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1 Preamble: Representation Theory of Categories

A natural generalisation of traditional representation theory is to study the representation theory of cate-
gories. The idea of representation theory is to take some abstract algebraic object and study it by mapping
it into a well known structure. With this mindset, a representation is simply a functor from the category we
want to study to a familiar category.

For example, consider a group G as a one object category where every morphism is invertible. A rep-
resentation of G is typically a group homomorphism from G into End(V ), where V is some vector space.
Notice that this is exactly a functor G→ Vec.

Now consider a homomorphism between representations. We require such a map to commute with
the actions on representations. Such a condition is exactly saying that the homomorphism is a natural
transformation between the two representations.

Thus, the most general theory of representations amounts to studying functors and natural transforma-
tions. Unfortunately, in this general setting, there isn’t too much we can say. To ‘get some more meat on
the bones’, we might ask that our categories have extra structure.

For example, we might want our categories to be monoidal, linear, abelian or semisimple. If you wish,
you can justify these extra structures by appealing to the fact that most categories that arise in physics
automatically come with them. This report will focus on what we mean by a semisimple category.

Note that we have already studied semisimple representations and semisimple algebras (c.f. sections 2.1
and 2.5 respectively of [EtR]).

2 Introduction

There are a number of competing definitions of a semisimple category. The formal definitions are given in
section 5, but informally they are:

1. Abelian semisimple: this is the usual definition for an abelian category to be semisimple (c.f. [Et]).

2. Müger semisimple: every map factors through a direct sum of simple objects.

3. Object semisimple: every object is a direct sum of simple objects.

4. Endomorphism semisimple: every endomorphism algebra is semisimple.

5. Morphism semisimple:
⊕

X,Y ∈C C (X → Y ) is a semisimple algebra.

6. Representation semisimple: every representation F : C → fdVec is representable.
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This essay will explore the question of when definitions 1. to 4. are equivalent. Our results are summarised
in the diagram below:

Müger semisimple

Abelian semisimple Object semisimple

Endomorphism semisimple

Note however that this diagram is somewhat deceiving, since it does not capture the added assumptions
necessary to prove some of these implications.

Sections 3 and 4 will introduce some background necessary for understanding and proving the results of
this report. Section 5 provides the formal definitions of semisimplicity. Section 6 focuses on how abelian
semisimplicity implies many of the other notions of semisimplicity. Müger semisimplicity and how it implies
object semisimplicity is discussed in section 7.

This report assumes basic knowledge of abelian categories. The necessary background can be found in
[Ba]. Let R be a ring and k a field throughout.

3 Some Useful Background

For this report, we need some background regarding semisimple algebras. Most importantly, we need the
different characterisations of semisimple finite dimensional algebras and the Artin-Wedderburn theorem
(Theorem 9).

Definition 1. An R-module is simple if it is non-zero and has no proper R-submodules. An R-module is
semisimple if it is the direct sum of a family of simple submodules.

Definition 2. A ring R is semisimple if 1 6= 0 and R is semisimple as a left module over itself.

Note that there are also definitions of a simple ring and, confusingly, a simple ring is not always semisim-
ple.

Definition 3. An algebra is semisimple if it is semisimple as a ring.

Definition 4. The Jacobson radical of a ring R is the left ideal N which is the intersection of all maximal
left ideals of R.

Theorem 5 (Theorem 6.1 of [La]). A finite dimensional algebra is semisimple if and only if its Jacobson
radical is trivial.

Definition 6. Let R be a ring. An R-module E is Artinian if any sequence

E1 ⊃ E2 ⊃ E3 ⊃ ...

of submodules of E stabilises: there exists an integer N such that En = En+1 for n ≥ N .
A ring R is left (resp. right) Artinian if it is Artinian when considered as a left (resp. right) R-module.

A ring R is Artinian if it is both left and right Artinian.

Any finite dimensional k-algebra is Artinian.
Recall that an ideal I of a ring R is nilpotent if In = 0 for some integer n ≥ 1. That is, every n-fold

product of elements from I is zero.

