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Abstract

These are my lecture notes for Stat212, a second graduate course in proba-

bility lectured by Prof. Subhabrata Sen in Spring 2021 at Harvard. All errors

are my own. Sections marked add-on were not in the lecture and were added

by me at a later point. Some diagrams are courtesy of Subhabrata Sen.
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1 Lecture 26/1

1.1 Background

Definition 1.1. A stochastic process is a set of random variables {Xt : t ∈ π}
indexed by π. The index set π is usually unidimensional (N,R≥0) and typically

indexes time or ‘system complexity’ but it can be multidimensional (e.g. a spatial

stochastic process). The state space is the smallest set S such that Xt(ω) ∈ S for all

t and ω, except possibly ω in a set of measure zero.

The aim of this course is to understand the long term behaviour of stochastic

processes; we will learn how to predict, model and do inference on stochastic processes.

1.1.1 Measure theory

We require a small amount of measure theory so we can work on concrete foundations.

But we will only touch on this once and then move on.

Set up: Suppose (Ω,F ,P) is a probability space and X : (Ω,F) → (R,BR) is

a measurable function. (Throughout we use the notation BR to denote the Borel

σ-algebra on the real line R.) We say that X is a random variable.

Definition 1.2. The law of a random variable X is the function P (X ∈ ·) : BR →
[0, 1] defined by

P (X ∈ A) = P
({

ω : ω ∈ X−1(A)
})

,

for A ∈ BR.

Remark 1.3. The law of a random variable is a probability measure on (R,BR).

The law completely describes the random variable. “If you know the law, you

can forget about the underlying definition of the random variable in terms of the

probability space Ω.”

Example 1.4. Let Ω = [0, 1], F = B[0,1] and P be the Lebesgue measure. Define

X(ω) = ω. Then X is a Unif([0, 1]) random variable.

From herein, it is not necessary to define the probability space (Ω,F ,P) and the

function X : (Ω,F) → (R,BR) in order to get a Unif([0, 1]) random variable. If we
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want a Unif([0, 1]) random variable Z, we can specify Z by specifying that it has the

same law as X. Moreover, we can now construct any other random variable from its

law (or just its CDF) by using the Probability Integral Transform (PIT). “We only

have to do this formalism once!”

Example 1.5. What about a countable number of random variables? Is “letX1, X2, . . .

be iid Unif([0, 1]) random variables” a well-defined statement? That is, can we con-

struct a countably infinite collection of random variables Xi : (Ω,F) → (R,BR)

such that any finite number of the Xi’s are independent? Yes, if we have one

U ∼ Unif([0, 1]) then we can construct a countable number of random variables.

If U = 0.a1a2a3 . . . is the binary expansion of U then define

X1 = 0.a1a3a5 . . .

X2 = 0.a2a6a10 . . .

X3 = 0.a4a8a12 . . .

...

Example 1.6. “Let {Xt : t ∈ [0, 1]} be iid Unif([0, 1]) random variables”. Is this a

legal statement? It turns out that we can’t construct an uncountable collection of

random variables from a single random variable. We need stronger machinery – the

Kolmogorov existence criteria. While this is an important foundation for the course

(since later we will examine Brownian motion which is an uncountable collection of

random variables – in fact we will construct Brownian motion using only a countably

infinite number of standard Gaussian random variables – in essence this proves that

we can construct an uncountable collection of random variables), it suffices to know

that we can construct an uncountable number of random variables; we will not think

about this further.

1.1.2 Asymptotic properties

Let {Xn : n ≥ 1} be a collection of random variables with n unbounded above. (n

usually denotes time or the ‘system’ size/complexity.) Recall the following definitions

of stochastic convergence:
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1. Convergence in probability : Xn
P−→ X if for all ϵ > 0,

P(|Xn −X| < ϵ) → 0,

as n → ∞.

2. Convergence in distribution: Xn
d−→ X if the CDF Fn of Xn converges pointwise

to the CDF of X, for all points x ∈ C(X). (C(X) is the continuity points of

X’s CDF.)

3. Convergence almost surely : Xn
a.s.−−→ X if

P ({ω : Xn(ω) → X(ω)}) = 1.

(That is, Xn converges pointwise to X on a set of measure 1.)

Note that for definitions 1. and 3., we require that Xn and X are defined on the same

probability space. If X is a constant, then all three definitions are equivalent.

Example 1.7. An example in modern research: Random matrices. Define W =

(Wij) ∈ Rn×n with

1. {Wij : i < j} iid∼ N (0, 1),

2. {Wii : i ∈ [n]} iid∼ N (0, 2) independent of Wij for i ̸= j,

3. W symmetric.

Let Xn be the largest eigenvalue of W/
√
n. Then Xn

P−→ 2, even though there is no

closed form expression for the largest eigenvalue in terms of the elements Wij. This

is an analogue of the LLN.

1.2 Martingales

Definition 1.8. Let (Ω,F ,P) be a probability space. {Fn : n ∈ N} is a filtration if

{Fn} is a sequence of nested σ-algebras – that is, for all n ∈ N,

1. Fn ⊂ Fn+1 ⊂ . . . ⊂ F , and
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2. Fn is a σ-algebra.

{Xn : n ∈ N} is adapted to a filtration {Fn} if Xn remains measurable when F is

restricted to Fn – that is, for all A ∈ BR, the event {Xn ∈ A} ∈ Fn.

An adapted sequence {(Xn,Fn) : n ∈ N} is a martingale if

E(Xn+1|Fn) = Xn. (1)

Replacing the equality in equation (1) with ≥ gives the definition of a sub-martingale,

and ≤ gives the definition of a super-martingale.

Proposition 1.9 (add-on). Let X1, X2, . . . be a sequence of random variables and

define Fn = σ(X1, . . . , Xn). Given M1,M2, . . . ∈ L1, {(Mn,Fn) : n ∈ N} is a

martingale if and only if

(i) Mn is a function of X1, . . . , Xn for all n; and

(ii) E[Mn+1|X1, . . . , Xn] = Mn.

The proof of Proposition 1.9 is left as an exercise.

2 Lecture 28/1

2.1 More on martingales

Proposition 2.1 (add-on). Let X ∈ L1 and {Fn : n ∈ N} be a filtration. Define

Zn = E[Z|Fn].

Then {Zn : n ∈ N} is a martingale (called a Doob martingale) with respect to the

filtration {Fn}.

Theorem 2.2 (Martingale Convergence Theorem). Suppose {(Xn,Fn) : n ∈ N} is a

martingale with

sup
n≥1

EX+
n < ∞.

Then there exists a random variable X∞ such that Xn
a.s.−−→ X∞.
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Notation: Given a function X, define X+ = max(0, X).

This theorem gives us a condition for convergence, yet it doesn’t say anything

about the limit object X∞. What can we say about X∞? Do we know anything

about its moments? We would hope that

lim
n→∞

EXn = EX∞, (2)

yet this is not true in general. A sufficient condition for equation (2) is that {Xn} is

L1-convergent.

This motivates us to investigate L1-convergence of martingales. We will see that

L1-convergence holds if {Xn} satisfies a particular property called uniform integra-

bility.

2.2 Uniform integrability

Motivation: Let

X ∈ L1(Ω,F ,P) := {X : (Ω,F) → (R,BR)|X is measurable and E|X| < ∞} .

Then limc→∞ E [|X|1{|X| ≥ c}] = 0 using the dominated convergence theorem. (Why?

The dominating function is |X| and we know that |X|1{|X| ≥ c} → 0 pointwise as

c → ∞.)

Now consider S ⊂ L1(Ω,F ,P). The convergence of E [|X|1{|X| ≥ c}] may not be

uniform for X ∈ S, so that

sup
X∈S

E [|X|1{|X| ≥ c}]

may not go to zero as c → ∞.

Definition 2.3. S ⊂ L1(Ω,F ,P) is uniform integrable if for all ϵ > 0, there exists

c > 0 such that

sup
X∈S

E [|X|1{|X| ≥ c}] < ϵ,

or equivalently limc→∞ supX∈S E [|X|1{|X| ≥ c}] = 0.
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The property is uniform in S since ϵ and c are uniform across all X ∈ S.

Remark 2.4. If S is uniform integrable then S is L1 bounded – that is, there exists

M ∈ R such that supX∈S E|X| < M . The converse is not true. (As a counterexample,

construct a sequence {Xn} of L1 bounded random variables whose tails are increasing:

Ω = [0, 1] with Lebesgue measure and Xn = n1[0, 1
n
] suffices.) The proofs of these

statements are left as exercises.

Lemma 2.5. S ⊂ L1(Ω,F ,P) is uniformly integrable if and only if

(a) S is L1 bounded (i.e. supX∈S E|X| < ∞); and

(b) For all ϵ > 0, there exists δ > 0 such that for all X ∈ S and A ∈ F with

P(A) < δ, we have

E [|X|1A] < ϵ.

Condition (b) is called uniform absolute continuity. Intuitively it ensures that the

contribution of |X| coming from negligible sets A is uniformly bounded for all X ∈ S.

Proof. Suppose S is uniformly integrable. Then (a) holds by Remark 2.4. To prove

(b),

E [|X|1A] = E [|X|1{A ∩ {|X| ≤ c}}] + E [|X|1{A ∩ {|X| > c}}]

≤ cP(A) + E [|X|1{|X| > c}]

≤ ϵ/2 + ϵ/2,

by choosing δ small enough and c large enough.

In the opposite direction,

P (|X| > c) ≤ E|X|
c

≤ M

c
,

where the first inequality is Markov’s and M is the (uniform) L1 bound of S. Fix

ϵ > 0 and choose δ > 0 given by (b). Then choose c large enough so that M/c < δ.

Then apply (b) with A = {|X| > c} so that

E [|X|1{|X| > c}] < ϵ,

for all X ∈ S.
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Question: what are some uniformly integrable collections of random variables?

Obviously, any finite set of L1 random variables is uniformly integrable. The following

Lemma gives another example.

Lemma 2.6. Suppose X ∈ L1(Ω,F ,P). Then

S = {E[X|C] : C ⊂ F is a σ-algebra} ,

is uniformly integrable.

Proof.

E
[
|E(X|C)|1

{
|E(X|C)| ≥ c

}]
≤ E

[
E(|X||C)1

{
|E(X|C)| ≥ c

}]
= E

[
|X|1

{
|E(X|C)| ≥ c

}]
= E

[
|X|1

{
|X| > d, |E(X|C)| ≥ c

}]
+ E

[
|X|1

{
|X| ≤ d, |E(X|C)| ≥ c

}]
≤ E

[
|X|1

{
|X| > d, |E(X|C)| ≥ c

}]
+ dP

[
|E(X|C)| ≥ c

}]
≤ E

[
|X|1

{
|X| > d, |E(X|C)| ≥ c

}]
+ d

E [|E(X|C)|]
c

≤ E
[
|X|1

{
|X| > d, |E(X|C)| ≥ c

}]
+ d

E[|X|]
c

,

where the first line is Jensen’s inequality, the second line is Adam’s law, the second

last line is Markov’s inequality and the last line follows from Jensen’s inequality and

Adam’s law.

Given ϵ > 0, choose δ large enough such that the first term is at most ϵ/2. Then

choose c large enough such that the second term is at most ϵ/2.
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Intuition of the above lemma: the condition expectations are mostly governed by

X. So we can control everything in S by one random variable X – i.e. we have

uniformity.

The following Lemma gives one useful method for checking uniform integrability.

Lemma 2.7. If S ⊂ L1(Ω,F ,P) is L2-bounded (that is, there exists M > 0 such that

supX∈S EX2 ≤ M), then S is uniformly integrable.

Proof.

E [|X|1{|X| ≥ c}] ≤
√

E(X2)P(|X| ≥ c)

≤
√

EX2
EX2

c2

≤ M

c
,

where the first inequality is Cauchy-Schwartz, the second Chebychev’s and the third

follows from L2-boundedness.

Remark 2.8. The same proof works if S is Lp bounded for some p > 1. (Use Hölder’s

inequality instead of Cauchy-Schwarz.)

2.2.1 Uniform integrability and L1 convergence

Uniform integrability is a useful concept since it is a sufficient condition for L1 con-

vergence.

Theorem 2.9. Let Xn ∈ L1 for all n ∈ N and suppose Xn
a.s.−−→ X. Then the following

statements are equivalent:

i) {Xn} is uniform integrable.

ii) X ∈ L1 and Xn
L1

−→ X.

iii) X ∈ L1 and E|Xn| → E|X|.
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Proof. “i) ⇒ ii)”:

E|X| ≤ lim inf
n→∞

E|Xn| ≤ M < ∞,

where the first inequality is Fatou’s lemma and the second inequality follows from L1

boundedness of {Xn}. So X ∈ L1.

Define Xc
n = Xn1{|Xn| < c} and Xc = X1{|X| < c}. By the triangle inequality,

|Xn −X| ≤ |Xc
n −Xc|+ |Xn|1{|Xn| ≥ c}+ |X|1{|X| ≥ c} .

We know that |Xc
n −Xc| → 0 almost surely (by assumption) and |Xc

n −Xc| ≤ 2c.

Hence DCT says E|Xc
n −Xc| → 0 for all c > 0.

Uniform integrability gives us supn≥1 E [|Xn|1{|Xn| ≥ c}] → 0 as c → ∞. DCT

then also says E [|X|1{|X| > c}] → 0 as c → ∞. Thus,

lim sup
n→∞

E|Xn −X| = 0.

“ii) ⇒ iii)”:

|E|Xn| − E|X|| ≤ E||Xn| − |X|| ≤ E|Xn −X| → 0,

where the first inequality is Jensen’s and the second is the reverse triangle.

“iii) ⇒ i)”: We have

E (|Xn|1{|Xn| ≥ c}) = E|Xn| − E (|Xn|1{|Xn| < c}) .

We know that the first term E|Xn| → E|X|. For the second term, note

|Xn|1{|Xn| < c} a.s.−−→ |X|1{|X| < c} ,

(by assumption). Then we can apply the bounded convergence theorem to show the

second term converges to E (|X|1{|X| < c}). Hence

E (|Xn|1{|Xn| ≥ c}) → E|X| − E (|X|1{|X| < c}) = E (|X|1{|X| ≥ c}) .

Since X ∈ L1, we know E (|X|1{|X| ≥ c}) < ϵ for large enough c. Hence

E (|Xn|1{|Xn| ≥ c}) → ϵ,
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and so for large enough n,

E (|Xn|1{|Xn| ≥ c}) < 2ϵ.

We have got a uniform bound for all but finitely many n. Hence {Xn} is uniformly

integrable.

2.2.2 Uniform integrability and martingales

Theorem 2.10. Let {(Xn,Fn) : n ∈ N} be a martingale. Define M = supn∈N E|Xn|
(allowing for the possibility that M = ∞) and

X∞(ω) =

limn→∞Xn(ω) if the limit exists,

0 otherwise.

Then the following statements are equivalent:

1) M < ∞ and Xn → X∞ almost surely and in L1.

2) E[X∞|Fn] = Xn (so {Xn} is a Doob martingale).

3) M < ∞ and E|X∞| = limn→∞ E|Xn|.

4) {Xn} is uniformly integrable.

If M < ∞ (in fact we only need supn∈N EX+
n < ∞), then Xn → X∞ a.s. by

the martingale convergence theorem. This theorem tells us that if a martingale is

uniformly integrable then it converges a.s. and in L1. Moreover, the only uniformly

integrable martingales are Doob martingales.

3 Lecture 2/2

3.1 Proof of Theorem 2.10

Proof of Theorem 2.10. “1) ⇒ 2)”: We know that E[Xn+k1A] = E[Xn1A] for all

A ∈ Fn by the martingale property (and the tower law). Moreover Xn+k1A → X∞1A
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almost surely and in L1 as k → ∞. L1 convergence says

E[X∞1A] = lim
k→∞

E[Xn+k1A] = E[Xn1A].

So E[(X∞−Xn)1A] = 0 for all A ∈ Fn.Yet this is precisely the definition of conditional

expectation; so E[X∞|Fn] = Xn almost surely.

“2) ⇒ 4)”: By Lemma 2.6, a Doob martingale is uniformly integrable.

“4) ⇒ 3)”: Since {Xn} is uniformly integrable, {Xn} is L1 bounded (Lemma 2.5).

Thus M < ∞. This implies Xn
a.s.−−→ X∞ by the martingale convergence theorem. 3)

then follows by Theorem 2.9.

“3) ⇒ 1)”: Xn
a.s.−−→ X∞ by the bounded convergence theorem. L1 convergence

then follows by Theorem 2.9.

3.2 Martingales and Lp convergence (p > 1)

Theorem 3.1. Let {(Xn,Fn) : n ∈ N} be a martingale and p > 1. Suppose that

{Xn} is Lp-bounded:

sup
n∈N

∥Xn∥p < ∞,

where ∥·∥p is the Lp norm. Then Xn → X∞ almost surely and in Lp.

We need the following lemma to prove this Theorem.

Lemma 3.2. Let {Xn} be an Lp bounded martingale and define X∗ := sup|Xn|. Then
X∗ ∈ Lp.

We will defer the proof of this lemma.

Proof of Theorem 3.1. {Xn} is Lp bounded implies that {Xn} is uniformly integrable

by Remark 2.8. This implies that Xn
a.s.−−→ X∞ by Theorem 2.10 and so

|Xn −X∞|p a.s.−−→ 0.

Now

|Xn −X∞|p ≤ 2p (|Xn|+ |X∞|)p ≤ 2p+1X∗
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where the first inequality follows from the triangle inequality and bounding |Xn| +
|X∞| ≤ 2max(|Xn|, |X∞|). Assuming Lemma 3.2, Xn

Lp

−→ X∞ by the dominated

convergence theorem.

3.3 Proof of Lemma 3.2 using Doob’s inequalities

Lemma 3.3 (Doob’s maximal inequality). If {Xn : n ∈ N} is a submartingale and

λ > 0, then

λP
[
max
0≤j≤n

Xj ≥ λ

]
≤ E

[
Xn1

{
max
0≤j≤n

Xj ≥ λ

}]
≤ E(X+

n ) ≤ E|Xn|

for any n ∈ N.

Doob’s maximal inequality roughly means that “you can uniformly control the

entire submartingale by controlling the martingale’s endpoint”.

Lemma 3.4 (Doob’s Lp inequality). Let U and V be non-negative random variables

and λ > 0. If λP(U ≥ λ) ≤ E[V 1{U ≥ λ}] then

∥U∥p ≤
p

p− 1
∥V ∥p.

Corollary 3.5 (of Doob’s inequalities, add-on). If {Xn : n ∈ N} is a martingale,

then ∥∥∥∥max
0≤i≤n

|Xi|
∥∥∥∥
p

≤ p

p− 1
∥Xn∥p.

Proof. The only thing to prove is that {|Xn| : n ∈ N} is a submartingale, which

follows immediately from Jensen’s inequality.

Proof of Lemma 3.2 assuming Doob’s inequalities. Define U = max1≤j≤n|Xj| and V =

|Xn|. Doob’s inequalities imply that∥∥∥∥max
1≤j≤n

|Xn|
∥∥∥∥
p

= ∥U∥p ≤
p

p− 1
∥Xn∥p ≤

p

p− 1
M < ∞,
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where the second last inequality follows from the assumption of Lp boundedness of

{Xn}. Now we can use the monotone convergence theorem to replace max1≤j≤n with

supn≥1, which gives

∥X∗∥p ≤
p

p− 1
M,

as required.

Proof of Doob’s Lp inequality (Lemma 3.4). We will take as give the following state-

ment: If U ≥ 0 and p > 1 then

EUp = p

∫ ∞

0

λp−1P(U ≥ λ)dλ

(This is an extension of the “integration of the survival function rule”.) Thus

EUp ≤ p

∫ ∞

0

λp−2E (V 1{U ≥ λ}) dλ

= pE
(
V

∫ ∞

0

λp−2
1{U ≥ λ} dλ

)
= pE

(
V

∫ U

0

λp−2dλ

)
= pE

(
V Up−1

)
≤ p

p− 1
∥V ∥p

∥∥Up−1
∥∥
q
,

where the first line is by assumption, the second line uses Fubini’s theorem and the

final line uses Hölder’s inequality with q = p
p−1

. Now

∥∥Up−1
∥∥
q
=
[
E
(
Up−1

)p/(p−1)
]1/q

= [EUp]1−1/p .

So we have

EUp ≤ p

p− 1
∥V ∥p [EU

p]1−1/p .

Consider three possible cases:

1. If 0 < EUp < ∞ then we can divide through by [EUp]1−1/p and get the desired

result: ∥U∥p ≤
p

p−1
∥V ∥p.
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2. If EUp = 0 then the desired result is trivial.

3. If EUp = ∞ then we need to show that ∥V ∥p = ∞. We do this by working with

truncated variables, as follows.

For n ≥ λ, we have that the events {U ∧ n ≥ λ} and {U ≥ λ} are equal. Hence,

λP(U ∧ n ≥ λ) ≤ E[V 1{U ∧ n ≥ λ}].

Then ∥U ∧ n∥p ≤ p
p−1

∥V ∥p by case 1. above. Take n → ∞ and use the monotone

convergence theorem to get ∥V ∥p = ∞.

Proof of Doob’s maximal inequality (Lemma 3.3). Define the event

Ai = {X0 < λ, . . .Xi−1 < λ,Xi ≥ λ}.

(Ai is the event that the submartingale first crosses λ at time i.) Observe that the

Ai’s are disjoint and {max0≤j≤nXj ≥ λ} =
∑n

j=0Aj. Hence

λP
(
max
0≤j≤n

Xj ≥ λ

)
= λ

n∑
j=0

E(1Aj
)

≤
n∑

j=0

E(Xj1Aj
)

≤
n∑

j=0

E(Xn1Aj
)

= E
(
Xn1

{
∪n

j=0Aj

})
= E

(
Xn1

{
max
0≤j≤n

Xj ≥ λ

})
,

where the second inequality follows from the submartingale property E[Xn|Fj] ≥ Xj

(and so by definition E[Xn1A] ≥ E[Xj1A] for any A ∈ Fj).
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4 Lecture 4/2

4.1 Reverse martingales

Definition 4.1. Let {(Xn,Fn) : n ∈ Z≤0} be an adapted sequence with Xn ∈ L1 and

F0 ⊇ F−1 ⊇ F−2 ⊇ . . . .

{(Xn,Fn)} is a reverse martingale if

E[Xn+1|Fn] = Xn,

for all n ∈ Z<0.

Intuition for a reverse martingale: “as you go further fro the origin, you have less

(rather than more) information.”

Theorem 4.2. Let X0 ∈ L1. Then {(Xn,Fn) : n ∈ Z≤0} is a reverse martingale if

and only if

Xn = E(X0|Fn),

almost surely. In this case, as n → −∞,

E[X0|Fn]
L1

−−→
a.s.

E [X0|F−∞],

where F−∞ = ∩n∈Z≤0Fn.
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So all reverse martingales are so called ‘Doob reverse martingales’ – that is, reverse

martingales are always conditional expectations of a random variable X0. Further,

reverse martingales always converge (a.s. and in L1) and we know what they converge

to. So reverse martingales behave a lot more nicely than martingales!

Proof. “⇒:” Use induction and the martingale property. The base case is X−1 =

E[X0|F−1] The step case uses the tower law of conditional expectation: Assume

Xn+1 = E[X0|Fn+1]. Then

Xn = E[Xn+1|Fn] = E
[
[X0|Fn+1]|Fn

]
= E[X0|Fn],

by the tower law of conditional expectation (noting that Fn ⊆ Fn+1).

“⇐:” Use the tower law of conditional expectation again

E[Xn+1|Fn] = E
[
E[X0|Fn+1]|Fn

]
= E[X0|Fn] = Xn.

To prove almost sure convergence of reverse martingales, note that for all n < 0,

the indexed set {(Xn,Fn), . . . , (X0,F0)} is a martingale. We will reuse ideas from

the proof of the martingale convergence theorem. We have an upcrossing inequality

E[Un(a, b)] ≤
1

b− a
E[(X0 − a)+],

where Un(a, b) is the number of times the reverse martingale goes from a to b in

X−n, . . . , X0. Since X0 ∈ L1 by assumption, we can recycle the proof of almost

sure convergence of martingales. Hence there exists a random variable X∞ such that

Xn
a.s.−−→ X−∞.

We have seen that a Doob martingale is uniformly integrable. The same proof

applies to {E[X0|Fn] : n ∈ Z≤0}. Hence Xn
L1

−→ X−∞.

