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1 Introduction

A Künneth formula relates the (co)homology of two objects to the (co)homology of their product.
For example, there is a split short exact sequence

0→
⊕
i

(Hi(X;R)⊗R Hn−i(Y ;R))→ Hn(X × Y ;R)→
⊕
i

TorR (Hi(X;R), Hn−i−1(Y ;R))→ 0

for CW complexes X and Y and prinicipal ideal domains R [AT, theorem 3B.6]. A similar result
for cohomology (with added assumptions) can be found in [Sp, theorem 5.11].

In this report we will prove a Künneth formula for complex K theory:

Theorem 1. There is a natural exact sequence

0→
⊕
i+j=k

Ki(X)⊗Kj(Y )
µ−→ Kk(X × Y )

β−→
⊕

i+j=k+1

Tor
(
Ki(X),Kj(Y )

)
→ 0

for finite CW complexes X and Y , where all indices are in Z2 and µ is the external product.

This theorem was first proven by Atiyah in 1962 [VBKF].
Sections 2 to 4 provide some necessary background to the proof of theorem 1. Section 5 contains

the proof. There is a brief discussion on the impossibility of a Künneth formula for real K theory
in seciton 6. In section 7 we provide a stronger Künneth formula, given by Atiya in [KT]. Finially
we will briefly discuss Kunneth formulae for other general cohomology theories in section 8.

2 Review of the Tor Functor

Recall the definition of Tor given by Hatcher in [AT, section 3.A]: from an abelian group H and a
free resolution F :

...→ F2
f2−→ F1

f1−→ F0
f0−→ H → 0

we can form a chain complex by removing H and tensoring with a fixed abelian group G:

...→ F2 ⊗G
f2⊗id−−−→ F1 ⊗G

f1⊗id−−−→ F0 ⊗G→ 0.

The homology groups Hn(F ⊗ G) of this chain complex do not depend on the free resolution F
[AT, lemma 3.A2]. We denote these groups by Torn(H,G).
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We can generalise this to the case when G and H are R-modules. This generalisation is necessary
to understand the Künneth formula for ordinary homology given above. However, it is inessential
for our purposes since in the Künneth formula for K theory, Tor is applied to abelian groups.

Note that for any abelian group H, a free resolution of the form

0→ F1 → F0 → H → 0

always exists. We can construct such a resolution as follows. Let α1, ..., αn (n possibly infinite) be
generators for H and define F0 to be the free abelian group over α1, ..., αn (considered as formal
symbols). There is a surjective homomorphism f0 : F0 → H defined by

f0(αi) = αi

and extended linearly. Now the kernel of f0 is free, since it is a subgroup of a free abelian group.
Therefore, we obtain a free resolution

0→ Ker f0
i
↪−→ F0

f0−→ H → 0,

with the following associated chain complex

0→ Ker f0 ⊗G
i⊗id−−→ F0 ⊗G→ 0.

The homology groups Hn(F ⊗ G) of this chain complex are obviously 0 for n > 1. Since these
homology groups do not depend on the choice of free resolution, it must be the case thatHn(F⊗G) =
0 for all free resolutions F of H and all n > 1. In other words, Torn(H,G) = 0 for n > 1. Moreover,
since the tensor product is right exact, Tor0(H,G) ∼= H ⊗ G. Therefore, when H is an abelian
group, there is only one Tor group of interest, Tor1(H,G). This is what we mean when we write
Tor(H,G) without any subscript. In the more general case when G and H are R-modules, the
higher Tor groups do not vanish, and hence must be included in the Künneth formula, as we have
seen for homology with coefficients in a principal idea domain.