Theorem 7 (Theorem 2.13 of [Kn]). A left Artinian ring is semisimple if and only if all nilpotent two-sided
ideals are trivial.
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Corollary 8. A finite dimensional algebra is semisimple if and only if all nilpotent two-sided ideals are
trivial. In particular, any matrix algebra is semisimple since it has no non-trivial two-sided ideals [Ma] and
hence the product of matrix algebras is semisimple.

Theorem 9 (Artin-Wedderburn, Theorem 2.2 of [Kn]). If R is a semisimple ring, then

R ∼= Mn1
(D1)× ...×Mnr

(Dr)

where D1, ...Dr are division rings and n1, ..., nr are positive integers. This decomposition is unique up to
permutation of the pairs (D1, n1), ..., (Dr, nr) and isomorphism of each Di.

4 Idempotents

Idempotents turn out to play a crucial role in understanding semisimplicity, as we shall see.

Definition 10. In a category C , an idempotent p : X → X splits if there are morphisms r : X → Y and
s : Y → X such that s ◦ r = e and r ◦ s = idY . A category C is idempotent complete if every non-zero
idempotent splits.

In linear algebra, all idempotents split. Therefore, one is often interested in idempotent complete cate-
gories. Note that the condition r ◦ s = idY implies that r is epic and s monic.

Definition 11 [Kna]. A category C is pseudo-abelian if it is additive and every idempotent has an image.

Some authors only require a pseudo-abelian category to be pre-additive.
Every idempotent p : X → X in an additive category (or a pre-additive category with a terminal object)

C has a cokernel (X, idX−p). The proof of this is elementary. Since idX−p is also an idempotent if and only
if p is an idempotent, an additive category is pseudo-abelian if and only if every idempotent has a kernel.

Lemma 12. A pseudo-abelian category is idempotent complete.

Proof. Let p : X → X be an idempotent with image (K, k : K → X). We know k is the kernel of idX − p.
This implies 0 = (idX − p)k and consequently k = pk. By the universal property of kernels, there exists a
map r : X → K such that p = kr. Thus, krk = pk = k and so rk = idK since k is monic.

Proposition 13. If p : X → X is an idempotent in a pseudo-abelian category then X ∼= Im p⊕ Im(idX − p).

Proof. Write p = kr for maps r : X → Im p and k : Im p → X and similarly write idX − p = k′r′ for maps
r′ : X → Im(idX − p) and k′ : Im(idX − p)→ X. Then k′r′kr = (idX − p)p = 0. Since k′ is monic and r epic,
it follows r′k = 0. Similarly, rk′ = 0. Thus, the maps(

r
r′

)
: X → Im p⊕ Im(idX − p),

(
k k′

)
: Im p⊕ Im(idX − p)→ X

are inverses.

Note that such an isomorphism does not hold in idempotent complete categories, even when they are
additive. For example consider the following category C . It has 5 objects: M,K,C,C ′ and 0 and morphisms
p, r, k, c, c′ such that

C

X X

K C ′

p

r

c

c′k
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commutes; p is a non-trivial idempotent; (r, k) is a splitting of p; and c and c′ are non-zero morphisms
such that cp = c′p = 0. (We also need to include all of the additional morphisms whose existence follows
from C being an additive category.) We claim that C is an idempotent complete additive category, but
X 6∼= Im p⊕ Im(idX − p). In fact, the cokernel of p, and therefore Im p, does not exist.

What options are there for Coker p? The pair (K, r) is not an option since this implies rp = 0 and

consequently p = 0. For any object Y , the pair (Y,X
0−→ Y ) is not an option as c and c′ are non-zero. The pair

(C, c) is not an option as there is no map f : C → C ′ such that c′ = fc. Similarly, (C,−c), (C ′, c′), (C ′,−c′)
and (K,−r) are not options. This exhausts all the possibilities.

Corollary 14. If p : X → X is an idempotent in a pseudo-abelian category then X ∼= Ker p⊕ Im p.

Proof. The kernel of an idempotent p is the image of idX − p (and visa versa). Why? The cokernel of p is
(X, idX − p), so the cokernel of idX − p is (X, p). Thus, Im(idX − p) = Ker Coker(idX − p) = Ker p.

Definition 15. A non-zero object X in an additive category C is indecomposable if it does not admit a
non-trivial decomposition into a direct sum of subobjects.

