11) is a ν-density for some measure Lε ∈ Ω.
By (4),

p(t | θ) ≥ ess sup
x∗∈supp(x |t,θ)

exp(−εd∗)px∗ (t),

for ν-almost all t. This proves one half of (5); the argument
for the upper measure Uε is analogous.
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