Finally, it is worth noting that Tor(H,G) is a covariant functor of both G and H. Given a
homomorphism α : H → H ′ between abelian groups, there is an induced homomorphism α∗ :
Tor(H,G) → Tor(H ′, G) on Tor groups, defined in the following way. Firstly, note that given free
resolutions F and F ′ of H and H ′ respectively, we can extend α to a chain map:

... F2 F1 F0 H 0

... F ′2 F ′1 F ′0 H ′ 0

α2

f2

α1

f1

α0

f0

α

f ′2 f ′1 f ′0

This is lemma 3.1(a) in [AT]. Then tensoring resolutions with H, we get a chain map αn⊗ id. This
chain map induces a homomorphism α∗ : Hn(F ⊗G)→ Hn(F ′ ⊗G) on homology. Note that this
map satisfies the required functorial properties: (αα′)∗ = α∗α

′
∗ and id∗ = id. The construction of

the induced map β∗ : Tor(H,G)→ Tor(H,G′) from a homomorphism β : G→ G′ is obvious.

3 Classifying Spaces

To understand Atiyah’s proof of theorem 1, we need some knowledge classifying spaces. This section
assumes some comprehension of homotopy theory - chapter 4 of [AT] is sufficient.
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Definition 2 (informal). Let G be a topological group. A principal G bundle is a fibre bundle
p : E → B, where E is a G-space and each fibre is homeomorphic to G.

Recall that all n-dimensional vector bundles are pullbacks of the universal bundle En(C∞) →
Gn(C∞). There is an analogous result for principal G bundles [Mitchell, theorem 7.4 and theorem
7.6]: We have a prinicipal G-bundle

p : EG→ BG

called the universal bundle with the property that a principal G bundle over any G-space X is a
pullback of p by some map f : X → BG.

Definition 3. We call BG the classifying space of G.

It turns out that there is an obvious fibration:

G ↪→ EG→ BG.

Then using the following proposition and the fact that EG is contractible, we get that there is
a weak homotopy equivalence G → ΩBG, where ΩBG is the loopspace of BG. (This tells us that
the classifying space BG is unique up to (at least) weak homotopy equivalence.)

Proposition 4 [AT, proposition 4.66]. If F → E → B is a fibration with E contractible, then
there is a weak homotopy equivalence F → ΩB.

This obviously strengthens to homotopy equivalence, when considering CW complexes. The
idea behind the proof is to construct maps between fibrations

F E B

ΩB PB B

=

where PB is the path space of B. Then consider the long exact sequences of these two fibrations,
with maps between them induced by the diagram above. Since E and PB are contractible, their
homotopy groups vanish and the five lemma implies that the map F → ΩB is a weak homotopy
equivalence.

We are now in a position to give some important results that will be used in the proof of
the main theorem. Let U(n) be the unitary group of degree n and U be the infinite unitary
group. Denote the Grassmannian of n-dimensional subspaces of V by Gn(V ). We have that
the classifying space BU(n) ∼= Gn(C∞) [Mitchell, section 7]. Thus, there are obvious inclusions
BU(n) ↪→ BU(n+ 1) ↪→ BU .

Proposition 5. Let [A,B] be the homotopy classes of maps A→ B. Then K̃0(X) ∼= [X,BU ].

Proof. A class α ∈ K̃(X) is represented by [E] − [εn] where dimE = n and is classified by a
map f : X → Gn(C∞) [VBKT, theorem 1.16]. But α is also represented by [E ⊕ ε1] − [εn+1] and
therefore classified by a map f ′ : X → Gn+1(C∞). Now, we claim that two vector bundles classified
by g : X → Gm(C∞) and g′ : X → Gm′(C∞) are stably equivalent (i.e. they represent the same

class in K̃(X)) if and only if the maps

X
g−→ Gm(C∞) ↪→ Gk(C∞) and X

g′−→ Gm′(C∞) ↪→ Gk(C∞)

are homotopic for some large k. This proves the claim.
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Corollary 6. If X is CW complex, then K1(X) ∼= [X,U ].

Proof. By definition
K1(X) = K̃0(ΣX) ∼= [ΣX,BU ],

where ΣX is the reduced suspension of X. Using the adjoint relation between Σ and the loopspace
Ω (c.f. [AT, section 4.3]), we have [ΣX,BU ] ∼= [X,ΩBU ]. Since X is a CW complex, we have
ΩBU ' U by proposition 4, which proves the claim.

See also [KT, lemma 2.4.6] for a proof of corollary 6 with a different flavour.