It is obvious that every object is the direct sum of indecomposable objects. (So every additive category
is ‘semi-indecomposable’.)

Corollary 16. In a pseudo-abelian category, an object X is indecomposable if and only if the only idempo-
tents p : X → X are the zero map and the identity.

Proof. If X is decomposable as a non-trivial sum of objects, then the identity map on the first summand is
a non-trivial idempotent of X.

If there is a non-trivial idempotent p : X → X then X ∼= Ker p⊕ Im p. We claim that Ker p and Im p are
both non-zero.

If Ker p is zero then p is monic. Since p(idX − p) = 0, this implies p = idX . The image Im p is non-zero
since otherwise p would factor through 0, implying p = 0.

5 Definitions

Before proceeding to prove the various equivalences, we provide the different formal definitions of a semisimple
category. These are provided here for reference.

Recall that, in an abelian category, a subobject of X is an object Y together with a monic i : Y → X.

Definition 17. A non-zero object X in an abelian category C is abelian simple if 0 and X are its only
subobjects (up to isomorphism). An object X in C is semisimple if it is a direct sum of simple objects. The
category C is abelian semisimple if all of its objects are semisimple.

In an abelian category, a simple object is indecomposable but a indecomposable object is not necessarily
simple. Moreover, while every object is the sum of indecomposables, it is not necessarily the sum of simple
objects.

Definition 18. In a k-linear category C , an object X is linear simple if C (X → X) ∼= k. Two objects X
and Y are disjoint if C (X → Y ) ∼= C (Y → X) ∼= 0.

Definition 19. A k-linear category C is Müger semisimple if

1. it has direct sums,

2. it is idempotent complete

3. there is a collection of mutually disjoint linear simple objects {Xi}i∈I ,
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such that the composition map⊕
i∈I

C (Xi → Z)⊗k C (Y → Xi) −→ C (Y → Z)

is an isomorphism for all objects Y and Z.

Definition 20. A k-linear category is object semisimple if

1. it has direct sums,

2. there is a collection of mutually disjoint linear simple objects {Xi}i∈I ,

such that every object is isomorphic to a direct sum of objects in {Xi}i∈I .

Definition 21. A category C is endomorphism semisimple if End(X) is a (finite dimensional) semisimple
ring for all objects X ∈ C .

The restriction to finite dimensional algebras is artificial, but makes things a lot simpler, because finite di-
mensional semisimple algebras are significantly more well-behaved than their infinite dimensional analogues.

Definition 22. A category is morphism semisimple if it has direct sums and
⊕

X,Y ∈C C (X → Y ) is a
semisimple ring.

Definition 23. A k-linear category is representation semisimple if every functor F : C → fdVec is naturally
isomorphic to C (X → −) for some X ∈ C .

A functor F : C → fdVec is a representation of C [nR]. If F ∼= C (X → −) for some X ∈ C then F is
said to be representable [Le, chapter 4]. Therefore, a more concise definition of representation semisimple is
that every representation must be representable. Since functors Cop → fdVec are functors C → fdVecop

and fdVec ∼= fdVecop, we can equivalently define a representation as a functor F : C op → fdVec, which
allows for a more easy application of Yoneda’s lemma.

We will largely ignore these last two definition in this report.

6 Abelian Semisimple Categories

In this section, we will show how abelian semisimplicity implies many of the other notions of semisimplicity.
(Note that in abelian categories, we can recover a number of key theorems of representation theory, including
Schur’s lemma, and the Jordan Holder and the Krull-Schmidt theorems.)

Proposition 24 (Schur’s lemma). Suppose C is abelian semisimple and k-linear, with k algebraically closed.
If all the hom-spaces are finite dimensional, then C is object semisimple.

Proof. We need to show that the (non-isomorphic) abelian simple objects are mutually disjoint and object
semisimple. First, we will show that any morphism between simple objects X,Y is an isomorphism or zero.
If this was not the case, then there would be a morphism with a non-trivial kernel or cokernel. This would
mean X or Y has a non-trivial subobject.