All that remains is to establish what X−∞ is. We want to show that

X−∞ = E[X0|F−∞],

almost surely. It suffices to show that, for all A ∈ F∞,

E[X−∞1A] = E[X01A]
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The reverse martingale property implies that E[Xn1A] = E[X01A]. (Here we need

the fact that the sub-σ-algebras are nested Fn ⊆ Fn+1, so that A ∈ F−∞ is in Fn.)

And L1 convergence says that E[Xn1A] → E[X−∞1A].

Intuition for reverse martingales: “There is some X0. As n decreases, you are

conditioning on less and less information, to get Xn = E[X0|Fn]. And in the limit,

you are conditioning on the least information.”

The motivation for introducing reverse martingales is so that we can reason about

exchangeable sequences of random variables.

4.2 Exchangeable random variables

A set of random variables are exchangeable if their joint distribution is extremely

symmetric, in the sense that it is invariant to reordering.

Definition 4.3. {Xn : n ∈ N} is exchangeable if, for all m ≥ 1,

(X1, . . . , Xm) ∼
(
Xσ(1), . . . , Xσ(m)

)
,

for any permutation σ ∈ Sm of {1, . . . ,m}.

Iid-ness is often seen as a strong assumption, particularly for an infinite sequence

of random variables. Exchangeability is seen as a natural relaxation of the iid as-

sumption and is intuitively plausible.

Example 4.4.

1. iid sequences are exchangeable.

2. A special case of a more general phenomenon (de Finetti’s theorem) which we

will see later: Fix a probability distribution π on [0, 1]. Suppose θ ∼ π and

X1, X2, . . . |θ
iid∼ Bern(θ). Then

P(X1 = x1, . . . , Xn = xn) =

∫ 1

0

θ
∑

i xi(1− θ)n−
∑

i xidπ(θ).
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Since the RHS doesn’t depend on the ordering of (x1, . . . , xn), the sequence is

exchangeable. But the X ′
is are not necessarily independent – depending on the

choice of π, the Xi’s can be depend on each other.

We know 1
n

∑n
i=1Xi

a.s.−−−→
n→∞

θ. We will see later (c.f. de Finetti’s theorem) that

“given the limiting proportion of 1’s, the individual observations are iid with

this probability”.

Our goal for the next few lectures is to develop the machinery to state and prove

de Finetti’s theorem, which provides a characterisation of all exchangeable sequences.

We saw in the previous example one way to construct an exchangeable sequence: Put

a prior on the parameter θ and then draw iid observations from fθ. Roughly, de

Finetti’s theorem states that, in fact, this is the only way to create exchangeable

sequences. It is central to the Bayesian perspective since it says that “if you make

the minimal assumption of exchangeability, then in fact you are assuming a prior and

iid data”.

4.2.1 The exchangeable σ-algebra

Definition 4.5. Define R∞ = R×R× . . . be the infinite-dimensional R-space. Define
the projection

πi : R∞ → R

x 7→ xi.

Let

BR∞ = σ
(
{πi : i ∈ N}

)
= σ

(
{π−1

i (B) : i ∈ N, B ∈ BR},

be the smallest σ-algebra such that every πi is measurable.

We call (R∞,BR∞) the sequence space. We may also use the notation (RN,B∞) in

place of (R∞,BR∞).

Remark 4.6. {Xn : n ∈ N} is a sequence of random variables on (Ω,F ,P) if and only

if the map

(Ω,F) → (R∞,BR∞)
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ω 7→
(
X1(ω), X2(ω), . . .

)
,

is measurable. So a sequence of random variables is equivalent to a single R∞-valued

random variable.

Definition 4.7. The exchangeable σ-algebra E is a sub-σ-algebra of BR∞ defined by

E :=
⋂
m∈N

Em,

where

Em :=

{
A ∈ BR∞ : if ω ∈ R∞ is in A,

then ωσ = (ωσ(1), . . . , ωσ(m), ωm+1, . . .) is also in A, for all σ ∈ Sm

}
.

Remark 4.8. For E to be well-defined, it is necessary to verify that Em is a σ-algebra

and Em+1 ⊂ Em.

Intuition: σ-algebras are black box machines that you can ask yes/no questions.

For the exchangeable σ-algebra, you can only ask questions that are invariant to the

first m co-ordinates, for all m. So E is exactly the right object that contains all the

‘relevant’ information but forgets the ordering.

Lemma 4.9. Suppose {Xn : n ∈ N} is an exchangeable sequence of random variables

and ϕ : Rl → R is bounded and measurable. For all m ≥ l, define

Ŝm(ϕ) =
1

(m)l

∑
˜
i

ϕ (Xi1 , . . . , Xil) ,

(Notation:
˜
i is some vector (i1, . . . , il) with ij disjoint from [m] = {1, . . . ,m}.

∑
˜
i is

the summation over all such ‘permutations’
˜
i and (m)l = m(m− 1) · · · (m− l+ 1) is

the number of
˜
i.) Then

Ŝm(ϕ)
a.s.−−→
L1

E [ϕ(X1, . . . , Xl)|E ] .

Think of Ŝm(ϕ) as a U-statistic.
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Proof. Ŝm(ϕ) is Em-measurable since the function is symmetric in its co-ordinates. So

Ŝm(ϕ) = E
[
Ŝm(ϕ)|Em

]
=

1

(m)l

∑
˜
i

E [ϕ(Xi1 , . . . , Xil)|Em]

=
1

(m)l

∑
˜
i

E [ϕ(X1, . . . , Xl)|Em]

= E [ϕ(X1, . . . , Xl)|Em] ,

where the third line follows from the fact that the random variables are exchangeable

in Em.
Now

{
(Ŝl−m(ϕ), El−n) : n ∈ Z≤0

}
is a reverse martingale. (Check this!) Thus,

Ŝl−n(ϕ)
a.s.−−→
L1

E [ϕ(X1, . . . , Xl)|E ] ,

as n → −∞, by Theorem 4.2.

5 Lecture 9/2

We are building up to stating and proving de Finetti’s theorem, which roughly states:

given the long term empirical distribution – that is the limiting set of unordered

values – any exchangeable is iid. To make sense of this statement, we introduced

the exchangeable σ-algebra. We still need to understand how probability measures

play with the exchangeable σ-algebra E . That is, we want to know what are the

probabilities of events E ∈ E .

5.1 The Hewitt-Savage zero-one law

The Hewitt-Savage zero-one law characterises how iid sequences ‘play’ with E .

Theorem 5.1. The exchangeable σ-algebra E of a sequence of iid random variables

is trivial – that is, P(A) ∈ {0, 1} for all A ∈ E.
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“iid sequences do not assign non-trivial probabilities to events in the exchangeable

σ-algebra.”

add-on Unpacking this: E is a sub-σ-algebra of BR∞ , consisting of the events that

are invariant to co-ordinate permutations. A sequence of random variables {Xn}
induces a probability measure on R∞ (the law of {Xn}). The Hewitt-Savage zero-one
law states that these probability measures are trivial on E if {Xn} are iid.

Proof. Let ϕ : Rl → R be bounded and measurable. Define Ŝm(ϕ) as in Lemma 4.9.

We claim that

E [ϕ(X1, . . . , Xl)|E ] = E [ϕ(X1, . . . , Xl)] , (3)

for iid sequences {Xn}. Further we claim (3) implies

A y A, for all A ∈ E . (4)

Hence P(A)2 = P(A ∩ A) = P(A) and so P(A) is zero or one.

Proving (4) assuming (3): We will prove the stronger statement: Fix G ∈ E ; then
for all B ∈ E ,

P(G ∩B) = P(G)P(B). (5)

We will prove (5) for B ∈ σ(X1, . . . , Xl), for any l, and then appeal to the π −
λ theorem to extend (5) to B ∈ E . If B ∈ σ(X1, . . . , Xl) then 1B is a bounded

measurable function ϕ of X1, . . . , Xl. Then

P(G ∩B) = E(1G1B)

= E (E [1G1B|E ])

= E (1GE [1B|E ])

= E (1GE [1B])

= P(G)P(B),

where the second last line follows by (3).

All that remains is to prove (3). By Lemma 4.9,

Ŝm(ϕ)
a.s.−−→
L1

E [ϕ(X1, . . . , Xl)|E ] .
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Intuition: Ŝm(ϕ) = 1
(m)l

∑m

˜
i ϕ (Xi1 , . . . , Xil) is an “average” of the ϕ statistics,

across the firstm random variables in the sequence. If l = 1 then Ŝm(ϕ) =
1
m

∑m
i=1 ϕ(Xi)

is exactly the average. The limiting average (i.e. Ŝm(ϕ) asm → ∞) doesn’t care about

the first few terms. Hence the limit E [ϕ(X1, . . . , Xl)|E ] is independent of X1, . . . , Xr

for all r. This implies E [ϕ(X1, . . . , Xl)|E ] is a constant, so it equals the unconditional

expectation E [ϕ(X1, . . . , Xl)].

The formal proof proceeds as follows: Fix r < m and define

Ŝm,r(ϕ) =
1

(m)l

∑
i1,...,il
ij>r

ϕ(Xi1 , . . . , Xil).

(Ŝm,r(ϕ) is the “average”, leaving out the first X1, . . . , Xr. Our intuition tells us that

this shouldn’t change anything.)

(Left as an exercise:) Check that∣∣∣Ŝm(ϕ)− Ŝm,r(ϕ)
∣∣∣ ≤ (1− (m− r)l

(m)l
∥ϕ∥∞

)
≤ c

m

m→∞−−−→ 0.

Thus, for all r ≥ 1,

E [ϕ(X1, . . . , Xl)|E ] = lim
m→∞

Ŝm(ϕ) = lim
m→∞

Ŝm,r(ϕ), surely.

But Ŝm,r(ϕ) doesn’t depend on X1, . . . , Xr, which implies

E [ϕ(X1, . . . , Xl)|E ] y {X1, . . . , Xr}, for all r ≥ 1.

In particular, this holds for r = l and so

E [ϕ(X1, . . . , Xl)|E ] y ϕ(X1, . . . , Xl).

To prove (3), it suffices to show that E [ϕ(X1, . . . , Xl)|E ] is a constant – i.e. that it

has zero variance.

E2 (ϕ(X1, . . . , Xl)) = E (ϕ(X1, . . . , Xl))E (E [ϕ(X1, . . . , Xl)|E ])

= E (ϕ(X1, . . . , Xl)E [ϕ(X1, . . . , Xl)|E ])
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= E
(
E
[
ϕ(X1, . . . , Xl)E [ϕ(X1, . . . , Xl)|E ]

∣∣∣∣ E])
= E

(
E [ϕ(X1, . . . , Xl)|E ]E [ϕ(X1, . . . , Xl)|E ]

)
= E

(
E2 [ϕ(X1, . . . , Xl)|E ]

)
where the second line holds by independence. Thus,

Var (E [ϕ(X1, . . . , Xl)|E ]) = E
(
E2 [ϕ(X1, . . . , Xl)|E ]

)
− E2 [ϕ(X1, . . . , Xl)] = 0.

5.1.1 A strong law for U-statistics

This application demonstrates the power of some of the machinery we used in the

proof of Theorem 5.1.

Let {Xn : n ∈ N} be an iid sequence and ϕ : Rl → R be a bounded and measurable

function. Define Ŝm(ϕ) as in Lemma 4.9. Then

Ŝm(ϕ)
a.s.−−→
L1

E [ϕ(X1, . . . , Xl)] ,

from the proof of Theorem 5.1.

As an example consider ϕ(X1, X2) = (X1 − X2)
2. To estimate the variance

Var(X1) = σ2, it is typical to use the U -statistic

Tn =
1

n(n− 1)

∑
i ̸=j

(Xi −Xj)
2 .

(You can check that this is unbiased for 2σ2.) Our result gives us that

Tn
a.s.−−→
L1

E
[
(X1 −X2)

2
]
.

So Tn is strongly consistent!

5.2 De Finetti’s theorem

Theorem 5.2. If {Xn : n ∈ N} is an exchangeable sequence of random variables,

then, conditional of E, the sequence is iid – that is,

E

[
l∏

k=1

fk(Xk)

∣∣∣∣∣ E
]
=

l∏
k=1

E [fk(Xk)|E ] ,
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and

E [f1(X1)|E ] = E [f1(Xl)|E ] ,

for all l ∈ N and all measurable functions f1, . . . , fl.

When we condition on E , intuitively we “have information on the set of unordered

values of {Xn}”. For example if Xn takes values zero and one, then this information

is the long running proportion of zeroes to ones. More generally, conditioning on E is

often equivalent to conditioning on the long term empirical PDF limn→∞
1
n

∑n
i=1 δXi

.

Lemma 5.3. Suppose f : Rl−1 → R and g : R → R are bounded and measurable.

Define

hj(x1, . . . , xl) = f(x1, . . . , xl−1)g(xj) for j = 1, . . . , l.

Then

Ŝm(hl) =
m

m− l + 1
Ŝm(f)Ŝm(g)−

1

m− l + 1

l−1∑
j=1

Ŝm(hj).

The proof of this lemma is left as an exercise.

Proof of Theorem 5.2. Fix l and take m → ∞ in

Ŝm(hl) =
m

m− l + 1
Ŝm(f)Ŝm(g)−

1

m− l + 1

l−1∑
j=1

Ŝm(hj).

Lemma 4.9 shows that the LHS

Ŝm(hl)
a.s.−−→
L1

E [f(X1, . . . , Xl−1)g(Xl)|E ] . (6)

On the RHS, m
m−l+1

→ 1 and 1
m−l+1

→ 0. Each of Ŝm(f), Ŝm(g) and Ŝm(hj) converge

to the corresponding conditional expectation as in (6); yet there are only a finite

number of terms in the summation so

1

m− l + 1

l−1∑
j=1

Ŝm(hj)
a.s.−−→
L1

0.

Thus,

E [f(X1, . . . , Xl−1)g(Xl)|E ] = E [f(X1, . . . , Xl−1)|E ]E [g(Xl)|E ] .
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By induction on l, we get conditional independence:

E

[
l∏

k=1

fk(Xk)

∣∣∣∣∣ E
]
=

l∏
k=1

E [fk(Xk)|E ] .

All that remains is to check is that the Xn’s are identically distributed. Yet this is

true by the exchangeability assumption (regardless of whether we condition on E or

not): For all A ∈ E (or even any event A ∈ BR∞)

E [g(X1)1A] = E [g(Xl)1A] .

5.3 High dimension analogues and graph limits

This section is a high-level glimpse of exchangeability’s importance in modern research

on network data.

Definition 5.4. A symmetric array {Xij : i, j ∈ N} is jointly exchangeable if for all

m > 1 and σ ∈ Sm,

{Xij : i ≤ m, j ≤ m} ∼ {Xσ(i)σ(j) : i ≤ m, j ≤ m}.

So a symmetric array is jointly exchangeable if its distribution is invariant to

scrambling the rows and columns by the same permutation.

There is a representation theorem (an analogue to de Finetti) for exchangeable

symmetric arrays.

Theorem 5.5 (Aldous ’81, Hoover ’79). The array {Xij : i, j ∈ N} is symmetric

and jointly exchangeable if and only if there exists f : R4 → R and U,Ui, Uj, U{i,j}
iid∼

Unif[0, 1] such that

Xij ∼ f(U,Ui, Uj, U{i,j}),

where and.

Notes:

1. U{i,j} doesn’t depend on the order of i and j.
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2. More explicitly, there are three sets of uniform random variables: 1. the

singleton {U}; 2. the sequence {Ui : i ∈ N}; and 3. the double index

{U{i,j} : i ≤ j ∈ N}.

3. U can be interpreted as the analogue of the limiting empirical distribution.

Why is this important for network data? A network is represented by a adjacency

matrix and we assume that this matrix is the top left block of an infinite array.

Exchangeability is a natural assumption here; all it says is the order of the vertices

doesn’t matter.

Since an adjacency matrix consists of zeroes and ones, specifying P(Xij = 1)

determines the entire distribution. Define graphons

Wu(x, y) = λ ({z : f(u, x, y, z) = 1}) ,

where λ is the Lebesgue measure. These are a non-parametric model for network

data (since they specify the entire distribution of the array).

6 Lecture 11/2

6.1 Brownian motion

Brownian motion (BM) is the analogue of the Gaussian distribution to stochastic

processes. The ideas that we will learn about BM will have wide applicability outside

BM.

History: BM was first developed to model the trajectory of particles in a liquid.

It also arose in physics (Einstein 1905) and finance (Bachelier 1900).

What are two properties that we would expect of a trajectory? We would expect

it to be continuous and random. Given the centrality of Gaussian distributions, it

might be model the randomness as Gaussian. This is exactly Brownian motion!
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6.1.1 C([0, 1])-valued random variables

Definition 6.1. Define C([0, 1]) = {f : [0, 1] → R continuous} to be the set of

continuous real-valued functions with domain [0, 1]. For f, g ∈ C([0, 1]), define

dsup(f, g) = sup
x∈[0,1]

|f(x)− g(x)|.

Facts (with proofs left as exercises): 1) dsup is a metric on C([0, 1]). 2) (C([0, 1]), dsup)
is a complete separable metric space. (Recall that in a complete metric space all

Cauchy sequences converge and in a separable metric space, there exists a countable

dense subset.)

Definition 6.2. Define the Borel σ-algebra BC([0,1]) on C([0, 1]) to be the smallest

σ-algebra containing all the open sets in (C([0, 1]), dsup). A C([0, 1])-valued random

variable is a measurable function

B : (Ω,F ,P) → (C([0, 1]),BC([0,1])).

The law of a C([0, 1])-valued random variable is a probability distribution on

(C([0, 1]),BC([0,1])). As with real-valued random variables, if we know the law, then we

don’t need to consider the underlying probability space – all the information about

the random variable is contained in the law.

6.1.2 Definitions of Brownian motion

Definition 6.3. Standard Brownian motion {Bt : t ∈ [0, 1]} is a C([0, 1])-valued
random variable such that

i. Bt ∼ N (0, t) for all t ∈ [0, 1] and Bt −Bs ∼ N (0, t− s) for all t ≥ s ∈ [0, 1];

ii. (Independent increments) For 0 ≤ t1 < . . . < tn ≤ 1, the random variables

Bt1 , Bt2 −Bt1 , . . . , Btn −Btn−1 are independent.

We use the term standard here since we have made two ad-hoc choices: 1) we’ve

set the starting point B0 = 0; and 2) we’ve set the scale to be 1, when we could
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equally have defined Var(Bt − Bs) = α(t − s) for any α > 0. We’ve also set the

domain to be [0, 1]; later on we will study BM in [0,∞) – in both these domains (and

any others), we will say the BM is standard if 1) and 2) are satisfied.

Definition 6.4 (an equivalent definition of BM). The law of BM (called the Wierner

measure) is a probability distributionW on (C([0, 1]),BC([0,1]) such that, given ω ∼ W ,

Xt : C([0, 1]) → R

ω 7→ ω(t)

satisfies properties i. and ii. in the previous definition.

6.1.3 Existence and uniqueness of BM

Does there exist a law on C([0, 1]) satisfying the above definition? And is there exactly

one such law? That is, can we talk about “the” Brownian motion?

Proof of uniqueness. Assume that there exist laws µ, ν on CZO satisfying Definition

6.4. We want to show that µ = ν. Draw B1 ∼ µ and B2 ∼ ν. Define piecewise linear

approximations Bk
i for i ∈ {1, 2} and k = 1, 2, . . .:

Bk
i (t) =

Bk
i (j/k) if t = j/k for some j = 0, . . . , k,

linear interpolation otherwise.

Observe that Bk
i is a C([0, 1]) random variable. Moreover, for all k ≥ 1, Bk

1 ∼ Bk
2 .

Why? The joint distributions at the knots are the same since B1 and B2 satisfy

i. and ii. of Definition 6.3. And the joint distribution at the knots completely

determine the distribution of Bk
i , since outside the knots Bk

i is just (deterministic)

linear interpolation.

We know that Bk
i

a.s.−−→ Bi as k → ∞ since dsup(B
k
i , Bi) → 0 as k → ∞ (using

continuity of Bi). Let f : C([0, 1]) → R be bounded and continuous. Since Bk
1 ∼ Bk

2 ,

we have E[f(Bk
1 )] = E[f(Bk

2 )]. As f is bounded and continuous, we can swap the

limit k → ∞ with the expectation by DCT, so that

E[f(B1)] = E[f(B2)].
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(We also needed continuity of f here to conclude f(Bk
i ) → f(Bi).)

With some more work (i.e. establishing a portmanteau theorem for C([0, 1])-
random variables) we get B1 ∼ B2 – that is µ = ν. (Here we need the completeness

and separability properties of C([0, 1]).)

This proof uses a standard idea: Use approximations that are linear interpolaters

so that we need only establish agreement on a finite number of points. Then by

continuity the approximations converge to the target object.

Proof of existence of BM (Lévy). We want to construct a measurable function B :

(Ω,F ,P) → (C([0, 1]),BC([0,1])) that satisfies the desired properties.

What should (Ω,F) be? It can be any measurable space such that we can build

a sequence Zn : (Ω,F) → (R,BR) of iid standard Gaussian random variables. From

the first lecture, we know that (Ω,F) = ([0, 1],B[0,1]) will work.

The proof will proceed in three steps:

(i) Construct a sequence of C([0, 1])-valued random variables B(1), B(2), . . . ussing

Zn.

(ii) Show that {B(n)} is Cauchy and hence has a limit.

(iii) Show that the limit B has the desired properties. (Left as an exercise.)

Step (i): The sequence {B(n)} will again be linear interpolaters, built using Zn at

the knots. Define

B
(1)
t = tZ1 =


0 if t = 0,

Z1 if t = 1,

linear interpolation otherwise.

This has the require BM properties at t = 0, 1. B(2) takes B(1) and adds a pertur-

bation at t = 1/2 so that the values at t = 0, 1/2, 1 have the same joint distribution

as BM. B(3) then perturbs at t = 1/4, 3/4 and so on.
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General construction: Given the knots B0, B1/2k , . . . B(2k−1)/2k , B1 of B
(k−1), define

new knots

Bj/2k+1 =
1

2

(
B(j−1)/2k+1 +B(j+1)/2k+1

)
+ Zj/2k+1 ,

for j odd, where Zj/2k+1 is a fresh N (0, 1/2k+2) random variable, independent of the

past. Then define the new approximation B
(k)
t as linear interpolation between all of

these knots (new and given):

B
(k)
t =

Bj/2k+1 if t = j
2k+1 ,

linear interpolation otherwise.

Step (ii): We claim that

E

[
∞∑
k=1

dsup
(
B(k+1), B(k)

)]
< ∞, (7)

which implies
∑∞

k=0 dsup
(
B(k+1), B(k)

)
< ∞ a.s. The tail probabilities must get arbi-

trarily small and via the triangle inequality, this in turn implies that

dsup
(
B(N), B(N+m)

)
≤

N+m−1∑
k=N

dsup
(
B(k+1), B(k)

)
≤

∞∑
k=N

dsup
(
B(k+1), B(k)

)
gets arbitrarily small, for all m, as N → ∞. Hence the sequence {B(k)} is Cauchy.

We will continue this proof in the following lecture. All that remains is to establish

(7).

7 Lecture 16/2

7.1 Construction of Brownian motion (cont.)

Recall our progress on constructing Brownian motion: We started with iid Gaussians

and used them to build processes B
(1)
t , B

(2)
t , . . . ∈ C([0, 1]) that match the Gaussian

properties of Brownian motion at an increasing number of dyadic points and are

linear interpolation away from these points. We built B
(k+1)
t by adding Gaussian
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perturbations halfway between the knots of B
(k)
t with the perturbation magnitudes

getting progressively smaller as k increased.

We need to show that this sequence {B(k)
t }∞k=1 is Cauchy in (the complete metric

space) C([0, 1]) and hence has a limit. We have established that a sufficient condition

for this is (7). Finally we will show that this limit B satisfies the properties of BM,

hence proving the existence of BM. (This final step is left as an exercise: take any t,

approximate it by the dyadics, then establish the Gaussian properties of Bt by taking

the limit B
(k)
b(t,k) (where b(t, k) is the first k-th binary digits of t) and observing that

the desired Gaussian properties are satisfied by B
(k)
b(t,k).)

Proof of (7). By the MCT,

E

[
∞∑
k=1

dsup
(
B(k), B(k+1)

)]
=

∞∑
k=1

E
[
dsup

(
B(k), B(k+1)

)]
.