4 Atiyah-Hirzebruch Spectral Sequence

In this section, we provide an informal description of a spectral sequence and state some results
necessary for proving the Künneth formula for complex K theory.

Spectral sequences are useful tools for calculating (co)homology and homotopy groups. A spec-
tral sequence is a three dimensional array Erp,q of abelian groups with p, q, r ∈ Z, r > 0. For fixed
r, the groups Erp,q are called the r-th page. (Often the r-th page is denoted simply by Er.) There
are morphisms dr : Erp,q → Ep−r,q−r+1 which form chain complexes. That is, we have that d2r = 0
and consequently we call dr a differential. Finally, the (r+ 1)-th page is the homology of the chain
complexes in the r-th page:

Er+1
p,q =

Ker (dr : Erp,q → Erp−r,q+r−1)

Im(dr : Erp+r,q−r+1 → Erp,q)
.

Often, we can assume Erp,q = 0 for p, q < 0. Then, for fixed p, q and large enough r, the
differentials going in and out of Erp,q will be zero. At this point, passing to the next page will
not change the groups: Er+1

p,q = Erp,q. So the groups stabilise and it follows that there is a well
defined limit page E∞p,q. In general, we say that a spectral sequence converges if for every p, q the
differential dr vanishes on Erp,q and Ep+r,q−r+1, for large enough r. In cases where Erp,q 6= 0 for
p, q < 0, convergence can be guaranteed by other means.

We will now give a short example computation using spectral sequences. The Serre spectral
sequence is defined for fibrations F → X → B and relates the homology of F,X and B. The
second page is given by E2

p,q = Hp(B;Hq(F ;G)) where G is a given coefficient group. If G is a field
then Hn(X;G) ∼= ⊕pE∞p,n−p. If G = Z and Hi(F ;Z) and Hi(B;Z) are zero for odd i and free abelian
for even i, then it follows that E2

p,q is zero unless p and q are even. But the differentials on this page
go up one row, so they all must be zero. So the E3 page must be the same as E2. The differentials
on the E3 page go across three columns, hence they must all be zero. Similar reasoning applies for
the subsequent pages, so E2 = E3 = Er = E∞. Thus, E∞p,q = Hp(B;Hq(F ;G)). Since these groups
are free abelian, it is possible to deduce that Hn(X;Z) ∼= ⊕pE∞p,n−p = ⊕pHp(B;Hn−p(F ;G))
as in the case when G was a field. By the universal coefficient theorem, this is isomorphic to
⊕pHp(B;Hn−p(F ;G)). Note that if X was the product F × B, the Künneth formula also tells us
that Hn(X;Z) ∼= ⊕pHp(B;Hn−p(F ;G)), since Tor(G,H) vanishes if G or H is free. Hopefully, this
particularly nice example demonstrates the power of spectral sequences.

Spectral sequences are also useful for computing K theory. In particular, we have the following
theorem, due to Atiyah and Hirzebruch. Suppose X is a finite CW complex and let Xp be the
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p-skeleton of X with inclusion Xp i
↪−→ X. Let N be the dimension of X. Define a (descending)

filtration
Kn(X) = Kn

0 (X) ⊃ Kn
1 (X) ⊃ ... ⊃ Kn

N+1(X) = 0

of Kn(X) by Kn
p (X) = Ker

(
Kn(X)

i∗−→ Kn(Xp−1)
)

for p > 0.

Theorem 7 [VBHS, theorem 2.1]. Let X be a finite CW complex, as above, with basepoint x0.
There exists a spectral sequence Erp,q with

E1
p,q
∼= Cp (X,Kq(x0)) ,

E2
p,q
∼= Hp (X,Kq(x0)) ,

E∞p,q
∼= Kp+q

p (X)/Kp+q
p+1(X).

Note Kq(x0) ∼= Z for even q and zero otherwise. This theorem generalises from K theory to any
general cohomology theory and Erp,q is called the Atiyah-Hirzebruch spectral sequence.