Thus, C (X → Y ) = 0 when X and Y are not isomorphic. Moreover, all non-zero morphisms in End(X)
are isomorphisms. So End(X) is a division algebra. It is also finite-dimensional over k by assumption. But
every finite dimensional division algebra over an algebraically closed field k is actually k: if α /∈ k was an
element of such a division algebra, then k(α) would be a finite (hence algebraic) field extension of k and this
cannot happen since k is algebraically closed.

Proposition 25 [Mat]. If C is object semisimple then C is endomorphism semisimple.
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Proof. Decompose X as a sum of simple objects
⊕

i niXi. The hom-space of niXi is ring-isomorphic to a
matrix algebra Mni(k). Moreover, C (niXi → njXj) ∼= 0 for i 6= j. Thus, End(X) is isomorphic to a product
of matrix algebras and consequently End(X) is semisimple by Corollary 8.

Proposition 26 (Lemma 2 of [Ja]). If C is k-linear, pseudo-abelian and endomorphism semisimple then
C is abelian semisimple.

Proof. By Wedderburn’s theorem, End(X) is a finite product of matrix algebras over division rings. That
is, End(X) ∼=

⊕
iMni

(Di) for positive ni and division rings Di. This implies X is indecomposable if and
only if End(X) is a division ring. Why? First, we will show that if End(X) is not a division ring, then X is
decomposable. There are two cases here:

1. End(X) is the sum of two or more matrix algebra,

2. End(X) ∼= Mn(D) for some n ≥ 2 and division ring D.

In the first case, take the identity matrix ι in some summand. Since ι is a non-trivial idempotent, Corollary
16 implies X is decomposable.

In the second case, let ι = e1,1 be the matrix with a one in the top left cell and apply the same argument
as in case 1.

The converse is easy: if X ∼= ⊕iXi is decomposable then there exist non-invertible endomorphisms. For
example e1,1 is not invertible. Thus, End(X) is not a division ring.

Since every object is a finite sum of indecomposables, we can chose a collection {Xi} of non-isomorphic
indecomposable objects such that every object X ∼= ⊕iniXi. Write Di for the division ring End(Xi). Any
morphism f : X → Y can then be thought of as a map ⊕iniXi → ⊕imiXi, where X ∼= ⊕iniXi and
Y ∼= ⊕imiXi. Write fi,j for the component of f mapping njXj onto miXi. Note that fi,i : niXi → miXi is
an mi × ni matrix with elements in End(Xi) ∼= Di. Thus, fi,i can be thought of as a map Dni → Dmi .

We will prove that if X and Y are indecomposable and C (X → Y ) 6= {0}, then X ∼= Y . Thus, for any
morphism f : ⊕iniXi → ⊕imiXi, the component fi,j is the zero map for all i 6= j. It follows that the functor
F : C → ⊕ifdVecDi defined by ⊕

i niXi

⊕
iD

ni
i ,

(f :
⊕

i niXi →
⊕

imiXi)
⊕

i (fi,i : Dni
i → Dmi

i ) ,

is fully faithful and essentially surjective. This implies C is semisimple abelian.
It remains to show that X ∼= Y for X,Y indecomposable with C (X → Y ) 6= {0}. If this homset is

non-zero then one of the composition maps

C (Y → X)⊗ C (X → Y ) End(X),

(f, g) f ◦ g,

and
C (X → Y )⊗ C (Y → X) End(Y ),

(g, f) g ◦ f,

is non-zero otherwise (
0 0

C (X → Y ) 0

)
⊂
(

End(X) C (Y → X)
C (X → Y ) End(Y )

)
= End(X ⊕ Y )

is a non-trivial nilpotent two-sided ideal, contradicting Corollary 8. Suppose the first composition is non-zero
and choose f : Y → X and g : X → Y with fg 6= 0. (The case when the second composition is non-zero is
analogous.) As End(X) is a division ring, fg is invertible and (fg)−1 ◦ f is a left inverse of g.

Finally, g(fg)−1f is idempotent. Since Y is indecomposable, g(fg)−1f is either the zero map or the
identity by proposition 13. But g(fg)−1f 6= 0 otherwise g = g(fg)−1fg = 0g = 0 and so fg = f0 = 0.
Therefore, (fg)−1 ◦ f is a right inverse of g.
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7 Müger Semisimple Categories

In 2008, Müger developed a new definition of semisimple categories [Mü]. He wanted a general definition of
semisimple categories, which avoided the unneccesary requirement that the category must be abelian.