By the construction of B(k+1), the maximum distance between B(k) and B(k+1) must

occur at B(k+1)’s new knots. So

dsup
(
B(k), B(k+1)

)
≤ max

0≤j≤2k+1

j odd

∣∣Zj/2k+1

∣∣, (8)

where Zj/2k+1 ∼ N (0, 1/2k+2).

We will take as given that, for X1, . . . , Xn ∼ N (0, σ2) (which may be dependent),

E
[
max
1≤i≤n

|Xi|
]
≤ 2σ

√
2 log n. (9)

(This is proved in Homework 2.) Heuristically, the worst case is when the Xi are

independent. In this case, it is easy to see that (9) holds. For correlated Gaussians,

the maximum can’t be (much) larger than the uncorrelated case.

Combining (8) and (9),

E
[
dsup

(
B(k), B(k+1)

)]
≤ C

√
k

2k/2
,

where C is some universal constant. Observing
∑∞

k=1

√
k

2k/2
< ∞ completes the proof.
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7.2 An equivalent definition of Brownian motion

Definition 7.1. {Gt : t ∈ [0, 1]} is a Gaussian process if, for all k,

(Gt1 , . . . , Gtk) ∼ MVN,

where 0 ≤ t1 < . . . < tk ≤ 1.

Proposition 7.2. {Bt : t ∈ [0, 1]} is standard BM if and only if

1. {Bt : t ∈ [0, 1]} is a Gaussian process with

E[Bt] = 0

E[BtBs] = s ∧ t.

2. t 7→ Bt is continuous almost surely.

This is just a restatement of the first definition. The only (slightly) non-obvious

fact needed to prove this Proposition is that for t > s,

Cov(Bt, Bs) = Cov(Bs, Bs) + Cov(Bt −Bs, Bs)

= s+ Cov(Bt −Bs, Bs)

= s ∧ t+ Cov(Bt −Bs, Bs),

and this equals s ∧ t if and only if Bt −Bs y Bs.

7.3 Brownian motion on [0,∞)

To get BM on [0,∞) just glue together a bunch of iid BM on [0, 1].

Definition 7.3. Standard Brownian motion on [0,∞) is a C([0,∞))-valued random

variable {Bt : t ∈ R≥0} such that

1. For all 0 ≤ s < t < ∞,

Bt −Bs ∼ N (0, t− s).

37



2. For all k and all 0 ≤ t1 < . . . < tk < ∞,

Bt1 , Bt2 −Bt1 , . . . , Btk −Btk−1

are independent.

Technically, before we can get BM on [0,∞), we need to first define C([0,∞)) as

a complete metric space with a σ-algebra. We basically carry over everything from

C([0,∞)).

Some relevant analysis facts (which we take as given):

1.

C([0,∞)) := {f : [0∞) → R continuous}.

2. Given f, g ∈ C([0,∞)), define ∥f − g∥[n,n+1) := supx∈[n,n+1)]|f(x)− g(x)| and

d(f, g) :=
∞∑
n=0

1

2n
∥f − g∥[n,n+1)

1 + ∥f − g∥[n,n+1)

.

3. (C([0,∞)), d) forms a complete, separable metric space.

4. Convergence: fn → f ∈ (C([0,∞)), d) if and only if, for all m, fn converges to g

uniformly on the interval [m,m+1). This type of convergence is called uniform

convergence on compacts.

7.3.1 Proving existence and uniqueness of BM on [0,∞)

Uniqueness: The proof is exactly the same as for BM on [0, 1], but first restrict to a

compact set [0, n]. Prove that the two Wiener laws are equal when restricted to [0, n],

for any n and then take the limit n → ∞ to establish equality on [0,∞).

Existence: Take a bunch of iid BM (call them B1, B2, . . .) on [0, 1] and glue them

together:
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Formally: start on a probability space where we can construct B1, B2, . . . ,
iid∼ sBM

on [0, 1]. (Note that if we can construct one copy of sBM then we can construct a

countably infinite number of copies. See Example 1.5.) For any t ∈ R≥0, find k such

that k < t ≤ k1 and define Bt = B1
1 + B2

1 + . . . + Bk
1 + Bk+1

t−k . Exercise: check that

{Bt : t ∈ R≥0} satisfies the properties of sBM.

7.3.2 Scaling properties of BM

Suppose
{
Bt : t ∈ R≥0

}
is sBM.

(i) If a > 0, then Xt = 1
a
Ba2t is also sBM. (Exercise: prove this – check finite

dimensional distributional properties and check continuity.)

(ii) {Bt+s − Bs : t ∈ R≥0} is SBM for any s ≥ 0. (We will prove this in Lemma

8.5.)

(iii)

X ′
t =

0 if t = 0,

tB1/t otherwise,

is sBM on [0,∞).

Proof of (iii).

1. for all 0 ≤ t1 < . . . < tk < ∞,

(Xt1 , . . . , Xtk) ∼ MVN,

with expectation 0.
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2. E(Xt) = 0.

3. E(XtXs) = ts
(
1
t
∧ 1

s

)
= t ∧ s.

4. Continuous trajectories: Xt is continuous at t > 0, by continuity of the trans-

formation tB1/t. For t = 0, we have already established that

{Xt : t ∈ (0,∞) ∩Q} ∼ {Bt : t ∈ (0,∞) ∩Q} ,

where Q is the rationals. (This is saying that finite subsets from either side

have the same joint distribution.) This implies that if t → 0 on the rationals,

then Xt → 0 almost surely (by sBM continuity of Bt). Combine this with the

fact that t 7→ Xt is continuous for all t ≥ 0 and we have that Xtn → 0 for any

sequence tn → 0 (not necessarily on the rationals) a.s. This is precisely the

definition that t 7→ Xt is continuous at t = 0.

7.4 Nowhere differentiability of BM

We know that BM is a.s. continuous. Is it smoother? What is the extent of the

smoothness of BM? Heuristically, we would expect that BM is jittery (i.e. not smooth)

no matter how far we zoom in, because to construct BM we kept adding jitter at every

dyadic point. So we would expect that BM is ‘just barely’ continuous. We will confirm

this intuition.

Definition 7.4. Let f : R → R. The upper right derivative of f is defined as

D∗f(t) = lim sup
h↓0

f(t+ h)− f(t)

h
.

The lower right derivative of f is

D∗f(t) = lim inf
h↓0

f(t+ h)− f(t)

h
.

If f is differentiable, then the lower and upper right derivatives agree.
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Theorem 7.5 (Paley, Wiener and Zygmund, 1933). BM is nowhere differentiable

a.s. In fact, with probability 1, all t ∈ [0, 1] satisfy D∗B(t) = ∞ or D∗B(t) = −∞,

or both.

This is a strong statement: for any point t, the probability that B(t) is differ-

entiable at t is zero. Further, B(t) is not differentiable at any point in a bounded

interval with probability 1. That is, pick an interval I; then the probability that B(t)

is differentiable at some t ∈ I is zero. And even more, B(t) is not differentiable is the

least smooth way – the lower and upper right derivatives after infinitely different.

Proof. Suppose for contradiction that with some non-zero probability, there exists

t0 ∈ [0, 1] such that

−∞ < D∗B(t0) ≤ B∗B(t0) < ∞.

Let A denote the event where such a t0 exists. We claim that this implies

sup
h∈[0,1]

|B(t0 + h)−B(t0)|
h

≤ M < ∞. (10)

Why is this true? Near h = 0, the positive side [B(t0 + h)−B(t0)]+ is controlled by

D∗B(t0) and the negative side [B(t0 + h) − B(t0)]− is controlled by D∗B(t0). Away

from h = 0 (i.e. h > ϵ for some ϵ), 1/h is bounded and B(t) is continuous and hence

bounded on the compact set [t0, t0+1]; this means the fraction is bounded away from

h = 0.

We will contradict (10). Fix n and then choose k such that t0 is in the dyadic

interval
[
k−1
2n

, k
2n

)
. We will show that (10) implies∣∣∣∣B(k + j

2n

)
−B

(
k + j − 1

2n

)∣∣∣∣ ≤ 2j + 1

2n
M, (11)

for j = 0, 1, 2, provided that k ≤ 2n − 2.

Then we will show that

P

[
2n−2⋃
k=1

Ωn,k for infinitely many n

]
= 0, (12)
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where

Ωn,k =

{∣∣∣∣B(k + j

2n

)
−B

(
k + j − 1

2n

)∣∣∣∣ ≤ 2j + 1

2n
M, for j = 0, 1, 2

}
.

(Note: there is nothing special about using the three intervals j = 0, 1, 2; it just turns

out that we need three to be able to union bound the probability in (12).)

Yet (11) says that ∪2n−2
k=1 Ωn,k must happen for all n large enough. (n must be

large enough so that t0 doesn’t fall in the last two dyadic intervals
[
2n−2
2n

, 2
n−1
2n

]
or[

2n−1
2n

, 1
]
.) Thus,

P

[
2n−2⋃
k=1

Ωn,k for infinitely many n

]
≥ P(A) > 0.

So we will have established a contradiction. We will fill in the details in the next

lecture.

8 Lecture 18/2

8.1 Proof of nowhere differentiability of BM (cont.)

Proof of Theorem 7.5. To establish (11):∣∣∣∣B( k

2n

)
−B

(
k − 1

2n

)∣∣∣∣ ≤ ∣∣∣∣B( k

2n

)
−B (t0)

∣∣∣∣+ ∣∣∣∣B (t0)−B

(
k − 1

2n

)∣∣∣∣
≤ M

(
k

2n
− t0

)
+M

(
t0 −

k − 1

2n

)
=

M

2n

<
3M

2n
,

where the second line follows from (10). Now look at∣∣∣∣B(k + 1

2n

)
−B

(
k

2n

)∣∣∣∣ ≤ ∣∣∣∣B(k + 1

2n

)
−B (t0)

∣∣∣∣+ ∣∣∣∣B (t0)−B

(
k

2n

)∣∣∣∣
≤ M

(
k + 1

2n
− t0 +

k

2n
− t0

)
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≤ M

(
3

2n
− 2t0 +

2k − 2

2n

)
≤ 3M

2n

where the second last line follows since t0 >
k−1
2n

. Finally, we can also show that∣∣∣∣B(k + 2

2n

)
−B

(
k + 1

2n

)∣∣∣∣ ≤ 5M

2n
,

assuming (10) and that k ≤ 2n − 2.

Now we want to establish (12). The idea is that B(t0 + h)−B(t0) is a Gaussian,

so the probability that it is tiny (i.e. less than 3M
2n

) on a lot of independent intervals is

going to zero. Hence (12) must have zero probability. We need to use three increments

rather than one for technical reasons. (Otherwise, when we do the union bound over

the 2n increments, we won’t be able to send the sum of probabilities to zero.) We

can use three increments (or as many as we like) since they are independent. By

independence

P(Ωn,k) =
2∏

j=0

P
[∣∣∣∣B(k + j

2n

)
−B

(
k + j − 1

2n

)∣∣∣∣ ≤ 2j + 1

2n
M

]

≤
2∏

j=0

P
[∣∣∣∣B(k + j

2n

)
−B

(
k + j − 1

2n

)∣∣∣∣ ≤ 5

2n
M

]

≤
(
P
[
|N (0, 1)| ≤ 5

2n/2
M

])3

≤
(
[density of N (0, 1) at 0]× 2× 5

2n/2
M

)3

=
c

23n/2
,

for some constant c, where the third last line follows since B
(
k+j
2n

)
− B

(
k+j−1

2n

) iid∼
N (0, 1/2n), for j = 0, 1, 2. (Since we end up with 2n/2 in the denominator and we are

going to multiply this by 2n to get the union bound, we see why we need to use three

or more independent increments.) Then

P

(
2n−2⋃
k=1

Ωn,k

)
≤ 2n

c

23n/2
=

c

2n/2
,
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and
∞∑
n=1

P

(
2n−2⋃
k=1

Ωn,k

)
< ∞.

By Borel-Cantelli,

P

[
2n−2⋃
k=1

Ωn,k for infinitely many n

]
= 0.

This establishes (12), completing the proof.

8.2 The Markov property of BM

Recall the definition of a discrete-time Markov chain:

Definition 8.1. {Xn : n ∈ N} is a Markov chain if

P(Xn+1 ∈ A|X0, . . . , Xn) = P(Xn+1 ∈ A|Xn),

for all events A.

To define a continuous-time Markov chain, we need to resolve two questions:

1. How do we condition on all of the past (which is typically an uncountable

number of random variables)?

2. What does ‘the next step’ – i.e. the analogue of Xn+1 – mean? How can we

characterise “the future behaviour given the current state”?

Hopefully by now you would anticipate the answer to 1. is to construct an appro-

priate σ-algebra! First we need to generalise the notion of a filtration to continuous

time.

Definition 8.2. {Ft : t ∈ R≥0} is a filtration if it is a collection of nested σ-algebras:

Fs ⊂ Ft,

if s ≤ t.
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Example 8.3. Ft = σ ({Bs : 0 ≤ s ≤ t}) is the smallest σ-algebra such that all Bs are

measurable by Ft. (Note, however, Ft is not generated by the uncountable number of

R-valued random variables Bs – it is generated by the single C ([0, t])-valued random

variable.) This σ-algebra can “tell you the random path of B up to time t”. So to

“condition on the past”, we should condition on Ft.

Answering question 2. is much harder. We will bypass a general answer and only

answer it for BM by reformulating the Markov property:

Proposition 8.4. {Xn : n ∈ N} is a Markov chain if and only if

Xn+1 y (X1, . . . , Xn−1) |Xn,

that is, Xn+1 is conditionally independent of (X1, . . . , Xn−1), given Xn.

Lemma 8.5. Let
{
Bt : t ∈ R≥0

}
be sBM. Fix s > 0 and define

Wt = Bt+s −Bs.

Then {Wt : t ∈ R≥0} is sBM independent of {Bt : 0 ≤ t ≤ s}.

How does it make sense to say that an uncountable set of random variables {Wt :

t ∈ R≥0} is independent of another uncountable set of random variables {Bt : 0 ≤
t ≤ s}? The key observations is that these are not sets of random variables – {Wt :

t ∈ R≥0} is a single C([0,∞))-valued random variable and {Bt : 0 ≤ t ≤ s} is a single

C ([0, s])-valued random variable!
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This lemma is a reformulation of the Markov property – “the future is independent

of the past, given the present” – for BM. For other stochastic processes, stating the

Markov property is not so nice; we would need more machinery to state the Markov

property in general.

Proof of Lemma 8.5. We want to show: if A is a measurable subset of C([0, s]) and
B is a measurable subset of C([0,∞)), then

P [(Bt)
s
t=0 ∈ A, (Wt)t≥0 ∈ B] = P [(Bt)

s
t=0 ∈ A]P [(Yt)t≥0 ∈ B] , (13)

where {Yt : t ∈ R≥0} is sBM. But this is really hard to prove as we don’t know what

A and B look like. (What is a measurable subset of C([0,∞))??) Instead, we will

do what we always do – approximate Wt and Bt by linear interpolaters; prove the

desired result on the approximations; and take limits.

We can show: if A1, . . . , Ak, B1, . . . , Bl are measurable subsets of R; 0 ≤ t1 ≤
. . . ≤ tk ≤ s; and 0 ≤ u1 ≤ . . . ≤ ul < ∞, then

P [(Bt1 , . . . , Btk) ∈ A1 × . . .× Ak, (Wu1 , . . . ,Wul
) ∈ B1 × . . .×Bl]

= P [(Bt1 , . . . , Btk) ∈ A1 × . . .× Ak]P [(Wu1 , . . . ,Wul
) ∈ B1 × . . .×Bl] .

Why? Use the fact that all the (Bt1 , . . . , Btk ,Wu1 , . . . ,Wul
) are Gaussian and show

their covariances are zero. This implies that if Ak is a measurable subset of Rk and

Bl is a measurable subset of Rl then

P [(Bt1 , . . . , Btk) ∈ Ak, (Wu1 , . . . ,Wul
) ∈ Bl]

= P [(Bt1 , . . . , Btk) ∈ Ak]P [(Yu1 , . . . , Yul
) ∈ Bl] .

Now we get (13) by the technique used in constructing BM:

1. Approximate Bt and Wt by linear interpolaters.

2. Show that the approximations B
(n)
t ,W

(n)
t are independent. (It suffices to check

independence at the knots.)
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3. We know that [
B

(n)
t

W
(n)
t

]
→

[
Bt

Wt

]
,

surely (by construction). The independence carries over in the limit. (Why? If

(Xn, Yn)
a.s.−−→ (X, Y ) then P(Xn ∈ A, Yn ∈ B) = P(Xn ∈ A)P(Yn ∈ B) implies

P(X ∈ A, Y ∈ B) = P(X ∈ A)P(Y ∈ B) – just take limits of both sides.)

8.2.1 Right continuous filtrations

Definition 8.6. A filtration {F+
t : t ∈ R≥0} is right continuous if

F+
t =

⋂
s>t

F+
s .

Example 8.7. Given a filtration {Ft : t ∈ R≥0}, we can always construct a right

continuous filtration by

F+
t =

⋂
s>t

Fs.

(Exercise: check that this is indeed right continuous.)

“We don’t bother trying to check that a filtration is right continuous – we just

construct a new one that is.”

From now on, if we talk about the filtration for BM Ft = σ ({Bs : 0 ≤ s ≤ t}), we
will assume that it is right continuous. (Otherwise, replace it by its right continuous

analogue.)

“Why do we want to work with right-continuous filtrations? We want to ensure

that our knowledge grows continuously as time progresses; if our knowledge increased

instantaneously after some time point t, then the filtration would not be right con-

tinuous at t.”

8.2.2 Rigorous definition of the Markov property of BM

Lemma 8.8 (Strengthening of Lemma 8.5). Let
{
Bt : t ∈ R≥0

}
be sBM. Fix s ≥ 0

and define Wt = Bt+s −Bs. Then {Wt : t ∈ R≥0} is independent of F+
s .
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This is what we will call the Markov property of BM. It is stronger than Lemma

8.5 since F+
s ⊇ Fs = σ ({Bt : 0 ≤ t ≤ s}) by construction.

Proof. For each n ≥ 1, define W ∗
t = Bt+s+1/n −Bs+1/n. Lemma 8.5 implies that

{W n
t : t ∈ R≥0} y Fs+1/n,

for all n. But F+
s ⊂ Fs+1/n, hence

{W n
t : t ∈ R≥0} y F+

s ,

for all n. By continuity of trajectories,

{W n
t }

a.s.−−→ {Wt}, as n → ∞.

Hence {Wt} y F+
s .

(We keep using the same idea: discretise and take limits!)

8.3 Stopping times

When we studied martingales, we examined their stopping times. We would like to

do the same for BM.

Definition 8.9. A stopping time for the adapted sequence {(Bt,Ft) : t ∈ R≥0} is a

non-negative random variable T , defined on the same probability space as Bt, with

{T < t} ∈ F+
t for all t ≥ 0.

This is basically the same definition of a stopping time from Stat210, adapted to

continuous time.

One reason why we use right continuous filtrations is the following Claim.

Claim 8.10. If F+
t is right continuous then

{T < t} ∈ F+
t ⇔ {T ≤ t} ∈ F+

t for all t ≥ 0.
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For non-right continuous filtrations, we can have the left side but not the right!

However, the right side always implies the left, regardless of whether the filtration is

right continuous.

Proof. Suppose {T < t} ∈ F+
t for all t ≥ 0. We know

{T ≤ t} =
⋂

n≥2/ϵ

{T < t+ 1/n},

with each {T < t+ 1/n} ∈ F+
t+1/n ⊂ F+

t+ϵ. Hence {T ≤ t} ∈ F+
t+ϵ for all ϵ > 0. Thus

by right continuity, {T ≤ t} ∈ F+
t .

For the other direction, suppose {T ≤ t} ∈ F+
t for all t ≥ 0. Then

{T < t} =
⋃
n≥1

{T ≤ t− 1/n}.

Since each {T ≤ t− 1/n} ∈ F+
t , their union is too. (Note that this direction doesn’t

rely on right continuity.)

9 Lecture 23/2

9.1 Understanding right continuous filtrations

Working with right continuous filtrations makes life easier, but they make less intuitive

sense. What is F+
t exactly? Ft is easy to understand – ask anything about BM up

to time t and Ft can answer. We know that Ft ⊂ F+
t . But how much larger is F+

t ?

Intuitively, F+
t gives the same – but infinitesimally more – information. The following

Theorem makes this rigorous.

Theorem 9.1 (Blumenthal’s zero-one law). If
{
Bt : t ∈ R≥0

}
is sBM and A ∈ F+

0

then P(A) = {0, 1}.

(Here P is the Wiener measure – the probability with respect to BM.)

B0 is a constant, so σ(B0) = F0 is the trivial σ-algebra {Ω, ∅}. (F0 can’t answer

anything, sine all the information it has available is a constant.) Blumenthal’s zero-

one law says this basically extends to F+
0 . F+

0 is bigger but it still can’t answer

non-trivial questions. This is a sort of “stochastic continuity”.
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Because BM is translation invariant, this idea carries over to F+
t for t > 0.

Proof. As before, we want to show that A y A for all A ∈ F+
0 . Use the Markov

property: {Bt : t ≥ 0} y F+
0 . But A ∈ F+

0 ⊂ σ ({Bt : t ≥ 0}). So A y A.

So the evens in F+
0 ∩ (F0)

c still have probability zero or one. This can be really

useful for thinking about BM locally around B0, as in the following Lemma.

Lemma 9.2 (An application of Blumenthal’s zero-one law). Suppose
{
Bt : t ∈ R≥0

}
is sBM. Let τ = inf{t > 0 : Bt > 0} and σ = inf{t > 0 : Bt = 0}. Then P(τ = 0) =

P(σ = 0) = 1.

This lemma proves the heuristic that in any interval I = (0, t] around 0, regardless

of length, there exists s ∈ I with Bs > 0 and s′ ∈ I with Bs′ < 0. This follows the

intuition that BM is very jagged. “Bt wiggles around zero with probability 1 infinitely

often after starting at B0 = 0.”

Proof.

{τ = 0} =
∞⋂
n=1

An =
∞⋂
n=1

{∃ϵ ∈ (0, 1/n) : Bϵ > 0}.

Each event An is in F+
1/n, so their intersection is in F+

0 . Then Blumenthal’s zero-one

law gives P(τ = 0) ∈ {0, 1}. All we need now is to argue that P(τ = 0) ̸= 0.

{τ = 0} =
⋂
t>0

{τ ≤ t}.

So

P(τ = 0) = lim
t→0

P(τ ≤ t).

Thus it suffices to uniformly bound the probabilities P(τ ≤ t) away from zero. But

P(τ ≤ t) ≥ P(Bt > 0) =
1

2
,

for all t since Bt is Gaussian with mean zero.

We can make exactly the same argument with τ ′ = inf{t > 0 : Bt < 0}. So

P(τ ′ = 0) = 1. Then by continuity and the intermediate value theorem, any interval

I = (0, t] from zero, regardless of its length, must have Bs = 0 for s ∈ I. So

P(σ = 0) = 1.
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9.2 Strong Markov property

The (weak) Markov property states that BM refreshes after a fixed time t. The

strong Markov property states that this remains true when t is replaced by a random

variable T – as long as T is a stopping time. We need a new σ-algebra to formalise

this notion.

Definition 9.3. Let
{
Bt : t ∈ R≥0

}
be sBM and F+

t be the canonical right continuous

filtration. Let T be a stopping time with respect to F+
t . The stopped σ-algebra is

defined as

F+
T =

{
A ∈ σ

(
{Bs : s ∈ R≥0}

)
: A ∩ {T < t} ∈ F+

t ∀t > 0
}
.

Remark 9.4. While T is random, there is nothing random about F+
T – it is a σ-

algebra. Intuitively, F+
T knows information about what happened before T occur; it

knows about the information implied by T stopping.

Theorem 9.5 (Strong Markov property). Let
{
Bt : t ∈ R≥0

}
be sBM. Suppose T

is a stopping time with respect to the canonical right continuous filtration F+
t and

P(T < ∞) = 1. Define Wt = BT+t − BT to be the process beyond the stopping time.

Then

{Wt : t ∈ R≥0} ∼ sBM,

and {Wt} y F+
T .

Proof. The technical challenge we need to overcome is that we are dealing with

continuous-valued stopping times. So we can’t write down P(T = t), unlike in dis-

crete time processes. A very useful trick to overcome this is to ‘do what you know’:

discretise the possible values of T so we can work with P(T = t); then argue that any

continuous-valued T can be approximated by discrete T and finally take the limit of

discrete T to get the result for continuous T . This strategy will work because 1) BM

is continuous and 2) F+
t is right continuous.