We can also generalise to fiber bundles F → E
p−→ X, under certain conditions [VBHS, remark

2.2]. In particular, if we have the product bundle X × F , then we have a spectral sequence Erp,q
with

E1
p,q
∼= Cp (X,Kq(F )) †,

E2
p,q
∼= Hp (X,Kq(F )) ,

E∞p,q
∼= Kp+q

p (X × F )/Kp+q
p+1(X × F ),

where Kn
p (X × F ) = Ker

(
Kn(X × F )

i∗−→ Kn(Xp−1 × F )
)

is a filtration of Kn(X).

The proofs of these statements is beyond this report. The interested reader is refered to [VBHS]
for the (historical) proof and [SSAT] for a modern, accessible introduction to spectral sequences.

5 Proof of the Main Theorem

Define K∗(X) = K0(X)⊕K1(X) and similarly define K̃∗(X). Throughout this section, let X and
Y be finite CW complexes.

Lemma 8. Suppose K∗(Y ) is free. Then

K∗(X)⊗K∗(Y )
µ−→ K∗(X × Y )

is an isomorphism.

Proof. Use the spectral sequence Erp,q in theorem 7 and the corresponding spectral sequence F rp,q
for the product X × Y . By definition of local coefficients, we have an isomorphism

µ1 : E1 ⊗K∗(Y ) = C∗(X,Z)⊗K∗(Y ) −→ C∗ (X;K∗(Y )) = F1.

Since the tensor product is natural with respect to the differentials [CM, lemma 3.1], this extends
to maps

µr : Er ⊗K∗(Y )→ Fr.

†Here, we are using local coefficients, c.f. [AT, section 3.H].
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Furthermore, since K∗(Y ) is free, the operation ⊗K∗(Y ) commutes with the homology functor.
Therefore, µr is an isomorphism for all r.

In particular, µr is an isomorphism on the stable pages E∞ and F∞. Therefore, we have
isomorphisms between the filtrations of K∗(X)⊗K∗(Y ) and K∗(X×Y ). Descending induction on
these filtrations gives the required result.

Lemma 9. We can embed X as a subcomplex of a finite CW complex A so that

1. K∗(A) is free and

2. K∗(A)→ K∗(X) is surjective.

Proof. It suffices to prove this lemma for connected X. In this case we have

K∗(X) ∼= Z⊕ K̃0(X)⊕K1(X).

Since X is a finite CW complex, K∗(X) is a finitely-generated group. By reasoning in section
3, we have

K̃0(X) ∼= [X,BU ] and K1(X) ∼= [X,U ].

Choose homogeneous generators {xi} for K∗(X). For each i choose finite approximations to
BU or U by defining

Ai =

{
U(2n)

U(n)×U(n) if |xi| = 0,

U(n) if |xi| = 1,

where n > dimX is some large integer. Define A = ΠAi.
By universality of BU(n), for each xi with |xi| = 0, we can choose an element ai ∈ K̃0(Ai)

and a map fi : X → Ai such that xi = f∗i (ai). Similarly, for xi with |xi| = 1, there is an element
ai ∈ K1(Ai) and a map fi : X → Ai such that xi = f∗i (ai).

Combine these maps to get f : X → A. By construction, every generator of K∗(X) is a pullback
of some element in K∗(A) by f . Thus, the enduced map f∗ is surjective.

The cohomology H∗(Ai;Z) is free. Using a result in [VBHS, section 2], it follows that K∗(A)
is free. Finally, we still require f to be an embedding of X into A. While this is not true, we can
replace f by a homotopically equivalent inclusion and properties 1. and 2. will be preserved.

Proof of theorem 1. Construct A as in lemma 9 and define B = A/X. Let b0 be the canonical
basepoint of B. By proposition 2.9 in [VBKT], we have a short exact sequence

0→ K̃∗(B)→ K∗(A)→ K∗(X)→ 0, (1)

where exactness at K∗(X) follows from property 2. of lemma 9. Moreover, K∗(A) is free, so K̃∗(B)

is free and hence K∗(B) ∼= K̃∗B)⊕ Z.
We can apply lemma 8 to find isomorphisms

K∗(A)⊗K∗(Y ) ∼= K∗(A× Y ) (2)

K∗(B)⊗K∗(Y ) ∼= K∗(B × Y ). (3)