Example 27. Every fusion category is Müger semisimple [nS].

Proposition 28 (section 3 of [nS]). If a category C is Müger semisimple and homspaces are finite dimen-
sional, then it is object semisimple. That is, every object V is a direct sum of simple objects in {Xi}i∈I :

V =
⊕
i∈I

niXi

where ni = dim C (Xi → V ) = dim C (V → Xi).

Proof. We prove that C (Xi → V ) and C (V → Xi) are dual vector spaces. Then choosing a basis

{fi,p : Xi → V }ni
p=1

for C (Xi → V ), we have a corresponding dual basis†

{fpi : V → Xi}ni
p=1

for C (V → Xi). By construction, we have fpi fj,q = δi,jδp,q and
∑

i,p fi,pf
p
i = idV . This gives an isomorphism

between V and ⊕i∈IniXi: The map V → ⊕i∈IniXi is the row vector consisting of the fpi ’s and the map
⊕i∈IniXi → V is the column vector consisting of the fi,p’s.

Now we just need to prove that C (Xi → V ) and C (V → Xi) are dual. Recall (c.f. [nD]) that a dual of
an object X in a strict monoidal category is an object X∗ such that there are morphisms ev : X∗ ⊗X → 1
and coev : 1→ X ⊗X∗ satisfying

(ev ⊗ idX) ◦ (idX ⊗ coev) = idX (1)

and

(idX∗ ⊗ coev) ◦ (ev ⊗ idX∗) = idX∗ . (2)

Define ev : C (V → Xi) ⊗ C (Xi → V ) −→ k by sending f ⊗ g to the scalar associated with f ◦ g ∈
End(Xi) ∼= k. Next consider the image of idV under the isomorphism

C (V → V ) −→
⊕
i∈I

C (Xi → V )⊗ C (V → Xi),

idV 7−→
⊕
i∈I

fi ⊗ gi.

Define coev : k −→ C (V → Xi)⊗ C (Xi → V ) by sending the scalar associated with idXi ∈ End(Xi) ∼= k
to the product fi⊗gi from the image of idV . It is straightforward to check that ev and coev satisfy equations
1 and 2 and therefore C (Xi → V ) and C (V → Xi) are dual.

An object semisimple category C is not necessarily Müger semisimple, even if it is idempotent complete.
For example, let X be a linear simple object and consider the homset C (X ⊕ X → X ⊕ X ⊕ X). It is
isomorphic to the vector space of 3 × 2 matrices over k. However, C (X ⊕ X → X) is isomorphic to the
space of 1× 2 matrices and C (X → X ⊕X ⊕X) is isomorphic to the space of 3× 1 matrices. So we do not
necessarily have the isomorphism in condition 3 of the definition of Müger semisimple categories. We run
into similar problems when attempting to prove that abelian semisimple implies Müger semisimple.

Bruce Bartlett in [Bar] gives a nice explanation of why condition 3 of Müger semisimplicity is better than
requiring every object to be a direct sum of simple objects:

†Here we need that C (Xi → V ) is finite dimensional.
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We ask ourselves: given a linear category with direct sums and subobjects, and a chosen
maximal collection {Xi}i∈I of non-isomorphic simple objects, how can we check if its semisimple?
In the one way, we have to check whether a certain canonically defined map is an isomorphism.
In the other way, we have to check if each object V can be expressed as a direct sum of the Xi’s.
Actually finding such a decomposition would be a non-canonical operation.[Bar]

8 Discussion

Scott Morrison has shown that representation semisimple implies object semisimple, given some finiteness
assumptions (unpublished).

There are additional characterisations of semisimple categories not discussed in this report, which are
equivalent to some of our characterisations, under certain conditions. See section 1 of [Ha], section 8.3 and
13.1 of [Ka] and page 6 of [Mü].

This report has only provided partial results. Further work is required to properly understand the
relationships between all of these different notions of semisimplicity.
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