Assume that T takes values in a countable set 0 ≤ t1 < t2 < . . .. Define W i
t =

Bt+ti − Bti . Fix A ∈ F+
T and E ∈ BC([0,∞)). We want to show independence between
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A and (Wt)t≥0 ∈ E:

P ((Wt)t≥0 ∈ E,A) =
∞∑
i=1

P
(
(W i

t )t≥0 ∈ E,A, T = ti
)

=
∞∑
i=1

P
(
(W i

t )t≥0 ∈ E,A ∩ {T = ti}
)

=
∞∑
i=1

P
(
(W i

t )t≥0 ∈ E
)
P (A ∩ {T = ti})

= P ((Bt)t≥0 ∈ E)
∞∑
i=1

P (A ∩ {T = ti})

= P ((Bt)t≥0 ∈ E)P (A) ,

where the third line follows since (Wt)t≥0 y F+
ti by the Markov property whileA∩{T =

ti} ∈ F+
ti by definition of F+

T ; and the fourth line since (W i
t )t≥0 ∼ sBM for all i by

the Markov property.

How do we generalise this argument to continuous-valued stopping times? Idea:

forcibly discretise T : Given a stopping time T , define a sequence

Tn =
m+ 1

2n
if

m

2n
≤ T <

m+ 1

2n.

(Choosing the right endpoint of the interval [m
2n
, m+1

2n
) is crucial so that Tn is still a

stopping time.) Each Tn is a stopping time with respect to F+
t and Tn ↓ T (check

this!). Define

W
(n)
t = BTn+t −BTn .

From the discrete argument above, (W
(n)
t )t≥0 y F+

Tn
for all n.

We claim that if T and S are stopping times with T ≤ S always then F+
T ⊂ F+

S .

(The proof is left as an exercise.) This implies F+
T ⊂ F+

Tn
, so (W

(n)
t )t≥0 y F+

T for all

n. Yet by the continuity of BM W
(n)
t

a.s.−−→ Wt as n → ∞. Hence

{Wt : t ∈ R≥0} y F+
T .

Further, for all n ≥ 1, {W (n)
t } ∼ sBM, so {Wt} ∼ sBM as well.
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Why is the strong Markov property better than the Markov property? For one,

it allows us to prove the following result.

Claim 9.6 (An application of the strong Markov property). Let

T = inf{t ∈ [0, 1] : Bt = max
s∈[0,1]

Bs}.

Then T is not a stopping time.

Intuitively the claim should be easy to see. Yet is difficult to prove from the

definition of stopping times.

Proof. First we prove that P(T < 1) = 1. Define Wt = B1−t − B1. We know

that {Wt} ∼ sBM. Yet if T = 1 then Wt < 0 in a neighbourhood of t = 0. Yet

this contradicts Lemma 9.2. so P(T = 1) = 0. Now if T is a stopping time, then

Wt = BT+t − BT is sBM by the strong Markov property. But then again we would

have Wt < 0 in a neighbourhood of t = 0.

10 Lecture 25/2

10.1 Hitting times

Definition 10.1. Given a > 0 the hitting time of a is

Ta = inf{t ≥ 0 : Bt > a}.

Lemma 10.2. A hitting time Ta is a stopping time with respect to F+
t .

Proof. We want to show that {Ta ≤ t} ∈ F+
t :

{Ta ≤ t} =
⋂
s>t

{Ta < s} =
⋂
s>t

⋃
r∈(0,s)∩Q

{Br > a},

where the second equality relies on the continuity of BM and the density of the

rationals in R. The union
⋃

r∈(0,s)∩Q{Br > a} is in F+
s . (We must use a countable

union here – σ-algebras are not necessarily closed under uncountable unions.) Then

by right continuity, the intersection
⋂

s>t

⋃
r∈(0,s)∩Q{Br > a} is in F+

t .
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We want to study the distribution of hitting times. As a start, we should show

that we are dealing with finite random variables.

Claim 10.3.

P(T < ∞) = 1,

for any hitting time T .

Proof. For any n ∈ N, Bn ∼ X1 + . . .+Xn where Xi
iid∼ N (0, 1). Then apply the law

of iterated logarithm:

lim sup
n→∞

Bn√
2n log log n

→ 1 a.s.

So there is an event A with probability 1 where Bn grows like
√
2n log log n. But

√
2n log log n diverges so Bn must grow unbounded on A which implies T < ∞ on A.

Hence

P(T < ∞) ≥ P(A) = 1.

10.1.1 The reflection principle for BM

Let sBM be sBM and T be the hitting time of a. Then define

B̃t =

Bt if 0 ≤ t ≤ T,

2BT −Bt if t > T.
(14)
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Lemma 10.4. {B̃t} is sBM.

“Start with sBM, wait until a hitting time, reflect it around a after that – then

marginally the reflected process is still sBM.” Intuiively this should help us find the

distribution of hitting times T since the reflective process is dependent on T . So if

we can study B̃t, then we might be able to use it to get information about T .

Proof. Use the strong Markov process. Define

Wt = BT+t −Bt

Ut = Bt∧T .

We claim that {Ut} and T are measurable with respect to F+
T . (The proof of this

is left as an exercise.)

Define

φ : C([0,∞))× [0,∞)× C([0,∞)) → C([0,∞))

(f, t, g) 7→

f(s) if s ≤ t,

f(t) + g(s− t) if s > t.

If we define Ut = Bt∧T ,Wt = BT+t − BT and T = inf{t : Bt > a} then

φ(U, T,W ) = B. On the other hand φ(U, T,−W ) = B̃.
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W y U, T since W y F+
T by the strong Markov property. Also, since W ∼ sBM,

W ∼ −W . Hence φ(U, T,W ) ∼ φ(U, T,−W ). (Why? If X ∼ Y and X, Y y Z then

(X,Z) ∼ (Y, Z).)

10.1.2 The distribution of the running maximum

Let Mt = max0≤s≤t Bs. What is the distribution of Mt? For a start, it is related to

the distribution of T since

{Mt > a} = {Ta ≤ t}.

(This is like the count-time duality.) Also,

P [Mt ≥ a] = P [Mt ≥ a,Bt ≥ a] + P [Mt ≥ a,Bt < a]

= P [Bt ≥ a] + P [Mt ≥ a,Bt < a]

= P [Bt ≥ a] + P
[
B̃t > a

]
= 2P [Bt ≥ a]

where B̃t is the reflected process (defined in (14)); and the third line follows from the

fact that {Mt ≥ a,Bt < a} = {B̃t > a}. Since Bt ∼ N (0, t),

Mt ∼
√
t|Z|, (15)

where Z ∼ N (0, 1).

We can get the distribution of Ta from Mt. Further we can talk about the first

time hitting b after the BM has hit a by using reflection arguments again. What

about understanding stopping times in general? One tool is to use the strong Markov

property. We will soon introduced another: the martingale property of BM.

10.2 Continuous time martingales

Definition 10.5. Let (Ω,F ,P) be a probability space and {Ft : t ∈ R≥0} be a

filtration. An adapted sequence {(Xt,Ft) : t ∈ R≥0} is a martingale if

(i) E|Xt| < ∞ for all t ∈ R≥0; and

56



(ii) E [Xt|Fs] = Xs if s ≤ t.

We need property (i) so that the conditional expectation in (ii) is well defined.

Example 10.6. Let
{
Bt : t ∈ R≥0

}
be sBM and {F+

t : t ∈ R≥0} be the canonical right

continuous filtration. Then {(Bt,F+
t ) : t ∈ R≥0} is a martingale.

The proof follows from the Markov property of BM.

Proof. By construction, Bt is adapted to F+
t . For s ≤ t, Bt −Bs y F+

s . This implies

E [Bt −Bs|F+
s ] = 0. (Why? If X y G then E(X|G) = EX.) Hence E(Bt|F+

s ) =

Bs.

Most of the properties for discrete-time martingales carry over to countinuous

time martingales (assuming some regularity conditions on the trajectories – usually

continuity is sufficient). So we can get analogous results for BM as we did for discrete-

time martingales in Stat210.

10.2.1 The optional stopping theorem

Theorem 10.7. Assume that {Xt : t ∈ R≥0} is a right continuous martingale (i.e. it

has right continuous trajectories) adapted to a right continuous filtration F+
t . Let T

be a stopping time with respect to F+
t such that T ≤ c a.s. for some constant c < ∞.

Suppose that

E sup
0≤t≤c+ϵ

|Xt| < ∞, (16)

for some ϵ > 0 (typically 1). Then

1. EXT = EX0;

2. If S is another stopping time such that S ≤ T a.s., then E
[
XT |F+

S

]
= XS.

The assumption T ≤ c a.s. sounds strong but it is often easy to ensure. Estab-

lishing (16) is usually the hard part; but we need it so we can apply DCT. In the

proof of Wald’s first Lemma, we will show that we can weaken the assumptions of

Theorem 10.7 to A) ET < ∞ and B) E sup0≤t≤T+ϵ|Xt| < ∞.
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Proof. We will take as given the optional stopping theorem for discrete-time martin-

gales.

We’ve only got one strategy – discretise – so we will use it again! Define Tn = m+1
2n

if m
2n

≤ T < m+1
2n

. Then Tn is a stopping time with respect to {F+
0 ,F+

1/2n ,F
+
2/2n , . . .}

and Tn ∈ {0, 1/2n, 2/2n, . . .}.
So {(Xm/2n ,F+

m/2n) : m ∈ N} is a discrete time martingale with Tn ≤ c+ ϵ a.s. for

large enough n. Then the discrete time optional stopping theorem gives EXTn = X0.

Since Tn ↓ T and {Xt} is right continuous,

XTn

a.s.−−→ XT . (17)

Finally apply DCT to show that (17) converges in L1 too, using the bound |XTn| ≤
sup0≤t≤c+ϵ|Xt|.

The proof of (ii) is left as an exercise: use the same strategy: discretise S and

T , prove the result using the discrete time optional stopping theorem, then take the

limit and use DCT.

The canonical example of a right continuous processes is the Poisson point process

(count of Poisson across time) (since they jump up unit intervals).

10.2.2 Wald’s first lemma

Lemma 10.8. Suppose
{
Bt : t ∈ R≥0

}
is sBM and T a stopping time with respect to

the canonical right continuous filtration F+
t of {Bt}. If ET < ∞ then EBT = 0.

Wald’s first lemma turns out to be critical for sequential learning – it is used to

construct the sequential probability ratio test (SPRT).

Proof. This proof uses the common trick of capping T to get a bounded stopping

time, so that we can apply Theorem 10.7, and then taking the cap to infinity.

Fix t ≥ 0. T ∧ t is bounded a stopping time with respect to {F+
t }. We know that

E max
0≤s≤t+1

|Bs| < ∞,
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(see Homework 2, Question 4). The optional stopping theorem then implies EBT∧t =

EB0 = 0.

Now we need to take t → ∞ so that we get T ∧ t = T . Since ET < ∞, T < ∞
with probability 1. Hence BT∧t → BT a.s. as t → ∞.

Define M = max0≤s≤T+1|Bs|. We have M ≥ |BT∧t|. We claim that

EM < ∞, (18)

which then implies we can use DCT to conclude EBT∧t → EBT as t → ∞. Notice

that we haven’t used the fact that Bt is sBM yet – just that it is right continuous.

This implies we can weaken the assumptions of Theorem 10.7 to A) ET < ∞ and B)

E sup0≤t≤T+ϵ|Bt| < ∞.

To prove (18), define Zi = maxt∈[i,i+1)|Bt −Bi|. Suppose T ∗ is any maximiser of

|Bt| on [0, T + 1]. Then

|BT ∗ | ≤
∣∣BT ∗ −B⌊T ∗⌋

∣∣+ ∣∣B⌊T ∗⌋ −B⌊T ∗⌋−1

∣∣+ . . .+ |B1 −B0|

≤
⌊T ⌋∑
i=1

Zi

=
∞∑
i=1

Zi1{T ≥ i} .

Further

EM = E|BT ∗|

≤ E

[
∞∑
i=1

Zi1{T ≥ i}

]

=
∞∑
i=1

E [Zi1{T ≥ i}]

=
∞∑
i=1

EZiP(T ≥ i)

= EZ1

∞∑
i=1

P(T ≥ i)
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≤ EZ1ET

< ∞

where the third line follows by MCT; the fourth line uses the strong Markov property

with Zi y F+
i and {T ≥ i} = {T < i}c ∈ F+

i ; the fifth line since the Zi’s are iid; and

the sixth line follows since

ET =

∫ ∞

0

P(T ≥ t)dt ≥
∫ ∞

0

P(T ≥ ⌈t⌉)dt =
∞∑
i=1

P(T ≥ i).

11 Lecture 2/3

11.1 Martingale properties of BM (cont.)

11.1.1 Wald’s second lemma

Lemma 11.1. Let
{
Bt : t ∈ R≥0

}
be sBM and F+

t be the canonical right continuous

filtration. Suppose T is a stopping time with respect to F+
t with ET < ∞. Then

EB2
T = ET.

Proof. This proof uses the technique of bounding T in time and space so that we can

apply the optional stopping theorem, and then progressively lifting these restrictions.

(This is called localisation.)

We can check that {(B2
t − t,F+

t ) : t ∈ R≥0} is a martingale. Let Tn = inf{t > 0 :

|Bt| = n} and fix s ∈ R≥0. Then T ∧ Tn ∧ s is a bounded stopping time.

We want to use the optional stopping theorem to conclude

EB2
T∧Tn∧s = E [T ∧ Tn ∧ s] . (19)

But we need to verify that the domination random variable has finite expectation.

That is, we want to show that

E sup
0≤t≤s+1

∣∣B2
t − t

∣∣ < ∞.
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Since

E sup
0≤t≤s+1

∣∣B2
t − t

∣∣ ≤ E sup
0≤t≤s+1

∣∣B2
t

∣∣+ s+ 1

= E

[(
sup

0≤t≤s+1
|BT |

)2
]
+ s+ 1,

it suffices to show E
[(
sup0≤t≤s+1|BT |

)2]
is finite.

We can show that

P
[

sup
0≤t≤s+1

|Bt| > λ

]
≤

EB4
s+1

λ4
=

3(s+ 1)2

λ4
.

How? Similar to the question in Homework 2, but use Doob’s maximal inequality with

the submartingale {B4
t } instead of {B2

t }. Then by integrating the survival function,

E

[(
sup

0≤t≤s+1
|BT |

)2
]
=

∫ ∞

0

P

[(
sup

0≤t≤s+1
|Bt|

)2

> λ

]
dλ < ∞.

(Note that a 1
λ2 tail bound is not strong enough since we need to square it to get a

tail bound on
(
sup0≤t≤s+1|Bt|

)2
.) Thus, we have established (19).

Now we need to take away the bounds on T . Since T ∧Tn ∧ s ↑ T ∧Tn as s → ∞,

E [T ∧ Tn ∧ s] = E [T ∧ Tn] ,

by MCT. By continuity, B2
T∧Tn∧s → B2

T∧Tn
and

∣∣B2
T∧Tn∧s

∣∣ ≤ n, so DCT implies

EB2
T∧Tn∧s → EB2

T∧Tn
.

Hence EB2
T∧Tn

= ET ∧ Tn.

Now, taking n → ∞, then T ∧Tn ↑ T a.s. and B2
T∧Tn

→ B2
T by continuity. Fatou’s

lemma implies

E
[
B2

T

]
= E

[
lim inf
n→∞

B2
T∧Tn

]
≤ lim inf

n→∞
E
[
B2

T∧Tn

]
= lim inf

n→∞
E [T ∧ Tn]
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= ET,

where the final line uses MCT. Thus,

EB2
T ≤ ET. (20)

For the opposite direction,

EB2
T = E

[
(BT −BT∧Tn +BT∧Tn)

2]
= E

[
(BT −BT∧Tn)

2
]
+ E

[
B2

T∧Tn

]
+ 2E [(BT −BT∧Tn)BT∧Tn ]

= E
[
(BT −BT∧Tn)

2
]
+ E

[
B2

T∧Tn

]
≥ E

[
B2

T∧Tn

]
= ET ∧ Tn,

where the third line follows by observing

E [(BT −BT∧Tn)BT∧Tn ] = E
[
E
(
(BT −BT∧Tn)BT∧Tn|F+

T∧Tn

)]
= E

[
E
(
(BT −BT∧Tn) |F+

T∧Tn

)
BT∧Tn

]
= 0,

with the second line uses the fact that BT∧Tn is F+
T∧Tn

-measurable; and the third

line uses (ii) of the optional stopping theorem which states that if T ≤ S then

E
[
BS|F+

T

]
= BT .

Thus, EB2
T ≥ E [T ∧ Tn] for all n and hence

EB2
T ≥ ET, (21)

since ET ∧ Tn → ET by MCT. Combining (20) and (21) completes the proof.

11.1.2 Applications of Wald’s lemmas

Why are Wald’s Lemmas important? Here are two interesting application:

Example 11.2.
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1. Let
{
Bt : t ∈ R≥0

}
be sBM and define T1 = inf{t > 0 : Bt > 1} to be the

hitting time of 1. We have established that P [T1 < ∞] = 1 (by the law of

iterated logarithm). We claim that ET1 = ∞! Why? Use Wald’s first Lemma:

Suppose that ET1 < ∞. Then EBT1 = EB0 = 0. Yet BT1 = 1 almost surely by

continuity.

Intuition for this result: We know that BM will hit 1 with probability one, but

ET1 = ∞. This is because BM can go negative for an arbitrarily long excursion

before becoming positive and hitting 1. So the tail probabilities P [T1 > t] do

not decay fast enough to ensure ET1 < ∞.

2. An analogue to Gambler’s Ruin: Fix a, b > 0 and let T = inf{t > 0 : Bt <

−a or Bt > b}. We showed in section that lim supn→∞Bn/
√
n = ∞ a.s. and

lim supn→∞Bn/
√
n = −∞ a.s. So P(T < ∞) = 1. Now ET < ∞ by Wald’s

lemmas: (Sketch proof): We need to show that P(T > t) decays fast. Use the

strong Markov property. Suppose T > k and Bk = x ∈ (−a, b). We have

P [(x+Bt) hits −a or b for t ∈ [0, 1]] > 0,

since Bt is Normal. Then, for t ∈ [k, k + 1],

P [T > t] ≤

[
sup

x∈(−a,b)

P [(x+Bs) doesn’t hit −a or b for s ∈ [0, 1]]

]k

=

[
1− inf

x∈(−a,b)
P [(x+Bs) hits −a or b for s ∈ [0, 1]]

]k
= [1− ε]k .

So we have geometric decay. This is enough to prove ET < ∞ by integrating

the survival function. Then Wald’s first lemma gives

−aP(BT = −a) + bP(BT = b) = EBT = 0,

so that P (BT = −a) = b
a+b

, which is analogous to the solution to the Gambler’s

Ruin. Further, Wald’s second lemma gives

ab = a2P (BT = −a) + b2P (BT = b) = EB2
T = ET
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11.2 Roadmap for coming lectures

We understand BM quite well now. But we still don’t know why BM is important.

In the coming lectures we will establish a CLT for iid stochastic processes. This

result, named Donsker’s theorem, shows that random walks (appropriately centred

and scaled) converge in distribution (in C([0,∞))*) to sBM.

12 Lecture 9/3

12.1 Weak convergence in C([0, 1])

Definition 12.1. Let (S, d) be a metric space. Suppose {Xn : n ∈ N} and X are

S-valued random variables. We say that Xn
d−→ X if

Ef(Xn) → Ef(X),

for all bounded continuous functions f : S → R.

We have seen this definition before in Assignment 2, where we showed that it

generalises the definition of weak convergence for R-valued random variables.

Example 12.2 (Special case of Donsker’s theorem). We are interested in S = C([0, 1])
and d(f, g) = supx∈[0,1]|f(x)− g(x)|. Next lecture we will state and prove Donsker’s

theorem. For now, we will describe a special case of Donsker’s theorem: Let

Xi =

1 w.p.1
2
,

−1 otherwise.

(The general statement of the theorem only requires Xi’s are iid with mean zero and

variance 1.) Define Sk =
∑k

i=1Xi and

S(n)(t) =


Sk√
n

if t = k
n
,

linear interpolation otherwise.

*Recall that in Homework 2, we defined converge in distribution Xn
d−→ X in an arbitrary metric

space to be Ef(Xn) → Ef(X) for all bounded and continuous real-valued functions f .
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Observe that for all n ≥ 1, S(n) are C([0, 1])-valued random variables. Donsker’s

theorem states that

{S(n)(t) : 0 ≤ t ≤ 1} d−→ {Bt : 0 ≤ t ≤ 1},

where {Bt : 0 ≤ t ≤ 1} ∼ sBM.

To visualise this process: imagine a simple symmetric random walk (SSRW). Take

the walk up to length n and shrink the x-axis down to [0, 1] (so shrink by a factor of

n). Shrink the y-axis by a factor of
√
n. Then in the limit this is standard Brownian

motion! In general, this type of limits is called scaling limits. Scaling of n in the

x-axis and
√
n in the y-axis is common.

Why do we care about Donsker’s theorem? What are the upshots of this result?

Obviously, it is useful in giving us intuition and understanding for limiting processes.

But more than that, Donsker’s theorem is one of the most powerful results that we

will see this semester. Combined with the continuous mapping theorem, it allows us

to derive many strong results on the distributional convergence of many processes

and random variables.

Here is one application. Define

ϕ : C([0, 1]) → R

f 7→ f(1).

This is a continuous function. Apply the continuous mapping theorem to the result

in Example 12.2 using ϕ to get

Sn√
n

d−→ B1 ∼ N (0, 1).

So we have just derived the standard CLT!

In the rest of the lecture, we will be building machinery to prove Donsker’s the-

orem. Specifically, we need to develop methods for proving weak convergence in

C([0, 1]). We will see a specific strategy (based on coupling) next lecture in the proof

of Donsker’s theorem. We will also see a general strategy (based on tightness and

finite dimensional convergence). First, we will find alternate ways to characterise

convergence in distribution.

65



12.1.1 Portmanteau theorem

This is a slight detour into general theory above convergence in distribution.

Note that convergence in distribution is a property of the laws of the random vari-

ables, not the random variables itself. We do not care whether the random variables

are defined on the same space (c.f. convergence in probability, a.s., in Lp etc.). So

it is more convenient to consider convergence in distribution just as a certain type of

convergence of probability measures defined on the metric space S:

Definition 12.3. Let (S, d) be a metric space and define P(S) to be the set of all

(tsoa) probability measures on S. Suppose {µn : n ∈ N} ⊂ P(S) and µ ∈ P(S). We

say that µn
d−→ µ if ∫

fdµn →
∫

fdµ,

for all f : S → R bounded and continuous.

This is nothing new – it’s just a restatement of Definition 12.1.

Theorem 12.4 (Portmanteau). The following are equivalent:

(i) µn
d−→ µ;

(ii)
∫
fdµn →

∫
fdµ, for all f : S → R bounded and uniformly continuous;

(iii) for all C ⊂ S closed,

lim sup
n→∞

µn(C) ≤ µ(C);

(iv) for all G ⊂ S open,

lim inf
n→∞

µn(G) ≥ µ(G);

(v) µn(A) → µ(A) for all A measurable with µ(δA) = 0 (where δA is the boundary

of A).

This is a number of equivalent characterisations that we can use to prove weak

convergence. (v) is closest in spirit to the original R-valued random variable weak

convergence, which is defined as convergence of CDFs (at continuity points of X).
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Proof. “(i) ⇒ (ii)” is trivial.

“(ii) ⇒ (iii)”: Use the trick where we approximate 1C by a continuous function.

Given C ⊂ S closed, define

Cϵ = {x : d(x,C) < ϵ}.

Fix µ ∈ P(S). For any η > 0, there exists ϵ > 0 such that

µ(Cϵ) < µ(C) + η. (22)

Why? As C is closed, C =
⋂

m∈N C
1/n, but

µ
(
C1/n

)
↓ µ(C),

since C1/n ↓ C. This immediately implies that, given η > 0, we can choose n large

enough such that µ
(
C1/n

)
< µ(C) + η. This proves (22).

Define

g(x) =
d (x, (Cϵ)c)

d(x,C) + d (x, (Cϵ)c)
.

Then

g(x) ∈


{1} if x ∈ C,

{0} if x ∈ (Cϵ)c,

[0, 1] otherwise.

g is sandwich between 1C and 1Cϵ (importantly, it is an approximation of 1C). We

can check that g : S → [0, 1] is uniformly continuous.