We know K∗(B × Y, b0 × Y ) = Ker (K∗(B × Y )→ K∗(b0 × Y )) by [VBHS, section 1.5]. Com-
bining these last two results gives an isomorphism

K̃∗(B)⊗K∗(Y ) ∼= K∗(B × Y, b0 × Y ). (4)

6



Consider the exact triangle of the pair (A× Y,X × Y ):

K∗(A× Y,X × Y ) K∗(A× Y )

K∗(X × Y ),

φ

θβ

where φ and θ have degree 0 and β degree 1. Since (A× Y )/(X × Y ) = (B × Y )/(b0 × Y ), we can
use equations 2 and 4 to rewrite this triangle as

K̃∗(B)⊗K∗(Y ) K∗(A)⊗K∗(Y )

K∗(X × Y ).

φ

θβ

This exact triangle gives us a short exact sequence

0→ Cokerφ
µ−→ K∗(X × Y )

β−→ Kerφ→ 0.

Notice that equation 1 is actually a free resolution of K∗(X). Thus,

0→ K̃∗(B)⊗K∗(Y )
φ−→ K∗(A)⊗K∗(Y )→ 0

is a chain complex associated to Tor (K∗(X),K∗(Y )). Therefore, Kerφ ∼= Tor (K∗(X),K∗(Y )).
Again using equation 1 and right-exactness of the tensor product, we obtain an exact sequence

K∗(B)⊗K∗(Y )
φ−→ K∗(A)⊗K∗(Y )→ K∗(X)⊗K∗(Y )→ 0.

It follows Cokerφ ∼= K∗(X)⊗K∗(Y ). Therefore, we have the required short exact sequence:

0→ K∗(X)⊗K∗(Y )
µ−→ K∗(X × Y )

β−→ Tor (K∗(X),K∗(Y ))→ 0.

The Z2 grading is clear: by construction µ is degree 0 and β degree 1.
Finally, we prove that this exact sequence is natural. Naturality of µ is immediate from the

construction of µ (see [VBKT, p.41]). Naturality of β is proven as follows: It is a category theory
fact that we can verify naturality in X and Y by checking naturality in each of X and Y separately.
We claim naturality in Y is obvious. For naturality in X, let g : X → X ′ be a given map. We need
to show that the square

K∗(X × Y ) Tor (K∗(X),K∗(Y ))

K∗(X ′ × Y ) Tor (K∗(X ′),K∗(Y ))

β

β

g∗ g∗
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commutes, where g∗ are the obvious induced maps.
Construct spaces A and A′ with maps f : X → A and f ′ : X ′ → A′ as in lemma 9. Define the

map h = (f, f ′ ◦ g) : X → A×A′. Notice that h also satisfies properties 1. and 2. of lemma 9. We
have the following commutative diagram:

X A

A×A′

X ′ A′,

g

f

h π1

π2

f ′

where π1, π2 are projection maps. By applying the relevant functors, this diagram gives rise to the
commutative diagram:

K∗(X × Y ) Tor (K∗(X),K∗(Y ))

K∗(X × Y )

K∗(X ′ × Y ) Tor (K∗(X ′),K∗(Y )) ,

β

β

g∗

β

g∗

as required. (Moreover, it is worth noting that taking X ′ = X shows that our short exact sequence
is independent of the choice of f .)

6 A Künneth Formula for Real K Theory?

It is natural to ask whether there is an analogous Künneth formula for real K theory. It turns out
that this can’t happen, since in KO-theory the external product µ is not always injective. This
implies there is no short exact sequence starting with

0→ KO∗(X)⊗KO∗(Y )
µ−→ KO∗(X × Y )

and so the Künneth formula does not hold in the real case.
The counterexample given by Atiyah in [VBKF] is X = Y = CP2. We will provide some

justification why µ is not injective in the case X = Y = S2. Take the non-trivial class α ∈
KO(S2) ∼= Z2. It has order 2, so the tensor product α ⊗ α has order 2. Hence if µ is injective,
µ(α ⊗ α) has order 2 and should lie in the 4-cell of S2 × S2. But there is no element of order two
in KO(S4) ∼= Z. Thus, µ cannot be injective.

7 A Stronger Künneth Formula

In [KT], Atiyah presents a stronger Künneth formula for complex K theory:
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Theorem 10 ([KT, corollary 2.7.15]). Let X be a space such that K∗(X) is finitely generated and
let Y be a finite CW complex. Then there is a natural short exact sequence

0→
⊕
i+j=k

Ki(X)⊗Kj(Y )→ Kk(X × Y )→
⊕

i+j=k+1

Tor
(
Ki(X),Kj(Y )

)
→ 0,

where indices are in Z2.

This is a corollary of the following theorem, the proof of which is beyond the scope of this report.

Theorem 11 ([KT, theorem 2.7.15]). Let X be a space such that K∗(X) is torsion free, and let Y
be a finite CW complex, with Y0 ⊂ Y a subcomplex. Then the external product

K∗(X)⊗K∗(Y, Y ′)→ K∗(X × Y,X × Y0)

is an isomorphism.

Note that theorem 11 is a generalisation of lemma 8.

Proof (sketch) of theorem 10. The idea is to find a space A and a map f : X → A such that K∗(A)
is torsion free and f∗ : K∗(A)→ K∗(X) is surjective.

Suppose we have such a space A and a map f . Then by considering the exact sequence

...→ K̃(SA)→ K̃(SX)→ K̃(A/X)→ K̃(A)→ K̃(X)→ 0,

it follows that K∗(A/X) is torsion free. Applying theorem 11, we get that

K∗(A× Y ) ∼= K∗(A)⊗K∗(Y ) and K∗ ((A/X)× Y ) ∼= K∗(A/X)⊗K∗(Y ).

Finally, use the exact sequence for the pair (A× Y,X × Y )

...→ K̃ (S(A× Y ))→ K̃ (S(X × Y ))→ K̃ ((A× Y )/(X × Y ))→ K̃(A× Y )→ K̃(X × Y )→ 0,

to get the result, in the same way as in the proof of the theorem 1.
The construction of A and f is a generalisation of lemma 9 and is detailed in [KT, p.118-119].

8 Extending to a General Theorem for any Cohomology
Theory

In this section, we will briefly discuss whether the Künneth formula holds for other general coho-
mology theories. To even formulate the Künneth formula, we need to have a meaningful notion of
products in the cohomology theory. In this case, all cohomology groups would be modules over the
graded ring h∗(pt) (the cohomology of a point) and ⊗,Tor would be applied to h∗(pt)-modules.

We saw that the Künneth formula does not hold for all general cohomology theories in section
6. In the original paper [VBKF] proving the main theorem, Atiyah wrote:

Thus for a Künneth formula to hold one has to assume some additional special property
of the [cohomology] theory. The proof which we shall give for K∗ is quite different from
the proof for H∗. We shall use the fact that H∗(BU,Z) is free and of course the analogue
in ordinary cohomology is false, since the Eilenberg-MacLane spaces have torsion†.

†Eilenberg-MacLane spaces K(G,n) are the analogue to the classifying space BU since K(X) ∼= [X,Z×BU ] and
Hn(X,G) ∼= [X,K(G,n)].
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However, since this paper was published in 1962, a general proof method for Künneth formulae
has been developed using spectral sequences. See sections 4 and 5 of [SHT].

Finally, we note that the Künneth formula relates the cohomologies of Z, X and Y when Z is
the product of X and Y . The space Z can also be constructed from X and Y in other ways and
spectral sequences can again be used to related the (co)homologies of X, Y and Z. For ordinary
cohomology, the important result is:

Theorem 12 [SSAT, theorem 5E.2]. Let k be a field. Suppose there are maps X → B and Y → B
where the latter is a fibration. Let Z be the pullback

Z Y

X B.

Then there is a spectral sequence with second page

E2
p,q = TorH

∗(B;k)
p,q (H∗(X; k), H∗(Y ; k))†

converging to H∗(Z; k) if B is simply-connected and the cohomology groups of X,Y and B are
finitely generated over k in each dimension.

This spectral sequence is called the Eilenberg-Moore spectral sequence.
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