Fix C ⊂ S closed. Then µn(C) ≤
∫
gdµn by construction. So

lim sup
n→∞

µn(C) ≤ lim
n→∞

∫
gdµn =

∫
gdµ ≤ µ(Cϵ) ≤ µ(C) + η,

for ϵ small, where the equality follows by (ii) and the last inequality follows by (22).

Send ϵ (and hence η) to zero to complete the proof.

“(iii) ⇔ (iv)” is straightforward (just take complements).

“(iii), (iv) ⇒ (v)”: Fix A with µ(δA) = 0. Since
∫
A ⊂ A ⊂ Ā (where Ā is the

closure of A), we know µn(A) ≤ µn(Ā) and

lim sup
n→∞

µn(A) ≤ lim sup
n→∞

µn(Ā) ≤ µ(Ā) = µ(A),
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where the second inequality follows by (iii) and the last equality follows by the as-

sumption µ(δA) = 0.

As µn(A) ≥ µ(
∫
A), we can find lim infn→∞ µn(A) ≥ µ(A) by similar reasoning.

Combine these two results to get (v).

“(v) ⇒ (i)”: Let f : S → R be bounded and continuous. WLOG, assume 0 ≤
f ≤ 1. (Otherwise shift and scale f .)

Look at the level sets Ay = {x : f(x) > y}. Observe that δAy ⊂ {x : f(x) = y}.
Only countably many y can satisfy µ ({x : f(x) = y}) > 0. Hence

µn(Ay) → µ(Ay),

for all but countably many y. Then∫
fdµn =

∫ 1

0

µn(Ay)dy →
∫ 1

0

µ(Ay)dy =

∫
fdµ,

where the convergence → is an application of DCT since µn(Ay)
a.s.−−→ µ(Ay).

What does the Portmanteau Theorem give us? It provides some intuition on

what weak convergence means. Yet it is still hard to check any of these equivalent

characterisations in practise. We need specific, easily checkable conditions to verify

weak convergence. These conditions require regularity conditions on the metric space

S (e.g. complete and separable). So this is where we give up on general theory and

specialise to particular metric spaces.

Example 12.5.

1. When S = R, it suffices to check convergence A) on closed sets of the form

{(−∞, x] : x ∈ R}; B) of characteristic functions.

2. When S = Rd we have the Crámer-Wald device.

3. What about when S = C([0, 1])? How to prove µn → µ? Two strategies:

(a) (This holds for any metric space S): Skorohod’s representation: On some

probability space (Ω,F ,P), construct random variables Xn and X such

that a) Xn ∼ µn; b) X ∼ µ; and c) d(Xn, X)
d−→ 0. Then µn

d−→ µ.
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(b) For this strategy, we will fill in the details in the coming lectures and for

now only illustrate the idea using R-valued (non-random) sequences: Given

{xn : n ∈ N} ⊂ R, suppose {xn} is bounded (a compactness assumption)

and x∗ is a limit point� of {xn} (a ‘uniqueness of limits’ assumption) These

two conditions imply that xn → x.

This strategy is not that useful for sequences in R. But it is easily gener-

alisable to S-valued random variables, where S is complete and separable.

(Use Prokhorov’s theorem to generalise.)

13 Lecture 11/3

13.1 Donsker’s theorem

Theorem 13.1 (Donsker’s). Let X1, . . .
iid∼ F with EX1 = 0 and EX2

1 = 1. Define

Sk = X1 + . . .+Xk and

S(n)(t) =


Sk√
n

if t = k
n
,

linear interpolation otherwise.

Then

{S(n)(t) : 0 ≤ t ≤ 1} d−→ {B(t) : 0 ≤ t ≤ 1},

in C([0, 1]), where {B(t) : 0 ≤ t ≤ 1} is sBM.

We will prove Donsker’s theorem using Skorohod’s representation theorem:

Theorem 13.2 (Skorohod’s representation). Given X ∼ F with EX = 0 and EX2 =

1, one can construct (on some probability space){
Bt : t ∈ R≥0

}
∼ sBM

(U, V ) y
{
Bt : t ∈ R≥0

}
,

�i.e. x∗ is a limit of a subsequence
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with U ≤ 0 ≤ V surely such that

BT ∼ X,

where T = inf{t > 0 : Bt /∈ (U, V )}. Further, ET = EX2 = 1.

As a special case of Skorohod’s representation, consider

X =

1 with probability1
2
,

−1 otherwise.

Then (U, V ) = (−1, 1) surely and by gambler’s ruin (Example 11.2) andWald’s second

lemma (Lemma 11.1), we have BT ∼ X and ET = EX2.

The proof of Skorohod’s representation theorem is constructive.

Proof of Theorem 13.2. Since EX = 0,

E [X1{X > 0}] = E [−X1{X < 0}] = c > 0,

where the last inequality follows since EX2 = 1 implies P [X = 0] < 1.

Construct a new probability distribution on (−∞, 0)×(0,∞)∪{(0, 0)} with prob-

ability measure ν given by

ν ({0, 0}) = P [X = 0]

ν(A) =
1

c

∫ ∫
A

(v − u)dµ(u)dµ(v)

=
1

c
E

X1,X2
iid∼X

[(X1 −X2)1{X, 1X2 ∈ A}] , (23)

where A ⊂ (−∞, 0)× (0,∞) measurable and µ is the law of X. Exercise: check that

ν is a probability measure.

Consider any probability space where we can construct (U, V ) ∼ ν and{
Bt : t ∈ R≥0

}
∼ sBM,

independently. (For example, two copies of [0, 1] with the Borel sets will suffice.)

Define

T = inf{t ≥ 0 : Bt /∈ (U, V )}. (24)
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We claim that BT ∼ X. It suffices to show that, for all bounded, continuous�

ϕ : R → R, we have

Eϕ(BT ) = Eϕ(X).

How do we prove this? Basically, condition on (U, V ) and use independence of Bt

and (U, V ): Given U = u and V = v,

BT =

u with probability v
v−u

,

v with probability −u
v−u

,

by the gambler’s ruin argument (Example 11.2). Then

E [ϕ(BT )|U, V ] = ϕ(U)
V

V − U
+ ϕ(V )

−U

V − U
.

Thus,

Eϕ(BT ) = E
[
ϕ(U)

V

V − U
+ ϕ(V )

−U

V − U

]
= Eϕ(X),

where the last equality is left as an exercise. So BT ∼ X. Further

E(T |U, V ) = −UV

by Wald’s second lemma (Lemma 11.1). Therefore,

ET = −EUV = EX2 = 1,

where the second last equality is left as an exercise.

Proof of Donsker’s theorem (Theorem 13.1). Embed the process {Sk : k ∈ N} into

Brownian motion Bt: Define T1 such that BT1 ∼ S1. By the strong Markov property,

Bt−T1 − BT1 is also sBM (for t ≥ T1), independent of {Bt : 0 ≤ t ≤ T1}. So we

can construct T2 > T1 such that BT2 ∼ S2. Continue this process to construct

T1 < T2 < . . . such that

(BT1 , BT2 , . . .) ∼ (S1, S2, . . .).

�We don’t actually need to require that ϕ is continuous, only that it is measurable
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More explicitly, let (U1, V1), (U2, V2), . . .
iid∼ ν, where ν is given in (23). Define

∆1 = inf{t ≥ 0 : Bt /∈ (U1, V1)},

Tn−1 = ∆1 + . . .+∆n−1,

∆n = inf{t ≥ 0 : BTn−1+t −BTn−1 /∈ (Un, Vn)},

X ′
n = BTn −BTn−1 .

Lemma:

∆1,∆2, . . .
iid∼ T

X ′
1, X

′
2, . . .

iid∼ X1,

where T is defined in (24) and X1 is given in the Theorem statement.

Proof of the lemma: Given (U1, V1), (U2, V2), . . ., T1, T2, . . . is an increasing se-

quence of stopping times. The strong Markov property implies ∆1,∆2, . . . are inde-

pendent and that X ′
1, X

′
2, . . . are also independent. Further ∆i and X ′

i are functions

of (Ui, Vi), given Ti−1 and {Bt}. This implies that ∆i ∼ ∆j and X ′
i ∼ X ′

j. Finally,

Skorohod’s representation implies that X ′
1 ∼ X and ∆1 ∼ T . This proves the lemma.

This lemma implies

{BTn : n ∈ N} ∼ {Sn : n ∈ N},

where Sn = X1+ . . .+Xn. This is great but not so applicable: we might need to wait

a long time to see BTn . We need to shrink the process to [0, 1]. Also, once we have

shrunk the process, we will see that we can ignore the BM between BTn and BTn+1 .
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Construct

W (n)(t) =
1√
n
Bnt

B(n)(t) =


BTk√

n
if t = k

n
,

linear interpolation otherwise.

Observe that W (n)(t) ∼ sBM for all n and that B(n) ∼ S(n). So we will have finished

the proof if we can show

dsup
(
B(n),W (n)

) P−→ 0. (25)

More explicitly, using (25) we can apply a Slutsky-type argument to show that

S(n) ∼ B(n) =
(
B(n) −W (n)

)
+W (n) d−→ 0 + sBM.

To make this argument rigorous, fix F ⊂ C([0, 1]) closed. Define

Fϵ = {g : dsup(g, F ) < ϵ}.

Then

P
(
B(n) ∈ Fϵ

)
≤ P

(
W (n) ∈ F2ϵ

)
+ P

(
dsup(B

(n),W (n)) > ϵ
)
,

and

lim sup
n→∞

P
(
B(n) ∈ Fϵ

)
≤ lim sup

n→∞
P
(
W (n) ∈ F2ϵ

)
+ 0

= P [sBM ∈ F2ϵ] ,

by (25). This gives

lim sup
n→∞

P
(
B(n) ∈ F

)
≤ lim sup

n→∞
P
(
B(n) ∈ Fϵ

)
≤ P [sBM ∈ F2ϵ] .

Take ϵ → 0 and since F is closed and probability continuous,

lim sup
n→∞

P
(
B(n) ∈ F

)
≤ P (sBM ∈ F ) .

This completes the proof using Portmanteau theorem, modulo proving (25).
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Proof of (25): Let t ∈
[
k
n
, k+1

n

]
. Then we can write

t = α
k

n
+ (1− α)

k + 1

α

B(n)(t) = α
BTk√
n
+ (1− α)

BTk+1√
n

,

for some α ∈ [0, 1]. This allows us to bound

∣∣W (n)(t)−B(n)(t)
∣∣ = ∣∣∣∣ 1√

n
Bnt −

(
α
BTk√
n
+ (1− α)

BTk+1√
n

)∣∣∣∣
≤ α√

n
|Bnt −Bk|+

1− α√
n

|Bnt −Bk+1|

+
α√
n
|BTk

−Bk|+
1− α√

n

∣∣BTk+1
−Bk+1

∣∣
≤ 1√

n
max

0≤k≤n−1
sup

k≤s≤k+1
(|Bs −Bk|+ |Bs −Bk+1|)

+
1√
n

max
0≤k≤n

|BTk
−Bk|,

where the last line follows by taking the worst-case over all t ∈ [0, 1]. (The above

calculations may seem unintuitive, but the basic idea is that the first line would be

a lot easier to bound if we could replace the random Tk and Tk+1 with fixed k and

k+1. So we do that, and hope that we can bound |BTk
−Bk| since ETk = kE∆1 = k.)

Since the last line is not a function of t,

dsup
(
W (n), B(n)

)
≤ 1√

n
max

0≤k≤n−1
sup

k≤s≤k+1
(|Bs −Bk|+ |Bs −Bk+1|)

+
1√
n

max
0≤k≤n

|BTk
−Bk|.

So we just need to show that the two terms

T1 =
1√
n

max
0≤k≤n−1

sup
k≤s≤k+1

(|Bs −Bk|+ |Bs −Bk+1|) ,

T2 =
1√
n

max
0≤k≤n

|BTk
−Bk|,
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on the RHS go to zero in probability. Intuitively, supk≤s≤k+1 (|Bs −Bk|+ |Bs −Bk+1|)
is independent of the other k. So

√
nT1 is the maximum over n independent Gaus-

sians. We know from Homework 2 that
√
nT1 ≈

√
log n. So T1

P−→ 0. We will make

this rigorous and complete the proof next lecture.

14 Lecture 18/3

14.1 Completing the proof of Donsker’s theorem

Recall that we need to prove

(i)
1√
n

max
0≤k≤n−1

sup
k≤s≤k+1

(|Bs −Bk|+ |Bs −Bk+1|)
P−→ 0

(ii)
1√
n

max
0≤k≤n

|BTk
−Bk|

P−→ 0

Proof of (ii). Recall that Tk = ∆1 + . . . + ∆k where E∆i = EX2
i = 1. The SLLN

gives Tn

n

a.s.−−→ 1. This implies

max
1≤k≤n

|Tk − k|
n

a.s.−−→ 0. (26)

To prove (26) use the following number theory result: If {an : n ≥ 1} ⊂ R is a

real-valued sequence with an ≥ 0 and an
n
→ 1 then

max
1≤k≤n

|ak − k|
n

→ 0.

The proof of this result is left as an exercise.

Intuitively, Tk is close to k, so by continuity, BTk
should be close to Bk.

Formally,

P
[

1√
n

max
0≤k≤n

|BTk
−Bk| > ϵ

]
≤ P

[
1√
n

max
0≤k≤n

|BTk
−Bk| > ϵ, max

1≤k≤n

|Tk − k|
n

≤ δ

]
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+ P
[
max
1≤k≤n

|Tk − k|
n

> δ

]
Define fn(δ) = P

[
max1≤k≤n

|Tk−k|
n

> δ
]
. Then for all δ > 0, fn(δ) → 0 as n → ∞ by

(26). For the first term,

P
[

1√
n

max
0≤k≤n

|BTk
−Bk| > ϵ, max

1≤k≤n

|Tk − k|
n

≤ δ

]
≤ P

 max
0≤a,b≤2
|a−b|≤δ

|Ba −Bb| > ϵ

 , (27)

where {Bt} is sBM. To see this, note that |Tk−k|
n

≤ δ implies that Tn

n
≤ 1 + δ ≤ 2 for

small enough δ. Also Tk

n
≤ 2 since Tk ≤ Tn. Finally, observe that{
1√
n
Bnt : 0 ≤ t ≤ 2

}
∼ sBM on [0, 2n].

Use this with a = Tk

n
and b = k

n
to get (27).

Importantly, the RHS of (27) is free of n. This implies we can send δ to zero to

get (27) to zero while sending n → ∞ to get fn(δ) to zero. More formally, as δ → 0,

max
0≤a,b≤2
|a−b|≤δ

|Ba −Bb|
a.s.−−→ 0,

by uniform continuity. Hence

P
[

1√
n

max
0≤k≤n

|BTk
−Bk| > ϵ

]
≤ P

 max
0≤a,b≤2
|a−b|≤δ∗

|Ba −Bb| > ϵ

+ fn(δ
∗)

≤ ϵ+ fn(δ
∗)

for small enough δ∗. Yet for large enough n, fn(δ
∗) ≤ ϵ, so that

P
[

1√
n

max
0≤k≤n

|BTk
−Bk| > ϵ

]
≤ 2ϵ,

for large enough n. Yet ϵ is arbitrary, so the LHS must converge to zero.

The key idea for this proof was to use rescaling to remove the dependence on n.
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Proof of (i).

1√
n

max
0≤k≤n−1

sup
k≤s≤k+1

(|Bs −Bk|+ |Bs −Bk+1|) ≤
1√
n

max
0≤k≤n−1

sup
k≤s≤k+1

|Bs −Bk|

+
1√
n

max
0≤k≤n−1

sup
k≤s≤k+1

|Bs −Bk+1|

Since we can flip BM at time k + 1, the two terms on the RHS have the same

distribution. So it suffices to prove that the first term goes to zero in probability.

Observe that

sup
k≤s≤k+1

|Bs −Bk| ≤
∣∣∣∣ sup
k≤s≤k+1

(Bs −Bk)

∣∣∣∣+ ∣∣∣∣ sup
k≤s≤k+1

(Bk −Bs)

∣∣∣∣,
so that

P
[

1√
n

max
0≤k≤n−1

sup
k≤s≤k+1

|Bs −Bk| > ϵ

]
≤ P

[
1√
n

max
0≤k≤n−1

∣∣∣∣ sup
k≤s≤k+1

(Bs −Bk)

∣∣∣∣ > ϵ/2

]
+ P

[
1√
n

max
0≤k≤n−1

∣∣∣∣ sup
k≤s≤k+1

(Bk −Bs)

∣∣∣∣ > ϵ/2

]
= 2P

[
1√
n

max
0≤k≤n−1

∣∣∣∣ sup
k≤s≤k+1

(Bs −Bk)

∣∣∣∣ > ϵ/2

]
≤ 4√

nϵ
E
[

max
0≤k≤n−1

∣∣∣∣ sup
k≤s≤k+1

(Bs −Bk)

∣∣∣∣] (28)

by Markov’s inequality. By the Markov property and (15),

sup
k≤s≤k+1

(Bs −Bk)
iid∼ |Z| where N (0, 1),

for k = 0, . . . , n− 1. We then claim that

E
[

max
0≤k≤n−1

|Zi|
]
≤ C

√
log n, (29)

for some constant C and Zi
iid∼ N (0, 1). The proof is similar to the bound on

E [max1≤i≤n Zi] proved in Homework 2. Thus,

P
[

1√
n

max
0≤k≤n−1

sup
k≤s≤k+1

|Bs −Bk| > ϵ

]
≤ 4√

nϵ
E
[

max
0≤k≤n−1

∣∣∣∣ sup
k≤s≤k+1

(Bs −Bk)

∣∣∣∣]
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≤ 4C
√
log n

ϵ
√
n

→ 0.

Proof of (29): Integrate the survival function:

E
[
max
1≤k≤n

|Zi|
]
=

∫ ∞

0

P
[
max
1≤k≤n

|Zi| > t

]
dt

=

∫ √
2 logn

0

P
[
max
1≤k≤n

|Zi| > t

]
dt+

∫ ∞

√
2 logn

P
[
max
1≤k≤n

|Zi| > t

]
dt

≤
√
2 log n+ n

∫ ∞

√
2 logn

P
[
|Z| > t

n

]
dt

≤
√

3 log n,

where the second last line follows by bounding the integrand of the first term by 1

and using a union bound on the second term; and the final line follows since Φ(x) ≤
1
2
exp (−x2/2).

This completes the proof of Donsker’s theorem. This proof is very specific to

scaled random walks. It is hard to do the embedding of {Sk : k ∈ N} into Brownian

motion Bt otherwise. We want a more robust, generally-applicable technique for

proving convergence in distribution in C([0, 1]).

14.2 A general strategy for proving weak convergence

We foreshadowed this a few lectures ago.

Lemma 14.1. Let (S, d) be a complete, separable metric space. Suppose {Xn : n ∈
N} is a sequence of S-valued random variables and X a S-valued random variable.

Suppose that

(i) Every subsequence {Xnk
: k ∈ N} has a weakly convergent subsequence {Xnkl

:

l ∈ N};

(ii) If any subsequence {Xnk
: k ∈ N} converges in distribution, then Xnk

d−→ X;
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Then Xn
d−→ X.

The fist condition can be considered as a formulation of compactness.

Proof. Suppose not. Then there exists a subsequence {Xnk
: k ∈ N}, a bounded and

continuous function h : S → R and ϵ > 0 such that

|E [h (Xnk
)]− E [h(X)]| > ϵ,

for all k. (This is exactly the negation of convergence in distribution.)

Conditions (i) and (ii) imply that there exists a further subsequence {Xnkl
: l ∈ N}

which converges weakly to X. Hence∣∣∣E [h(Xnkl

)]
− E [h(X)]

∣∣∣ < ϵ,

for large enough l.

This Lemma is a step towards proving weak convergence. Yet we still need strate-

gies for proving conditions (i) and (ii).

14.2.1 Proving condition (ii)

The following Lemma states that finite dimensional distributional convergence implies

condition (ii).

Lemma 14.2. Let S = C([0, 1]) in the setup of the previous Lemma. Suppose that

for all k ≥ 1, and all 0 ≤ t1 ≤ . . . ≤ tk ≤ 1,

(Xn(t1), . . . , Xn(tk))
d−→ (X(t1), . . . , X(tk)) . (30)

Then condition (ii) of Lemma 14.1 holds – that is: If any subsequence {Xnk
: k ∈ N}

converges in distribution, then Xnk

d−→ X.

(30) is called finite dimensional (distributional/weak) convergence.

This result is extremely useful, since it transfers conditions for convergence in a

infinite-dimensional, difficult-to-handle space CZO into a condition on convergence

in Rk. And we have many powerful tools for proving convergence in Rk.

This Lemma holds for other metric spaces, beyond C([0, 1]), yet it requires S to

be a continuous function space.
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Proof. Suppose {Xnk
: k ∈ N} converges weakly to Y . Then

(Xnk
(t1), . . . , Xnk

(tl))
d−−−→

k→∞
(Y (t1), . . . , Y (tl)) ,

by CMT. Yet this implies X ∼ Y by the interpolation argument we have used before.

(Crucially, this requires continuity of X and Y .)

14.2.2 Proving condition (i) - tightness

We want to prove that every subsequence has a further convergent subsequence.

Example 14.3. Consider

1. Xn ∼ N (0, σ2) where {σ2
n}∞n=1 is bounded.

2. Xn = xn with probability 1, where {xn}∞n=1 is a real-valued sequence diverging

to infinity.

Since {σ2
n}∞n=1 is bounded, there exists a subsequence {nk}∞k=1 such that σ2

nk
→ σ2

∗

(by the Heine-Borel theorem). Thus Xnk

d−→ N (0, σ2
∗).

Whereas for 2., we can never extract convergent subsequences as they are always

going off to infinity.

The insight is that in example 1., we can bound Xn in probability, uniformly in n

– that is,

P [Xn ∈ [−M,M ]] > 1− ϵ.

On the other hand, we cannot do this for example 2. This turns out to be the crucial

property for proving (i). We formalise this with the following defintion.

Definition 14.4. A sequence {Xn : n ∈ N} of S-valued random variables is tight if,

for all ϵ > 0, there exists a compact set Kϵ such that

P [Xn ∈ Kϵ] > 1− ϵ,

for all n ≥ 1.
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The definition of tightness intuitively captures the idea that “the measure gets

trapped in compact sets”. It is connected to condition (i) via a deep result:

Theorem 14.5 (Prokhorov). Let (S, d) be a separable metric space and suppose {Xn :

n ∈ N} is a sequence of S-valued random variables. Then {Xn : n ∈ N} satisfies

condition (i) of Lemma 14.1 – that is every subsequence has a further convergent

subsequence – if and only if {Xn : n ∈ N} is tight.

Prokhorov’s theorem gives a characterisation of compactness in terms of tightness.

This result will not be proved in lectures.

14.2.3 Summary

To recap, we can prove weak convergence in S = C([0, 1]) by showing tightness and

finite dimensional convergence. Finite dimensional convergence is usually straight-

forward to establish using existing tools from Stat210 (Portmanteau, characteristic

functions, etc.). For tightness in S = C([0, 1]), there exists explicit, easily checkable

conditions; we won’t cover these in lectures, instead see Section 8, Parts 4 and 5.

15 Lecture 23/3

15.1 General stochastic processes

Recall our proof of why sBM exists. We showed this by Levy’s construction, which

utilised very specific properties of BM. What if we are interested in constructing other

stochastic processes? We will see that Kolmogorov’s existence theorem will help us

here. First, we need to understand what is meant by the term ‘stochastic process’.

Definition 15.1. Let (Ω,F ,P) be a probability space. A collection {Xt : t ∈ Π} is

a stochastic process if, for all t ∈ Π,

Xt : (Ω,F) → (R,BR),

is measurable.
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Put simply, a stochastic process is any collection of random variables defined on

the same space.

Π is referred to as the index set, and it generally conveys the notion of time (or

space). Typically, Π = N (discrete time), Π = R≥0 (continuous time) or Π = [0, 1].

We required that each Xt is R-valued. This is not necessary – but all the Xt’s

must share a common codomain, called the state space.

We found that thinking of sBM as a C([0, 1])-valued random variable was very

useful. This can be carried across more generally.

If {Xt : t ∈ [0, 1]} is a stochastic process with index set [0, 1] and state space R,
then, for all ω ∈ Ω, the function

t 7→ Xt(ω)

(called the trajectory map) lives in R[0,1] = {f : [0, 1] → R}. So can we think of a

general stochastic process as a R[0,1]-valued random variable? Yes, although we first

need to build an appropriate σ-algebra on R[0,1] in order to do this.

Definition 15.2. For all t ∈ [0, 1], define the evaluation map

πt : R[0,1] → R

f 7→ f(t).

Define the Borel σ-algebra (or cyclindrical σ-algebra) on R[0,1] to be

B
(
R[0,1]

)
= σ ({πt : t ∈ [0, 1]}) ,

the smallest σ-algebra such that each evaluation map πt is measurable.

So B
(
R[0,1]

)
is the smallest σ-algebra so that, for each t ∈ [0, 1] andX : Ω → R[0,1],

ω 7→ πt(X(ω)),

is a R-valued random variable.

We can similarly define the cylindrical σ-algebra on any function space, {f : X →
Y }, provided that there is a Borel σ-algebra on Y .
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15.1.1 Constructing stochastic processes

Proposition 15.3. {Xt : t ∈ [0, 1]} is a stochastic process if and only if

(Xt)t∈[0,1] : (Ω,F) → (R[0,1],B(R[0,1])),

is measurable.

This proposition generalises from R[0,1] to any function space for which we can

define a cylindrical σ-algebra.

Why is this proposition useful? It shows an equivalence between two questions:

1) Does there exist a specific stochastic process (i.e. a process satisfying some given

properties)? 2) Can we construct an appropriate distribution on (R[0,1],B(R[0,1]))?

Previously, we would need to construct infinitely many – one for each Xt – distribu-

tions on R. Now we just need to construct a single distribution. This is equivalent,

but conceptually it is easier to create a single random variable rather than infinitely

many. So this proposition is a step forward in proving the existence of stochastic

processes.

Example 15.4 (Poisson process). A stochastic process {Nt : t ∈ R≥0} satisfying

() Nt ∈ N for all t;

(i) N0 = 0;

(ii) Nt ∼ Pois(λt);

(iii) Nt+s −Ns ∼ Nt;

(iv) Nt −Ns y Nr −Nq, for q ≤ r < s ≤ t; and

(v) t 7→ Nt is right continuous and non-decreasing.

How can we show that there is a stochastic process which satisfies conditions (i)-

(iv)? Proposition 15.3 says that to answer this question in the affirmative, we need

only construct some distribution on (N [0,∞),B(N[0∞))).
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Conditions (i)-(iv) state the finite dimensional properties of the process. Is there

some way of telling whether a process with certain finite dimensional properties exists

or not?

Example 15.5. As a second example, can we construct a stochastic process {Xt : t ∈
[0, 1]} with the following properties?

1. for all 0 ≤ t1 ≤ . . . ≤ tk ≤ 1,

(Xt1 , . . . , Xtk) ∼ MVN;

2. Xt ∼ N (0, 1) for all t,

3. for all s < t, [
Xs

Xt

]
∼ N

(
0,

[
2 ρ

ρ 2

])
As in Example 15.4, conditions 1.-3. specify the finite dimensional properties of the

process. Yet it is impossible to construct a stochastic process satisfying conditions 1.-

3., since 3. implies Var(Xt) = 2 while 2. implies Var(Xt) = 1 – the finite dimensional

(aka marginal) properties are not consistent.

So consistency of the marginals is a necessary condition for existence of a stochastic

process. Kolmogorov’s existence theorem states that it is also a sufficient condition.

Definition 15.6. A set of marginals

{Qt1,...,tk : k ≥ 1, 0 ≤ t1 ≤ . . . ≤ tk ≤ 1},

where Qt1,...,tk is a probability distribution on Rk, is consistent if

Qt1,...,tk−1
(A) = Qt1,...,tk(A× R),

for all k ≥ 1, 0 ≤ t1 ≤ . . . ≤ tk ≤ 1 and A ∈ BRk−1 .

Theorem 15.7 (Kolmogorov’s existence (or extension) theorem). If {Qt1,...,tk : 0 ≤
t1 ≤ . . . ≤ tk ≤ 1} is consistent then there exists a probability measure P on

(R[0,1],B(R[0,1])) such that

P
(
{f ∈ R[0,1] : (f(t1), . . . , f(tk)) ∈ A}

)
= Qt1,...,tk(A),

for all k ≥ 1, all 0 ≤ t1 ≤ . . . ≤ tk ≤ 1 and A ∈ BRk .
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Kolmogorov’s existence theorem shows that there always exists a stochastic pro-

cess which satisfies any given consistent, finite dimensional distributional specifica-

tion. The proof of this Theorem is deep and not covered here.

Note that the Theorem does not provide a uniqueness result – in general the result-

ing stochastic process is not unique without enforcing further constraints (typically

continuity).

Example 15.8. Does there exist {Xt : 0 ≤ t ≤ 1} such that, for all k ≥ 1 and

0 ≤ t1 ≤ . . . ≤ tk ≤ 1,

(Xt1 , . . . , Xtk) ∼ N (0,Σt1,...,tk) , (31)

where Σt1,...,tk ∈ Rk×k with Σti,tj = ti ∧ tj? Yes, because sBM satisfies (31). But also

because we can check that Σt1,...,tk is positive semi-definite; (31) is consistent and then

apply Kolmogorov’s existence theorem.

Is the process in the above example Brownian motion? Not necessarily, since you

can have many processes satisfying (31).

Example 15.9. Let
{
Bt : t ∈ R≥0

}
∼ sBM and U ∼ Unif([0, 1]) independent of{

Bt : t ∈ R≥0
}
. Define

Yt =

Bt if t ̸= U,

0 otherwise.

Then marginally Yt has the same finite dimensional distributions as sBM!

Kolmogorov’s existence theorem is a very powerful black box. But it says noth-

ing about uniquness- there can be many processes satisfying any given consistent

marginals, since R[0,1] is so big. Continuity is critical for the uniqueness of sBM.

Given this, one might view Kolmogorov’s existence theorem in a negative light.

But there is an easy fix.

15.1.2 Modifications and continuous stochastic processes

Definition 15.10. A stochastic process {Yt : t ∈ [0, 1]} is called a modification of

{Xt : t ∈ [0, 1]} if, for all t ∈ [0, 1],

P [Xt ̸= Yt] = 0.
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Note that the for all quantifier is outside the probability. So we are not requiring

that {Xt} and {Yt} are equal everywhere almost surely, but that they are equal at

any given point t almost surely.

It is straightforward to see that a modification of {Xt} has the same finite dimen-

sional distribution as {Xt}.

Theorem 15.11 (Kolmogorov-Chentsov). Suppose {Xt : t ∈ [0, 1]} is a stochastic

process. Assume that there exists α, β > 0 and 0 ≤ c < ∞ such that

E|Xt −Xs|α ≤ c|t− s|1+β, (32)

for all s, t ∈ [0, 1]. Then there exists a continuous modification of Xt.

The proof of this Theorem is not covered in class. By continuous modification,

we mean a modification of Xt with a.e. continuous trajectories:

P ({ω : t 7→ Yt(ω) is continuous }) = 1.

(32) can be thought of as a stochastic continuity (or more specifically, Hölder conti-

nuity) condition.

Since the condition (32) can be checked easily, this Theorem – combined with Kol-

mogorov’s existence theorem – gives a general and powerful strategy for constructing

continuous stochastic processes: first prove consistency of the finite dimensional distri-

butions; then appeal to Kolmogorov’s existence theorem; show (32) holds; and finally

apply Kolmogorov-Chentsov’s theorem. This strategy gives an alternate construction

of sBM (which we will see next lecture).

16 Lecture 25/3

16.1 An alternate proof of the existence of BM

This proof utilises the Kolmogorov existence and Kolmogorov-Chenstov theorems

from the previous lecture.
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Claim 16.1. There exists a stochastic process {Bt : t ∈ [0, 1]} with continuous tra-

jectories such that, for all k ≥ 1 and 0 ≤ t1 ≤ . . . ≤ tk ≤ 1,

(Xt1 , . . . , Xtk) ∼ N (0,Σ), (33)

where Σij = ti ∧ tj.

Proof. Part (i): Fix k ≥ 1 and 0 ≤ t1 ≤ . . . ≤ tk ≤ 1. We need to check that Σ is

positive semi-definite. Let

Qt1,...,tk ∼ N (0,Σ),

as given in (33). Then the collection

{Qt1,...,tk : k ≥ 1, 0 ≤ t1 ≤ . . . ≤ tk ≤ 1},

is consistent, by properties of MVN. The Kolmogorov existence theorem implies that

there exists a stochastic process {Yt : t ∈ [0, 1]} with finite dimensional distributions

{Qt1,...,tk}.
Part (ii): Since Yt − Ys ∼ N (0, t− s), for t ≥ s,

E|Yt − Ys|4 = 3(t− s)2.

Hence {Yt : t ∈ [0, 1]} satisfies the Kolmogorov-Chentsov condition. So there exists

a continuous modification {Xt : t ∈ [0, 1]} of {Yt : t ∈ [0, 1]}. Since {Xt : t ∈ [0, 1]}
is continuous and satisfies the finite dimensional distribution properties (33), it is

sBM.

This proof exhibits a widely-applicable template for constructing stochastic pro-

cesses with continuous trajectories.

16.2 Stochastic integrals

16.2.1 Introduction to the Ito integral

As motivation, let {Yt} be the (one-dimensional) position of a particle moving in

a liquid medium. Let v : R → R be the position-dependent velocity – i.e. v(x)
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is the velocity of the particle when it is at the point x. Let σ : R → R be the

position-dependent noise-strength. We have the discrete-time model:

Yt+ϵ = Yt + ϵv(t) +
√
ϵσ(Yt)ξt,

for some small ϵ where ξt ∼ N (0, 1). The second term in the RHS is the movement

due to the known velocity and the third term is the stochastic movement. If Y0 = 0,

then

Y1 = ϵ

1/ϵ∑
i=1

v(Yiϵ) +
√
ϵ

1/ϵ∑
i=1

σ(Yiϵ)ξiϵ.

What happens as ϵ approaches zero? We know that

ϵ

1/ϵ∑
i=1

v(Yiϵ)
ϵ→0−−→

∫ 1

0

v(Ys)ds,

assuming absolute continuity of v. But how can we understand the ‘integral’ of the

second, stochastic term? It includes a random component ξiϵ. We would like to say

something along the lines of

√
ϵ

1/ϵ∑
i=1

σ(Yiϵ)ξiϵ
ϵ→0−−→

∫ 1

0

σ(Ys)dBs,

where the RHS is a ‘stochastic integral’, which is meant to capture the cumula-

tive effect to the particle’s location due to random movement. This notation should

be reminiscent of Riemann-Stieltjes integration – in fact, the stochastic integral is

a generalisation of the R.S. integral which allows for integrating some functions of

unbounded variation (for example, Brownian motion – we showed that it is of un-

bounded variation in section 4) by making use of weaker forms of limits (use the L2

limit rather than the pointwise limit).

Consider the specal case σ(x) = 1. Then√
ϵ

t/ϵ∑
i

ziϵ : t ∈ [0, 1]

 d−−→
ϵ→0

{Bt : t ∈ [0, 1]}.

Hence, any reasonable definition of stochastic integration should have∫ t

0

dBs = Bt.
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16.2.2 Formal construction

Let (Ω,F ,P) be a probability space. (Unlike in previous concepts, the underlying

probability space is crucial for defining the stochastic integral.) Let {Bt : t ≥ 0} ∼
sBM on (Ω,F ,P). Henceforth, we will work with a filtration {Ft : t ∈ R≥0} such that

(i) {Bt : t ∈ R≥0} is adapted to {Ft : t ∈ R≥0};

(ii) {(Bt,Ft) : t ∈ R≥0} satisfies the strong Markov property;

(iii) for all t > 0, Ft is complete – that is, if N ∈ F with P(N) = 0 then N ∈ Ft.

Completeness says that the σ-algebra contains all of the null sets of (F ,P).
We know that the canonical right continuous filtration satisfies properties (i) and

(ii).

Two natural questions immediately arise: 1. Does a filtration satisfying (i)-(iii)

even exist? 2. Why do we need property (iii)?

We will delay the answer to question 2.: later we will want that∫ t

0

fsdBs,

is measurable with respect to Ft. Completeness will be useful to prove this. For now

it suffices to say that it is just a technical condition.

In answering question 1., it turns out that assuming completeness is not such a

big deal: Let F+
t be the canonical right continuous filtration with respect to {Bt : t ∈

R≥0}. Define the collection of null sets,

N = {N ∈ F : P(N) = 0}.

Then

Ft = σ
(
F+

t ∪N
)
,

satisfies properties (i)-(iii). Henceforth assume that this is the filtration we are work-

ing with, when we discuss stochastic integration.
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To define
∫∞
0

fsdBs, what is the “right” class of possible integrands {f : s ∈ R≥0}?
We want a generally applicable integration theory, but we can’t allow the collection of

integrable functions to be too big, otherwise the integral will lose its nice properties.

It turns out that the “right” class is the progressively measurable processes (with

finite L2 norm§):

Definition 16.2. A stochastic process

{X(t, ω) : t ∈ R≥0, ω ∈ Ω},

is progressively measurable if, for all t > 0,

[0, t]× Ω → R

(s, ω) 7→ X(s, ω),

is measurable with respect to B[0,1] ⊗Ft
¶.

What are some examples of progressively measurable processes?

Lemma 16.3. Any process {Xt : t ∈ R≥0} which is adapted to Ft and is either left

or right continuous, is progressively measurable.

Proof sketch. Assume {Xt : t ∈ R≥0} is right continuous WLOG. Fix T > 0 and

divide [0, T ] into intervals of length T/2n. Define

Xn(s, ω) = X

(
(k + 1)T

2n
, ω

)
,

if kT
2n

< s ≤ (k+1)T
2n

. (We choose the right end-point of the interval for right continuity.)

Check that for each n ≥ 1,

Xn : [0, T ]× Ω → R,
§We will define precisely what we mean by this later.
¶B[0,1] is the Borel σ-algebra on [0, 1] and ⊗ denotes the product σ-algebra.
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is measurable with respect to B[0,1] ⊗ Ft. The intuition for this is that Xn is just

piecewise constatn in time, so it must be measurable. By right continuity, Xn
a.s.−−→ X

as n → ∞. This implies that

[0, T ]× Ω → R

(s, ω) 7→ X(s, ω),

is also measurable with respect to B[0,1] ⊗Ft.

16.2.3 Defining the stochastic integral

The construction of the stochastic integral is very similar to the InSiPoD definition

of the Lebesgue intregral.

Step 1: Restrict to “simple functions”:

H(t, ω) =
k∑

i=1

Ai(ω)1(ti,ti+1](t), (34)

where 0 ≤ t1 ≤ . . . ≤ tk+1 and Ai is Fti-measurable.

Step 2: Define the stochastic integral for “simple functions” (34) by∫ ∞

0

HsdBs :=
k∑

i=1

Ai

(
Bti+1

−Bti

)
.

add-on We could replace Bs with another stochastic process and then continue

the procedure below. In this way we can define the stochastic integral for general

processes, not just Brownian motion. However, this general integral would not satisfy

the nice properties as the Brownian motion integral, such as Ito isometry (Theorem

17.5).

Step 3: Take limits: We will prove that, given any progressively measurable H

with finite L2 norm, there exists a sequence {Hn}∞n=1 satisfying (34) such that

E
∫ ∞

0

(Hn(s)−H(s))2 ds → 0,
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and then define the stochastic integral∫ ∞

0

H(s)dBs = lim
n→∞

∫ ∞

0

Hn(s)dBs.

The limit is in the L2 sense, but we need to make this precise. We also need to

precisely define what we mean by H having finite L2 norm. Finally, we must make

sure that this is well-defined (i.e. independent of the choice of the approximating

sequence {Hn}∞n=1).

17 Lecture 30/3

The reference for today and last lecture’s material is [MP, Chp. 7].

17.1 Defining the stochastic integral (cont.)

Recall that we need to establish a number of lemmas in order to lay the groundwork

for a proper definition of the stochastic integral: 1) That progressively measurable

processes are approximable by step processes; 2) that the approximating step pro-

cesses have L2-convergent stochastic integrals; and 3) that the L2-limit is independent

of the approximating step processes. The following result shows that we can approx-

imate progressively measurable processes by step processes.

Lemma 17.1. Let {H(s, ω) : s ∈ R≥0, ω ∈ Ω} be a progressively measurable stochastic

process. Assume that

E
∫ ∞

0

H2(s)ds < ∞. (35)

Then there exists a sequence {Hn : n ∈ N} of progressively measurable step processes

with

E
∫ ∞

0

[Hn(s)−H(s)]2 ds
n→∞−−−→ 0.

Given a stochastic process X(t, ω) on [0,∞), we define its L2-norm as

E
∫ ∞

0

X2(t)dt =

∫
Ω

∫ ∞

0

X2(t, ω)dtdµ(ω).
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So (35) is assuming that H has finite L2-norm, while the conclusion of Lemma 17.1

is that Hn approximates H in the L2 sense.

Proof sketch. Step 1: “Truncation step”: Truncate H to time n. That is, define

H̃n(s) =

H(s) if s ≤ n,

0 otherwise.
.

(Note that the trajectories need not be continuous, despite the fact that they are

drawn as continuous.)

Step 2: “Localisation step”: Localise the process on the y-axis. That is, define

H∗
n(s) =


H̃n(s) if − n ≤ s ≤ n,

−n if H̃n(s) < −n,

n if H̃n(s) > n.

Importantly, due to L2 boundedness, we can approximate H by H∗
n in the L2

sense.
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Step 3: Now approximate H∗
n by continuous, progressively measurable functions:

Ĥn(s, ω) = n

∫ s

s− 1
n

H∗
n(t, ω)dt.

Ĥn averages the process H∗
n over smaller and smaller intervals.

Facts (proof left as an exercise): Ĥn is bounded and continuous. It is also pro-

gressively measurable for all n (to prove this, use the fact that the integral is over

[s− 1/n, n]).

By the Lebesgue differentiation theorem, Ĥn(s)
a.s.−−→ H(s) for all s. Further

E
∫ ∞

0

[
H(s, ω)− Ĥn(s, ω)

]2
ds → 0,

as n → ∞ by the DCT and assumption (35).

Step 4: Approximate Ĥn by progressively measurable step processes Hn.

Lemma 17.2. Let H be a progressively measurable step process with

E
∫ ∞

0

H2(s)ds < ∞.

Then

E

[(∫ ∞

0

H(s)dBs

)2
]
= E

∫ ∞

0

H2(s)ds. (36)

(36) is called the Ito isometry. Later we will prove it holds for any progressively

measurable process with finite L2 norm (Theorem 17.5). It says that the L2 norm of

the stochastic integral (which is itself a random variable) is equal to the L2 norm of

the stochastic process.

Proof. Given the definition of the stochastic integral for step processes, we can just

verify this property directly. Let

H(t, ω) =
k∑

i=1

Ai(ω)1{t ∈ (ai, ai+1]} ,
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where the Ai are Fai-measurable. We defined the stochastic integral∫ ∞

0

H(s)dBs =
k∑

i=1

Ai

(
Bai+1

−Bai

)2
.

Hence

E

[(∫ ∞

0

H(s)dBs

)2
]
= E

[
k∑

i=1

A2
i (Bai+1 −Bai)

2

]
+
∑
i ̸=j

E
[
AiAj

(
Bai+1

−Bai

) (
Baj+1−aj

)]
. (37)

For the first term, use the tower law,

E
[
A2

i (Bai+1 −Bai)
2] = E

[
A2

iE
[
(Bai+1 −Bai)

2
∣∣Fai

]]
= E

[
A2

i

]
(ai+1 − ai),

where the first line follows since Ai is Fai-measurable and the second line since Bai+1
−

Bai y Fai . For the second term of (37), assume WLOG that i < j,

E
[
AiAj

(
Bai+1

−Bai

) (
Baj+1−aj

)]
= E

[
AiAj

(
Bai+1

−Bai

)
E
[
Baj+1

−Baj

∣∣Faj

]]
= 0,

where the first line follows since AiAj

(
Bai+1

−Bai

)
is Faj -measurable and the second

line since E
[
Baj+1

−Baj

]
= 0. Therefore,

E

[(∫ ∞

0

H(s)dBs

)2
]
= E

[
k∑

i=1

A2
i (ai+1 − ai)

]
= E

∫ ∞

0

H2(s)ds.

Lemma (17.2) is important since it allows us to establish that the Ito integral is

well defined (i.e. independent of the choice of the approximating step processes), via

the following corollary.

Corollary 17.3. If {Hn : n ∈ N} is a sequence of progressively measurable step

functions such that

E
∫ ∞

0

[Hn(s)−Hm(s)]
2 ds → 0,
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as m,n → ∞, then

E

[(∫ ∞

0

Hn(s)dBs −
∫ ∞

0

Hm(s)dBs

)2
]
→ 0,

as m,n → ∞.

Proof. Hn −Hm is also a progressively measurable step function for all m,n. Apply

(17.2).

17.1.1 The Ito integral construction

We are now ready to formally define the Ito integral.

Given any progressively measurable process H satisfying

E
∫ ∞

0

H2(s)ds < ∞, (38)

let {Hn : n ∈ N} be a sequence of progressively measurable step processes with

E
∫ ∞

0

(Hn(s)−H(s))2 ds → 0. (39)

(The existence of such a sequence follows from Lemma 17.1.) Define the Ito integral

of H as ∫ ∞

0

H(s)dBs = lim
n→∞

∫ ∞

0

Hn(s)dBs,

where the limit is in the L2 sense. More specifically, we will show that the sequence

of random variables
∫∞
0

Hn(s)dBs converges in L2 and we define
∫∞
0

H(s)dBs to be

the limit of this sequence.

There are two questions to answer to make this definition proper:

(i) Why does
∫∞
0

Hn(s)dBs converge in L2?

(ii) Why is the limit independent of the approximating sequence?

Very succinctly, the answers to these two questions follow from Corollary (17.3) and

the fact that L2 spaces are complete.
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Proposition 17.4. Let (Ω,F ,P) be a probability space. Define

L2(Ω,F ,P) = {[X] : EX2 < ∞},

where [X] is the equivalence class of the random variable X : (Ω,F) → (R,BR) defined

by the relation X ∼ Y if E (X − Y )2 = 0. Then L2(Ω,F ,P) is a complete metric

space.

The proof is omitted.

The following Theorem is nothing new; it just collects together results from earlier.

Theorem 17.5.

1. A sequence of random variables{∫ ∞

0

Hn(s)dBs : n ∈ N
}
,

satisfying (39) converges in L2.

2.
∫∞
0

H(s)dBs is well defined (i.e. independent of the approximating sequence)

when H is progressively measurable and has finite L2 norm (38).

3.

E

[(∫ ∞

0

H(s)dBs

)2
]
= E

∫ ∞

0

H2(s)ds. (40)

(40) is called the Ito isometry and it shows that the L2 norm is preserved by the

stochastic integral.

Proof. 1. We know that

E
∫ ∞

0

(H(s)−Hn(s))
2 ds → 0, (41)

by construction. By the triangle inequality,

E
∫ ∞

0

(Hm(s)−Hn(s))
2 ds → 0,
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as m,n → ∞. Corollary 17.3 then implies

E

[(∫ ∞

0

Hm(s)dBs −
∫ ∞

0

Hn(s)dBs

)2
]
→ 0,

as m,n → ∞. So the sequence of approximating integrals in Cauchy in L2. By

Proposition 17.4, the sequence must converge.

2. Let {Hn : n ∈ N} and {H ′
n : n ∈ N} be two approximating sequences. Then

E
∫ ∞

0

[Hn(s)−H ′
n(s)]

2 → 0,

by the triangle inequality, using property (41) of Hn and H ′
n. Again Corollary 17.3

implies that the L2 distance between the two sequences of stochastic integrals goes

to zero:

E

[(∫ ∞

0

Hn(s)dBs −
∫ ∞

0

H ′
n(s)dBs

)2
]
→ 0,

and so the L2 limits of the sequences must agree. (This finally establishes the results

required for properly defining the Ito integral.)

3. We have the Ito isometry property for step processes (Lemma 17.2). This

property is preserved when taking L2 limits: By (41),

E
[∫ ∞

0

H2
n(s)ds

]
→ E

∫ ∞

0

H2(s)ds,

while

E

[(∫ ∞

0

Hn(s)dBs

)2
]
→ E

[(∫ ∞

0

H(s)dBs

)2
]
,

by L2 convergence of the Ito integral. Yet Lemma (17.2) says that

E
[∫ ∞

0

H2
n(s)ds

]
= E

[(∫ ∞

0

Hn(s)dBs

)2
]
,

so their limits must be equal too.
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17.1.2 Future directions

We want to define the definite integral
∫ t

0
H(s)dBs – recall from section 16.2.1 that

the initial motivating example for the stochastic integral was in terms of a definite

integral. We would like to study the definite integral as a function of t, or equivalently

as a stochastic process in t.

We also want to be able to evaluate stochastic integrals. We have proven the

existence of the integrals, but this isn’t much use on its own. We want a calculus for

explicit evaluation of stochastic integrals. Ito’s lemma provides this.

18 Lecture 1/4

18.1 The definite Ito integral

Definition 18.1. Fix t ∈ R≥0. Given a progressively measurable process H(s, ω)

with finite L2 norm on [0, t],

E
∫ t

0

H2(s, ω)ds < ∞,

define

H(t)(s, ω) = H(s, ω)1s≤t.

The definite integral of H(s, ω) from 0 to t, is defined as∫ t

0

H(s, ω)dBs =

∫ ∞

0

H(t)(s, ω)dBs.

(To make this definition proper, we need to check that H(t)) is progressively mea-

surable.)

Now, {∫ t

0

H(s)dBs : t ∈ R≥0

}
, (42)

is a stochastic process. We want this process to have continuous trajectories (for many

applications – e.g. the location of a particle in a liquid medium – we would expect

continuity) – yet nothing we have done so far would require (42) to have continuous

trajectories. Instead we need to construct a continuous modification of (42).
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Theorem 18.2. If {H(s, ω) : s ∈ R≥0, ω ∈ Ω} is progressively measurable and

E
∫ t

0

H2(s, ω)ds < ∞,

for all t ≥ 0, then there exists an almost-sure-continuous modification of{∫ t

0

H(s)dBs : t ∈ R≥0

}
.

Moreover, this process is a martingale and

E
∫ t

0

H(s)dBs = 0, (43)

for all t ≥ 0.

To be clear, the first conclusion of this Theorem is that there exists {Mt : t ∈ R≥0}
such that

P
[
Mt ̸=

∫ t

0

H(s)dBs

]
= 0,

for all t ≥ 0 and t 7→ Mt(ω) is continuous almost surely.

Proof. As usual, we use the one proof technique that we know: prove the result for

step functions and then approximate. Suppose that

H(s) =
k∑

i=1

Ai1{s ∈ (ai, ai+1]} ,

where Ai is Fai-measurable. Then∫ t

0

H(s)dBs =

∫ ∞

0

H(s)1s≤tdBs

=

∫ ∞

0

k∑
i=1

Ai1{s ∈ (ai ∧ t, ai+1 ∧ t]} dBs

=
k∑

i=1

Ai

(
Bai+1∧t −Bai∧t

)
.

(i) t 7→
∑k

i=1Ai

(
Bai+1∧t −Bai∧t

)
is continuous a.s. (since sBM has continuous

trajectories).
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(ii)
∫ t

0
H(s)dBs =

∑k
i=1Ai

(
Bai+1∧t −Bai∧t

)
is Ft-measurable.

(iii)

E
[
Ai

(
Bai+1∧t2 −Bai∧t2

)∣∣Ft1

]
= Ai

(
Bai+1∧t1 −Bai∧t1

)
.

(ii) and (iii) prove that {
∫ t

0
H(s)dBs} is a martingale. Substituting t = 0 into (ii)

gives (43). Thus the Theorem holds for progressively measurable step processes.

Our goal now is to extend this result to general progressively measurable processes

with E
∫∞
0

H2(s)ds < ∞.

Fix T > 0. We will only prove the Theorem for the process{∫ t

0

H(s)dBs : 0 ≤ t ≤ T

}
. (44)

We know that there exists a sequence {Hn : n ∈ N} of progressively measurable step

processes such that

E
∫ T

0

(Hn(s)−H(s))2 → 0.

Define

Mn(t) =

∫ t

0

Hn(s)dBs,

for 0 ≤ t ≤ T . For each n, Mn(t) is continuous, adapted and a martingale.

The proof idea is first to show that Mn(t) converges in C([0, T ]) to some limit

L(t) then the continuous modification of (44) is this limit L(t).

We know that (i) for all 0 ≤ t ≤ T ,

Mn(t)
L2

−−−→
n→∞

∫ t

0

H(s)dBs,

and (ii) for all n ∈ N, t 7→ Mn(t) is continuous – or equivalently, Mn is a C([0, T ])-

valued random variable.

To show that Mn(t) converges in C([0, T ]), it suffices to show that it is Cauchy.

We prove this via Doob’s maximal and Lp inequalities (Corollary 3.5, relying on the

fact that Mn(t)−Mn′(t) is a martingale in t):

E

[(
sup

0≤t≤T
|Mn(t)−Mn′(t)|

)2
]
≤ 4E

[
(Mn(T )−Mn′(T ))2

]
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= 4E
∫ T

0

(Hn(s)−Hn′(s))2 ds

→ 0, (45)

as n, n′ → ∞; where the second line uses the Ito isometry. Then by Markov’s in-

equality,

P
[
sup

0≤t≤T
|Mn(t)−Mn′(t)| > α−k

]
≤ 4α2kE

∫ T

0

(Hn(s)−Hn′(s))2 ds

≤
(
α2

4

)k

,

where the second line follows for n, n′ > nk where the sequence {nk : k ≥ 1} is defined

such that

4E
∫ T

0

(Hn(s)−Hn′(s))2 ds ≤ 2−2k−1,

for all n, n′ > nk. (Such a subsequence exists by (45).)

Fix m. Choose α ∈ (1, 2) and use Borel-Cantelli to get

P
[
lim sup
k→∞

{
sup

0≤t≤T

∣∣Mnk+1
(t)−Mnk+m

(t)
∣∣ > α−k

}]
= 0.

This proves that {Mnk
(t) : 0 ≤ t ≤ T} is Cauchy in C([0, T ]) almost surely. The

fact that we have a Cauchy subsequence (rather than proving {Mn} is Cauchy) is

okay: Define M(t) = limk→∞ Mnk
(t) ∈ C([0, T ]). M(t) is our candidate continuous

modification.

Observe that for all t ∈ [0, T ],

M(t) = lim
k→∞

∫ t

0

Hnk
(s)dBs,

almost surely. However, we also know∫ t

0

Hnk
(s)dBs

L2

−→
∫ t

0

H(s)dBs.

The only way that both these convergences can happen is if the limits are equal

almost surely:

P
[
M(t) =

∫ t

0

H(s)dBs

]
= 1,
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for all t ∈ [0, T ]. This proves that M(t) is a modification.

All that remains to prove is that M(t) is a martingale:

E [M(t2)|Ft1 ] = E
[
lim
k→∞

∫ t2

0

Hnk
(s)dBs

∣∣∣∣Ft1

]
= lim

k→∞
E
[∫ t2

0

Hnk
(s)dBs

∣∣∣∣Ft1

]
= lim

k→∞

∫ t1

0

Hnk
(s)dBs

=

∫ t1

0

H(s)dBs

= M(t1),

where the first line follows by a.s. convergence; the second since
∫ t

0
Hnk

(s)dBs con-

verges in L2, so it also converges in L1 (and in conditional expectation); the third

since
∫ t

0
Hnk

(s)dBs is a martingale; and the second last by L2 convergence.

18.2 The Ito lemma

The Ito lemma gives us a tool for evaluating a stochastic integral.

Theorem 18.3 (Ito lemma 1). Suppose f : R → R ∈ C2� and

E
∫ t

0

[f ′(Bs)]
2
ds < ∞, (46)

for some t > 0. Then a.s. for all 0 ≤ s ≤ t,

f(Bs) = f(B0) +

∫ s

0

f ′(Bu)dBu +
1

2

∫ s

0

f ′′(Bu)du. (47)

Compare (47) with the Riemann integral version (aka the fundamental theorem of

calculus): f(s) = f(0)+
∫ s

0
f ′(u)du. The third term on the RHS of (47) is sometimes

called Ito’s correction term for this reason.

�C2 denotes the set of twice continuously-differentiable functions.
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What is meant by the equality in (47)? For each fixed s, the LHS and the RHS

are both random variables. (47) means that these random variables are equal with

probability 1 – i.e., for all s ∈ [0, t],

P
(
f(Bs) = f(B0) +

∫ s

0

f ′(Bu)dBu +
1

2

∫ s

0

f ′′(Bu)du

)
= 1. (48)

But (47) is expressing a stronger notion than this – it is stating that, for a compact

interval [0, t] ⊂ R≥0 with t satisfying (46),

P
(
∀s ∈ [0, t], f(Bs) = f(B0) +

∫ s

0

f ′(Bu)dBu +
1

2

∫ s

0

f ′′(Bu)du

)
= 1. (49)

We call this ‘equal as stochastic processes’. However, since the LHS and RHS are

both continuous processes, equality on the rationals – that is, (48) for all s ∈ [0, t] ∩
Q – implies (49). (Why? Use the facts that the rationals are dense – so we can

approximate s ∈ [0, t] by rationals – and countable – so we can move the ∀ quantifier

within the probability.)

Proof. By the above discussion, we need only prove (48) holds for all s ∈ [0, t].

We will show the result for f ∈ C∞ with bounded derivatives of all orders. Let

0 = t1 ≤ . . . ≤ tk = s. By Taylor expansion of f around f(Bti),

f(Bs)− f(B0) =
k−1∑
i=0

f(Bti+1
)− f(Bti)

=
k−1∑
i=0

[
f ′(Bti)

(
Bti+1

−Bti

)
+

1

2
f ′′(Bti)

(
Bti+1

−Bti

)2
+

1

6
f ′′′(θi)

(
Bti+1

−Bti

)3 ]
,

where θi is between Bti and Bti+1
. Then we know∣∣∣∣∣f(Bs)− f(B0)−

k−1∑
i=0

f ′(Bti)
(
Bti+1

−Bti

)
− 1

2

k−1∑
i=0

f ′′(Bti)
(
Bti+1

−Bti

)2∣∣∣∣∣
≤ 1

6

k−1∑
i=0

|f ′′′(θi)|
∣∣Bti+1

−Bti

∣∣3.
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Observe that

T1 :=
k−1∑
i=0

f ′(Bti)
(
Bti+1

−Bti

)
=

∫ t

0

k−1∑
i=0

f ′(Bti)1{u ∈ (ti, ti+1]} dBu.

Check that

E
∫ t

0

(
k−1∑
i=0

f ′(Bti)1{u ∈ (ti, ti+1]} − f ′(Bu)

)2

du → 0.

as k → ∞, since f is bounded and smooth. By Ito isometry, this implies

T1
L2

−−−→
k→∞

∫ t

0

f ′(Bs)dBs.

This gives L2 convergence but we want a.s. convergence. To get a.s. convergence, we

use the following fact: convergence in probability implies that there exists a subse-

quence that converges a.s.

So we have a.s. convergence along a subsequence of the partitions of [0, s]. From

herein, we will work with this subsequence. (Later in the proof, we will take further

subsequences; each time we do this, we will discard the original sequence, and just

work with the subsequence.)

We claim that

T2 =
k−1∑
i=0

f ′′(Bti)
(
Bti+1

−Bti

)2 L2

−−−→
k→∞

∫ t

0

f ′′(Bs)ds, (50)

and hence converges a.s. along a subsequence. Further, we claim

T3 =
k−1∑
i=0

|f ′′′(θi)|
∣∣Bti+1

−Bti

∣∣3 a.s.−−→ 0, (51)

along a subsequence. We will show (50) and (51) in the next lecture and this will

(basically) complete the proof of the Ito lemma.

19 Lecture 6/4

19.1 Proof of the Ito lemma (cont.)

Recall that to complete the proof of the Ito lemma, we need to show (50) and (51).
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Claim 19.1.

T2 −
k−1∑
i=0

f ′′(Bti)(ti+1 − ti)
L2

−→ 0.

This claim establishes (50), since

k−1∑
i=0

f ′′(Bti)(ti+1 − ti)
a.s.−−→

∫ t

0

f ′′(Bs)ds,

by definition of Riemann integration.

Proof.

E

(k−1∑
i=0

f ′′(Bti)(Bti+1
−Bti)

2 −
k−1∑
i=0

f ′′(Bti)(ti+1 − ti)

)2


= E

(k−1∑
i=0

f ′′(Bti)
[
(Bti+1

−Bti)
2 − (ti+1 − ti)

])2
 (52)

= E

[
k−1∑
i=0

(f ′′(Bti))
2 [
(Bti+1

−Bti)
2 − (ti+1 − ti)

]2]

≤ 2∥f ′′∥2∞E

[
k−1∑
i=0

(Bti+1
−Bti)

4 + (ti+1 − ti)
2

]

= 2∥f ′′∥2∞
k−1∑
i=0

3(ti+1 − ti)
2 + (ti+1 − ti)

2

= C
k−1∑
i=0

(ti+1 − ti)
2

≤ C max
0≤i≤k−1

(ti+1 − ti)
k−1∑
i=0

(ti+1 − ti)

≤ C max
0≤i≤k−1

(ti+1 − ti)t

k→∞−−−→ 0,

where the third line follows by verifying that the cross terms (when expanding the

square) vanish by the weak Markov property; ∥·∥∞ in the fourth line is the sup-norm
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and the factor 2 arises by the inequality (a − b)2 ≤ 2(a2 + b2); and C = 8∥f ′′∥2∞ in

the sixth line.

Proof of (51).

T3 ≤ ∥f ′′′∥∞
k−1∑
i=0

∣∣Bti+1
−Bti

∣∣3
≤ ∥f ′′′∥∞ max

0≤i≤k−1

∣∣Bti+1
−Bti

∣∣ k−1∑
i=0

(
Bti+1

−Bti

)2
Two observations will complete the proof:

1. max0≤i≤k−1

∣∣Bti+1
−Bti

∣∣ a.s.−−→ 0, by uniform continuity (on [0, s]) of Brownian

motion; and

2.
∑k−1

i=0

(
Bti+1

−Bti

)2 L2

−→ t. (This can be checked by similar arguments to the

proof of Claim 19.1: write E
[(∑k−1

i=0 (Bti+1
−Bti)

2 − (ti+1 − ti)
)2]

and then

follow (52), since the cross-terms also vanish in this case.) This implies that∑k−1
i=0

(
Bti+1

−Bti

)2 a.s.−−→ t along a subsequence.

19.2 Ito lemma version 2

Theorem 18.3 is the simplest version of the Ito lemma. A more complex version is

presented below. The proof for this version is basically the same as for Theorem 18.3

but requires more cumberson notation.

Theorem 19.2 (Ito lemma 2). For φ : [0,∞)× R → R ∈ C1,2
**,

φ(t, Bt) = φ(0, B0) +

∫ t

0

φ1(s, Bs)ds+

∫ t

0

φ2(s, Bs)dBs +
1

2

∫ t

0

φ22(s, Bs)ds,

where

**C1,2 =
{
g(t, x) : ∂g

∂t ,
∂2g
∂x2 bounded

}
.
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1. φ1(s, x) =
∂φ
∂s
(s, x);

2. φ2(s, x) =
∂φ
∂x
(s, x); and

3. φ22(s, x) =
∂2φ
∂x2 (s, x).

Plug in a function φ(t, x) which is constant in t and we get back the first version

of the Ito lemma (Theorem 18.3).

Given a function φ(t, x), we will also use notation ∂tφ for ∂φ
∂t
; ∂xφ for ∂φ

∂x
and ∂2

xx

for ∂2φ
∂x2 .

19.2.1 Applications

1. If φ(t, x) = tx, then ∂tφ = x, ∂xφ = t and ∂2
xxφ = 0. The Ito lemma gives

tBt =

∫ t

0

Bsds+

∫ t

0

sdBs.

This is “integration by parts”.

2. If φ(t, x) = x2 − t, then ∂tφ = −1, ∂xφ = 2x and ∂2
xxφ = 2. We get

B2
t − t = −

∫ t

0

ds+ 2

∫ t

0

BsdBs +

∫ t

0

ds,

and thus ∫ t

0

BsdBs =
B2

t − t

2
.

Compare this with the Riemann integral
∫
xdx = 1

2
x2. This shows that B2

t − t

must be a martingale, since stochastic integrals are martingales. This is an

example of how the Ito lemma can be used to evaluate integrals.

19.2.2 Solving stochastic differential equations

The Ito lemma can also be used to find solutions to stochastic differential equations

(SDEs).
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Recall our original motivation for stochastic integrals: we wanted to construct a

differential equation describing a particle’s movement in a liquid medium. Now we

can finally resolve this problem.

Does there exist a stochastic process {Yt : t ∈ R≥0} such that

dYt = µYtdt+ σYtdBt,

(in differential form)? This is shorthand for the equation

Yt = Y0 +

∫ t

0

µYsds+

∫ t

0

σYsdBs,

(integral form).

As is the standard method for ODEs, we solve this SDE by first guessing the

general form of the solution. Assuming Yt = f(t, Bt)
��, Ito’s lemma states that

dYt = ∂tf(t, Bt)dt+ ∂xf(t, Bt)dBt +
1

2
∂2
xxf(t, Bt)dt.

Now match coefficients of dBt and dt:

1. ∂xf(t, x) = σf(t, x), so f(t, x) = A(t)eσx;

2. ∂tf(t, x) +
1
2
∂2
xxf(t, x) = µf(t, x). Combining with 1., this implies A′(t) +

1
2
σ2A(t) = µA(t), so that A(t) = Be(µ−

1
2
σ2)t, where B is some constant.

By the initial condition B = Y0 so that

Yt = f(t, Bt) = Y0 exp

[(
µ− 1

2
σ2

)
t+ σBt

]
.

Yt is called geometric Brownian motion.

There are two natural questions that arise from this discussion? Is such a process

Yt unique? That is, when are SDE solutions unique? Also – instead of having to guess

��add-on This might appear to be the most general functional form for Yt but it actually is not!

Why? Yt is a function of Bt but not Bs for s ≤ t. To solve other SDEs, we may need to use

functional forms which include terms like
∫ t

0
b(s)dBs, where b(s) is some deterministic form. (We

know that in this case
∫ t

0
b(s)dBs is a Gaussian process – see section 11).

∫ t

0
b(s)dBs depends on Bs

for all s ≤ t. For details, see section 12.
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the solution case-by-base – are there general conditions that guarantee the existence

of SDE solutions? We will prove uniqueness and provide sufficient conditions for

existence in the next lecture.

20 Lecture 8/4

20.1 Stochastic differential equations (SDEs)

20.1.1 Existence and uniqueness of solutions

Does a given SDE have at least one solution? And if so, is the solution unique?

Theorem 20.1. Suppose (Ω,F ,P) is a probability space, {Ft : t ∈ R≥0} is a complete

filtration, and {Bt : t ∈ R≥0} is sBM adapted to Ft. Let a : R → R and σ : R → R>0

be Lipschitz and ξ be a bounded�� random variable adapted to F0.

Then the SDE

dXt = a(Xt)dt+ σ(Xt)dBt, and X0 = ξ, (53)

has a unique solution.

This theorem does not capture the most general scenario. That is, the assumptions

can be weakened. The purpose here is to give the flavour of this topic, while keeping

the exposition simple.

The coefficient a(Xt) of dt is called the drift. The coefficient σ(Xt) for dBt is

called the diffusion. So basically, as long as the drift and diffusion are bounded in a

finite interval of time, the SDE has a unique solution.

Recall that (53) means that there exists {Xt : t ∈ R≥0} such that

Xt =

∫ t

0

a(Xs)ds+

∫ t

0

σ(Xs)dBs + ξ.

Proof. As usual, the proof for uniqueness is easier than the proof for existence. We

prove existence first.

��That is, there exists some M > 0 such that P [|ξ| ≤ M ] = 1.
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Fix T > 0 and exhibit a solution on [0, T ]. (Since T is arbitrary, this is sufficient.)

The proof idea is to construct a sequence {Xk
t : t ∈ [0, T ]}∞k=1 of C([0, T ])-valued

random variables that is Cauchy and approximately solves the SDE. Then we will

show thatXt = limk→∞Xk
t – where the limit is in terms of the function space C([0, T ])

– is a solution to the SDE.

We use Picard iteration to construct the approximation sequence {Xk
t : t ∈

[0, T ]}∞k=1. Start by defining X0
t = ξ (X0

t is constant in time) and then iteratively

define

Xk
t = ξ +

∫ t

0

a(Xk−1
s )ds+

∫ t

0

σ(Xk−1
s )dBs.

(Why is this well defined? We need to check that we can integrate a(Xk−1
s ) and

σ(Xk−1
s ). For the first integral, a(Xk−1

s ) has continuous trajectories since a is Lipschitz

and Xk−1
s is the sum of integrals and hence is also continuous. For the second integral,

one can check that E
∫ T

0

[
σ(Xk−1

s )
]2
ds < ∞ by induction and σ-Lipschitz.)

I claim that {Xk
t : t ∈ [0, T ]} is Cauchy (as C([0, T ]))-valued random variables)

with probability 1:

Xk+1
t −Xk

t =

∫ t

0

a(Xk
s )− a(Xk−1

s )ds+

∫ t

0

σ(Xk
s )− σ(Xk−1

s )dBs = Y k
t + Zk

t .

Roughly, we want to show that Y k
t and Zk

t go to zero in probability as k → ∞. For

the first term, ∣∣Y k
t

∣∣ ≤ ∫ t

0

∣∣a(Xk
s )− a(Xk−1

s )
∣∣ds

≤
∫ T

0

∣∣a(Xk
s )− a(Xk−1

s )
∣∣ds.

The second term Zt
k is a martingale in t for all k. Thus,

P
[
max
0≤t≤T

∣∣Xk+1
t −Xk

t

∣∣ > ϵ

]
≤ P

[∫ T

0

∣∣a(Xk
t )− a(Xk−1

t )
∣∣dt > ϵ/2

]
+ P

[
max
0≤t≤T

∣∣Zk
t

∣∣ > ϵ/2

]
≤ 4

ϵ2
E

[(∫ T

0

∣∣a(Xk
t )− a(Xk−1

t )
∣∣dt)2

]
+

4

ϵ2
E
[
Zk

T

2
]

≤ 4TA2

ϵ2
E
∫ T

0

(
Xk

t −Xk−1
t

)2
dt+

4A2

ϵ2
E
∫ T

0

(
Xk

t −Xk−1
t

)2
dt
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=
4(T + 1)A2

ϵ2
E
∫ T

0

(
Xk

t −Xk−1
t

)2
dt, (54)

where the second line follows by Markov’s and Doob’s maximal inequalities; A is

the maximum Lipschitz constant of a and σ – that is, |a(x)− a(y)| ≤ A|x− y| and
|σ(x)− σ(y)| ≤ A|x− y| – and the third line follows by the following reasoning: The

second term can be bounded

E
[
Zk

T

2
]
= E

[∫ T

0

σ(Xk
t )− σ(Xk−1

t )dBt

]2
= E

∫ T

0

(
σ(Xk

t )− σ(Xk−1
t )

)2
dt

≤ A2E
∫ T

0

(
Xk

t −Xk−1
t

)2
dt, (55)

where the second line follows by the Ito isometry and the third by the Lipschitz

property. The first term can similarly be bounded:

E

[(∫ T

0

∣∣a(Xk
t )− a(Xk−1

t )
∣∣dt)2

]
≤ A2E

[(∫ T

0

∣∣Xk
t −Xk−1

t

∣∣dt)2
]

≤ A2TE
[∫ T

0

(
Xk

t −Xk−1
t

)2
dt

]
, (56)

where the first line follows by the Lipschitz property and the second line follows by

Cauchy-Schwarz (supposedly). (I don’t understand how to derive the second line,

although the result, without the factor T , follows easily by Jensen’s inequality. The

rest of the proof also flows through without the factor T .)

We control the RHS of (54) using Gronwall’s lemma: We have, by definition,

Xk+1
t −Xk

t =

∫ t

0

a(Xk
s )− a(Xk−1

s )ds+

∫ t

0

σ(Xk
s )− σ(Xk−1

s )dBs.

Thus,

E
(
Xk+1

t −Xk
t

)
≤ 2E

[(∫ t

0

a(Xk
s )− a(Xk−1

s )ds

)2

+

(∫ t

0

σ(Xk
s )− σ(Xk−1

s )dBs

)2
]

≤ 2A2tE
∫ t

0

(
Xk

s −Xk−1
s

)2
ds+ 2A2E

∫ t

0

(
Xk

s −Xk−1
s

)2
ds
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≤ 2A2(1 + T )E
∫ t

0

(
Xk

s −Xk−1
s

)2
ds

= 2A2(1 + T )

∫ t

0

E
(
Xk

t1
−Xk−1

t1

)2
dt1

≤
(
2A2(1 + T )

)2 ∫ t

0

∫ t1

0

E
(
Xk−1

t2
−Xk−1

t2

)2
dt2dt1

≤ . . . ≤
(
2A2(1 + T )

)k ∫ t

0

∫ t1

0

· · ·
∫ tk−1

0

E
(
X1

tk
−X0

tk

)2
dtk . . . dt1,

(57)

where the second line follows by the same logic as in (55) and (56); and the fourth line

follows by Fubini’s theorem (which we will justify later, by induction). By definition,

E
[(
X1

s −X0
s

)2]
= E

[(∫ s

0

a(ξ)dt+

∫ s

0

σ(ξ)dBt

)2
]

= E
[
(sa(ξ) +Bsσ(ξ))

2]
≤ 2s2E

[
a2(ξ)

]
+ 2E

[
B2

s

]
E
[
σ2(ξ)

]
≤ 2s2E

[
a2(ξ)

]
+ 2sE

[
σ2(ξ)

]
,

where the second line follows by Ito’s lemma; and the third line by independence of

Bs and ξ, since ξ is F0 adapted. Plugging this into (57), we obtain

E
(
Xk+1

t −Xk
t

)
≤
[
2A2(1 + T )

]k [
2E
[
a2(ξ)

] tk+2

(k + 2)!
+ 2E

[
σ2(ξ)

] tk+1

(k + 1)!

]
. (58)

Finally, plugging (58) into (54),

P
[
max
0≤t≤T

∣∣Xk+1
t −Xk

t

∣∣ > ϵ

]
≤ 4(T + 1)A2

ϵ2
E
∫ T

0

(
Xk

t −Xk−1
t

)2
dt

≤ 2

ϵ2
[
2A2(1 + T )

]k [
2E
[
a2(ξ)

] T k+2

(k + 2)!
+ 2E

[
σ2(ξ)

] T k+1

(k + 1)!

]
≤ 4

ϵ2
[2A2T (1 + T )]

k

k!
CT ,

using Fubini’s theorem again, where CT is some positive, finite constant (E [a2(ξ)]

and E [σ2(ξ)] are bounded since ξ is bounded a.s.).
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Now define

ϵk =

[
(2A2T (1 + T ))

k

k!

]1/3
,

so that ϵk → 0 yet,

∞∑
k=1

P
[
max
0≤t≤T

∣∣Xk+1
t −Xk

t

∣∣ > ϵk

]
≤ 4CT

∞∑
k=1

[
(2A2T (1 + T ))

k

k!

]1/3
< ∞,

by noting that k! grows much faster than ek. Then Borel-Cantelli says

P
[
lim sup
k→∞

{
max
0≤t≤T

∣∣Xk+1
t −Xk

t

∣∣ > ϵk

}]
= 0.

Hence {Xk
t : t ∈ [0, T ]}∞k=1 is Cauchy with probability 1. Set Xt to be the limit in

C([0, T ]) and verify that it satisfies the SDE.

The above is a typical proof: our only reliable friend is completeness, which we

use to give us a limit of our approximations.

Proof of uniqueness (the second part of Theorem 53). Suppose there are two solutions,

Xt = ξ +

∫ t

0

a(Xs)ds+

∫ t

0

σ(Xs)dBs,

Yt = ξ +

∫ t

0

a(Ys)ds+

∫ t

0

σ(Ys)dBs.

Using analogous arguments to the previous proof,

ϕ(t) = E (Xt − Yt)
2 ≤ 2A2(1 + t)

∫ t

0

E (Xs − Ys)
2 ds. (59)

By Lipschitz of a, σ and boundedness of ξ,

EX2
t ,EY 2

t ≤ C,

for all t ∈ [0, T ] and some constant C. Thus, ϕ(t) ≤ 2EX2
t + 2EY 2

t ≤ 4C. Yet using

(59),

ϕ(t) ≤ 2A2(1 + T )

∫ t

0

ϕ(s)ds
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≤ . . . ≤
(
2A2(1 + T )

)n tn

n!
4C

≤ [2A2(1 + T )T ]
n

n!
4C

n→∞−−−→ 0.

Hence E (Xt − Yt)
2 = 0. This implies

P (Xt ̸= Yt) = 0 ∀t ∈ [0, T ].

By continuity of Xt and Yt (with countability and density of the rationals),

P [Xt ̸= Yt for some t ∈ [0, T ]] = 0.

21 Lecture 13/4

21.1 Concentration inequalities

We will now switch gears and move to a topic which has become extremely useful in

modern research – concentration inequalities.

21.1.1 Motivation

Consider the law of large numbers. Given iid X1, X2, . . . with E|X1| < ∞,

X̄n
a.s.−−→ EX1,

where X̄n = 1
n
[X1 + . . .+Xn]. There are two key properties driving the LLN: 1) X̄n

is a function of many independent random variables X1, . . . , Xn; and 2) each random

variable Xi has a “small” contribution (we will make this precise later) since we scale

Xi by
1
n
. 1) and 2) imply that the sample mean “concentrates” around a deterministic

value.

Two questions naturally arise: (i) Can we be more quantitative? What is the rate

of convergence? That is, how large must n be so that X̄n is close to EX1? (The limit

equation is only theoretically useful since we only ever have access to finite samples.)

(ii) Can this be generalised to other functions (beyond the sample mean)?
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21.1.2 Set-up

Consider a function f : Rn → R and let Y = f(X1, . . . , Xn) (generally we will consider

Xi’s iid). We are interested in ‘deviation bounds’: statements of the form

P [|Y − EY | > ϵ] ≤ Cϵ,

or (more crudely) variance bounds:

Var(Y ) ≤ C,

(which we can convert to deviation bounds through Chebychev’s inequality).

Our aim is to develop widely-applicable tools to establish deviation or variance

bounds for general functions of many independent random variables.

21.1.3 Further motivation

As an example, consider the random matrix M = (Mij) with Mij = Mji and

{Mij : i ≤ j} iid∼ N (0, 1).

Let λmax(M) be the largest eigenvalue of M . In many modern scenarios, we are

interested in the concentration inequality

P [|λmax(M)− Eλmax(M)| > ϵ] = ?

We currently do not have tools for determining this.

These are the types of questions that motivate the study of concentration inequal-

ities.

Returning to the example of the sample mean, we can derive concentration in-

equalities for certain distributions. For example, if X1, . . . , Xn
iid∼ N (0, 1) then

X̄n ∼ N (0, 1/n). We can write precise deviation bounds:

P
[∣∣X̄n

∣∣ > ϵ
]
≤ 2e−nϵ2/2.

(This comes from Mill’s ratio bound to the tail probability of a Gaussian.) This

proves X̄n = OP

(
1√
n

)
.
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As another example, if X1, . . . , Xn
iid∼ Expo(1) then

∑n
i=1 Xi ∼ Gamma(n, 1) and

this can be used to derive similar concentration bounds.

So we can get deviation bounds for the sample mean in some specific scenarios.

But these results very crucially depend on the assumptions of the distribution and

on the functional form of the sample mean. Generalising these types of results to

other functions (beyond the sample mean) and to other families of distributions is

very hard.

21.1.4 The bounded differences inequalities

Theorem 21.1. Let X1, . . . , Xn be independent and f : Rn → R satisfy

1. E|f(X1, . . . , Xn)| < ∞; and

2.

sup
x1,...,xn∈R

x′
i∈R

|f(x1, . . . , xn)− f(x1, . . . , xi−1, x
′
i, xi+1, . . . , xn)| ≤ ci, (60)

for some constant ci and all i = 1, . . . , n.

Then

P [|f(X)− Ef(X)| > t] ≤ 2 exp

[
− 2t2∑n

i=1 c
2
i

]
. (61)

In 2., we are looking at the maximum change in f that results from changing one

co-ordinate of f . In the theorem, we assume that this change is bounded.

We hope that the bounds ci are small, so that the concentration bound (61)

is small. If the ci’s are small comparative to t2 – i.e. t ≪
√∑n

i=1 c
2
i – then the

probability (61) is small.

This crystallises the intuition behind the earlier exposition on the sample mean

(assuming that the random variables Xi are a.s. bounded). The assumption of

bounded differences implies that each Xi doesn’t contribute much to the function.

The connection of this result to the rest of the course is that martingales are

crucial for the proof.

One shortcoming with Theorem 21.1 is that the worst-case difference (as in (60))

is hard to bound, even when, in probability, the difference is likely to be small. That
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is, Theorem 21.1 does not capture the right behaviour if ci is much greater than

the typical difference f(X)− f(X(i)) (where X(i) = (X1, . . . , Xi−1, X
′
i, Xi+1, . . . , Xn)

with Xi ∼ X ′
i independently.

The proof of the bounded differences inequalities relies on Hoeffding’s lemma:

Lemma 21.2 (Hoeffding’s). Suppose X is a random variable with EX = 0 and

a ≤ X ≤ b a.s. for some constants a and b. Then

E
[
etX
]
≤ exp

[
t2(b− a)2

8

]
.

We will prove this Lemma later.

Proof of Theorem 21.1. Write f for f(X) and f = Ef =
∑n

i=1 Vi, where

Vi = E [f |X1, . . . , Xi]− E [f |X1, . . . , Xi−1] ,

are called the martingale differences.

We use a Chernoff-bound idea (which is a common proof technique for concentra-

tion inequalities):

P [f − Ef > t] = P

[
n∑

i=1

Vi > t

]
= P

[
es

∑n
i=1 Vi > est

]
≤ e−stE

[
es

∑n
i=1 Vi

]
,

for any s > 0 where the third line follows by Markov’s inequality. Hence

P [f − Ef > t] ≤ inf
s>0

{
e−stE

[
es

∑n
i=1 Vi

]}
. (62)

For 1 ≤ i ≤ n, we have

EVi = E [E(f |X1, . . . , Xi)− E(f |X1, . . . , Xi=1)] = 0,

and Li ≤ Vi ≤ Ui where

Li = inf
x
{E [f(X1, . . . , Xi−1, x,Xi+1, . . . , Xn)|X1, . . . , Xi−1]− E [f |X1, . . . , Xi−1]} ,
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Ui = sup
x

{E [f(X1, . . . , Xi−1, x,Xi+1, . . . , Xn)|X1, . . . , Xi−1]− E [f |X1, . . . , Xi−1]} .

Li and Ui are random variables and functions solely of X1, . . . , Xi−1. So Li and Ui

are deterministic given X1, . . . , Xi−1. Finally, Ui −Li ≤ ci by assumption. So we can

apply Hoeffding’s lemma:

E
[
es

∑n
i=1 Vi

]
= E

[
E
(
es

∑n
i=1 Vi |X1, . . . , Xn−1

)]
= E

[
es

∑n−1
i=1 ViE

(
esVn|X1, . . . , Xn−1

)]
≤ E

[
es

∑n−1
i=1 Vi+s2c2n/8

]
≤ . . . ≤ es

2
∑n

i=1 c
2
i /8.

(Note that we haven’t used independence of the Xi’s – there are more general state-

ments of the bounded differences inequality which does not assume independence.)

Plugging this into (62),

P [f − Ef > t] ≤ inf
s>0

exp

[
−st+

s2

8

n∑
i=1

c2i

]

= exp

[
− 2t2∑n

i=1 c
2
i

]
,

after some calculus. The proof for bounding the other tail:

P [Ef − f > t] = P [f − Ef < −t] ≤ exp

[
− 2t2∑n

i=1 c
2
i

]
,

is basically the same (just work with s < 0 and get the same bound). A union bound

argument then gives the rsult.

Proof of Hoeffding’s lemma (Lemma 21.2). Hoeffding’s lemma is essentially a fact

about convexity:

etX ≤ Xa

b− a
etb +

b−X

b− a
eta,

because x 7→ etx is convex.

Since EX = 0,

E
[
etX
]
≤ −a

b− a
etb +

b

b− a
eta
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= eg(u),

where u = t(b− a), g(u) = −γu + log(1− γ + γeu) and γ = − a
b−a

. (The calculation

of this is left as an exercise.)

Observe that g(0) = 0 = g′(0) and g′′(u) ≤ 1
4
for all u > 0. So “the growth near

zero is quadratic and small”, which allows us to bound g(u). More formally,

g(u) = g(0) + g′(0) +
u2

2
g′′(ξ) ≤ u2/8,

for some 0 ≤ ξ ≤ u. Thus,

E
[
etX
]
≤ exp

[
u2/8

]
= exp

(
t2(b− a)2

8

)
.

21.1.5 Application: max cuts for random graphs

We will demonstrate the bounded differences inequality with an application: Let

Gn ∼ G(n, cn) be an Erdős-Rényi graph. (Sample Gn uniformly at random from all

graphs on n vertices with cn edges.)

Define Maxcut(Gn) to be the maximum number of edges between two disjoint sets

of vertices. Then

P [|Maxcut(Gn)− E [Maxcut(Gn)]| > nϵ] ≤ 2 exp

[
−2n2ϵ2

nc

]
,

since each edge can change the Maxcut value by at most 1. (Maxcut is a function f

of the adjacency matrix and so the differences in f by changing one co-ordinate are

determined by adding or removing a single edge.)

22 Lecture 20/4

22.1 The Efron-Stein inequality

Recall the bounded differences inequality: If f : Rn → R is a function of independent

X1, . . . , Xn and f doesn’t change “too much” as we perturb one co-ordinate, then
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f ≈ Ef . A limitation with this result is that it looks at the worst case influences (i.e.

the worst case changes in f from changes in one co-ordinate). We want a result that

only requires bounding the typical influences/differences.

Theorem 22.1. Let X1, . . . , Xn, X
′
1, . . . , X

′
n independent with Xi ∼ X ′

i. Write

X(i) = (X1, . . . , Xi−1, X
′
i, Xi+1, . . . , Xn).

Then

Var [f(X)] ≤ 1

2

n∑
i=1

E
[(
f(X)− f(X(i))

)2]
.

Think of X ′
i as a fresh iid copy of X. So E

[(
f(X)− f(X(i))

)2]
looks like the

typical (in terms of expectation) difference from drawing a fresh Xi.

The Efron-Stein inequality bounds the variance; a deviation bound follows from

Chebychev’s inequality.

Proof. Write X [i] = (X ′
1, . . . , X

′
i, Xi+1, . . . , Xn). We will use a telescoping argument:

Var [f(X)] = Ef 2(X)− Ef(X)f(X ′)

= E [f(X) (f(X)− f(X ′))]

=
n∑

i=1

E
[
f(X)

(
f(X [i−1])− f(X [i])

)]
.

We can flip Xi and X ′
i by independence:

f(X)
(
f(X [i−1])− f(X [i])

)
∼ f(X(i))

(
f(X [i])− f(X [i−1])

)
,

since Xi ∼ X ′
i independent of Xj, X

′
j. Thus,

Var [f(X)] =
1

2

n∑
i=1

E
[(
f(X)− f(X(i))

) (
f(X [i−1])− f(X [i])

)]
≤ 1

2

n∑
i=1

√
E
[
(f(X)− f(X(i)))

2
]
E
[
(f(X [i−1])− f(X [i]))

2
]

=
1

2

n∑
i=1

E
[(
f(X)− f(X(i))

)2]
,

where the second line follows by Cauchy-Schwarz.
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This proof technique – using an interpolation-type argument – is extremely useful

in many different contexts, especially in modern probability research.

When is the E.S. bound tight? The only point where the argument is loose, is

in the application of Cauchy-Schwarz. This observation leads to a rich and emerging

field that explores what it means if the bound is loose. See [Cha14].

22.1.1 The jackknife

The E.S. inequality first arose in solving problems in non-parameter statistics. Sup-

pose X1, . . . , Xn
iid∼ F and we are interested in estimating a functional θ(F ) of F . (As

concrete examples, θ(F ) = EF (X) or θ(F ) = VarF (X).) Suppose we have an estima-

tor θ̂n = fn(X1, . . . , Xn). Typically we want to understand the bias B(θ̂n) = Eθ̂n − θ

and variance Var(θ̂n). Yet, on the face of it, the bias and variance are hard to esti-

mate: we don’t know the underlying probability distribution and even if we did, θ̂n

could be a really complicated function of the Xi’s.

This motivates the following important question: Is there a straightforward way

to estimate the bias and variance of an estimator θ̂n in this general, non-parametric

setting?

The jackknife is one possible method: Let θ̂
(i)
n = fn−1(X

(i)), where

X(i) = (X1, . . . , Xi−1, Xi+1, . . . , Xn),

is the i-th jackknife sample. (X(i) drops the i-th point from the sample.)

The jackknife estimate of the variance is then given by
∑n

i=1

(
θ̂
(i)
n − θ̂n

)2
.

Lemma 22.2 (Efron-Stein).

Var
(
θ̂n

)
≤

n∑
i=1

E
[(

θ̂(i) − θ̂
)2]

.

This result is very useful in practice, since it gives an upper bound to the variance

without requiring consideration of the analytical form of θ̂n.

Proof.

Var
(
θ̂n

)
≤ 1

2

n∑
i=1

E
[
(fn(X1, . . . , Xn)− fn(X1, . . . , X

′
i, . . . , Xn))

2
]
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=
n∑

i=1

E [Var (fn|X1, . . . , Xi−1, Xi+1, . . . , Xn)]

≤
n∑

i=1

E
[
(fn(X1, . . . , Xn)− fn−1(X1, . . . , Xi−1, Xi+1, . . . , Xn))

2] ,
where the second line follows by adding and subtracting Efn inside the square; and

the final line follows from the inequality

Var(Y ) = E
[
(Y − EY )2

]
≤ E

[
(X − c)2

]
,

for all constants c.

22.1.2 Applications of the E.S. inequality

1. Consider the scenario where we have a function f : X n → R with bounded

differences. That is, assume

|f(x1, . . . , xn)− f(x1, . . . , x
′
i, . . . , xn)| ≤ ci, (63)

for all x1, . . . , xn, x
′
i ∈ X .

Lemma 22.3. If f has the bounded differences property (63), then

Var(f) ≤ 1

4

n∑
i=1

c2i .

Proof. Using the E.S. inequality,

Varf ≤ 1

2

n∑
i=1

E
[(
f(X)− f(X(i))

)2]
=

n∑
i=1

E [Var (f |X1, . . . , Xi−1, Xi+1, . . . , Xn)]

≤ 1

4

n∑
i=1

c2i ,

where the second line follows by adding and subtracting Ef inside the square; and the

third line by the fact that, conditioning on X1, . . . , Xi−1, Xi+1, . . . , Xn, the function
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f can vary by at most c. (Subject to this constraint, the variance is maximised whne

the distribution of f has equal point masses at − ci
2

and ci
2
. The variance of this

distribution is
c2i
4
.)

2. Kernel density estimation: Given X1, . . . , Xn
iid∼ φ (where φ is the PDF), we are

interested in estimating φ based on the data. The idea is that φ(x) can be estimated

by how many of the X ′
is are observed in a small window around x. This can be made

more sophisticated by weighting Xi’s contribution to φ(x) by the distance between x

and Xi.

We formalise this using a function K which satisfies K ≥ 0 and
∫
K(x)dx = 1.

Such a K is called a kernel function. One may think of K as the weighting function.

Then define

φ̂n(x) =
1

nhn

n∑
i=1

K

(
x−Xi

hn

)
,

where hn is the length of the window (called the bandwidth) around x. (hn is a

smoothing parameter since it determines how many Xi’s contribute to estimating

φ̂n(x).) We divide by nhn since if the Xi’s were uniform then we would expect nhn

observations in the region (x− hn/2, x+ hn/2).

This is an example of non-parametric density estimation. The E.S. inequality can

be used to understand the statistical properties/performance of φ̂n.

One performance metric is the L1 loss:

Ln =

∫
|φ̂n(x)− φ(x)|dx.

Ln is a random variable since φ̂n is a random function. We could study ELn instead

of Ln directly; but for this to be valid, we would need to show that Ln behaves like

its expectation – that is, Ln’s random fluctuations around ELn are small.

Let φ̂
(i)
n be the density estimate based on X1, . . . , X

′
i, . . . , Xn. Then∣∣∣∣∫ |φ(x)− φ̂n(x)|dx −

∫ ∣∣φ(x)− φ̂(i)
n (x)

∣∣dx∣∣∣∣ ≤ ∫ ∣∣φ̂n(x)− φ̂(i)
n (x)

∣∣dx
=

∫ ∣∣∣∣ 1nh
[
K

(
x−Xi

hn

)
−K

(
x−X ′

i

hn

)]∣∣∣∣dx
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≤
∫

1

nhn

[
K

(
x−Xi

hn

)
+K

(
x−X ′

i

hn

)]
dx

=
2

n
,

where the first line uses the triangle inequality; and the final line follows by change

of variables using
∫
K(x)dx = 1. The E.S. inequality implies that

Var(Ln) ≤
C

n
, (64)

for some constant C.

Using independent arguments (not related to concentration),

ELn = E
[∫

|φ(x)− φ̂n(x)|dx
]
≫ 1√

n
. (65)

Thus,
Ln

ELn

=

∫
|φ(x)− φ̂n(x)|dx

E
[∫

|φ(x)− φ̂n(x)|dx
] P−→ 1,

by Chebychev’s inequality. (Use the lower bound (65) on the denominator and the

upper bound (64) on the numerator.)

Thus, fluctuations of Ln are on a much smaller scale than ELn, so it is enough to

understand ELn, instead of studying Ln directly.

22.1.3 Summary

The Efron-Stein inequality allows us to derive robust upper bounds on complicated

functions of many independent random variables. The upper bound will be tight if

the function doesn’t change too much when we refresh each co-ordinate.
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23 Lecture 22/4

23.1 Concentration for Lipschitz functions of Gaussians

Theorem 23.1. Let g = (gi)
n
i=1 ∼ N (0, In) and F : Rn → R be Lipschitz. Then, for

all t > 0,

P [|F (g)− EF (g)| > t] ≤ 2 exp

(
− t2

4∥F∥2Lip

)
,

where

∥F∥Lip = inf {L > 0 : |F (x)− F (y)| ≤ L∥x− y∥2} ,

and ∥·∥2 is the L2 norm.

“Take any Lipschitz function of iid Gaussians and it concentrates on the O(1) (in

terms of n) scale.” (∥F∥Lip is usually O(1) in terms of n.)

This theorem is useful and widely applicable. (Such a result is a rarity.)

The proof of Theorem 23.1 relies on a non-trivial bound on the MGF of F :

Lemma 23.2.

E [exp (λ(F (g)− EF (g)))] ≤ eλ
2L2

,

if L2 ≥ ∥F∥Lip.

eλ
2L2

looks like the MGF ofN (0, L). So the intuition is that F (g) ∼ N (EF (g), L).

Proof of Theorem 23.1, assuming Lemma 23.2.

P [F (g)− EF (g) ≥ t] = P
[
eλ[F (g)−EF (g)] ≥ eλt

]
≤ e−λtE

[
eλ(F (g)−EF (g))

]
≤ e−λt+λ2L2

,

where the second line uses Markov’s and the third relies on Lemma 23.2.

Now minimise the RHS with respect to λ. After some algebra, we get λ = t
2L2

and L = ∥F∥Lip.
This controls the upper tail at exp

(
− t2

4∥F∥2Lip

)
. Apply the same argument to −F

and use a union bound to get the result.
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23.1.1 Proof of Lemma 23.2

This is where the meat of the problem is. The motivation for showing this proof is that

it will illustrate high dimensional properties of Gaussians which are counterintuitive.

It will also present some useful proof techniques.

We need the following two results:

Lemma 23.3 (Gaussian integration by parts). If g ∼ N (0,Σ), then

E [g1F (g)] =
n∑

l=1

E [g1gl]E
[
∂F

∂xl

(g)

]
,

if either E
∣∣∣ ∂F∂xl

∣∣∣ < ∞ or E [g1gl] = 0.

Aside: the univariate case

EgF (g) = σ2EF ′(g),

for g ∼ N (0, σ2), is called Stein’s identity or Stein’s lemma.

Lemma 23.4 (Gaussian interpolation). Suppose X = (Xi)
n
i=1 y Y = (Yi)

n
i=1 are

mean zero Gaussian vectors (with covariances ΣX and ΣY ). Let aij = EXiXj and

bij = EYiYj. Define

Z(t) =
√
tX +

√
1− tY .

Then EZ(t) = 0 and

E [Zi(t)Zj(t)] = taij + (1− t)bij,

for all t ∈ [0, 1].

If F : Rn → R is sufficiently well-behaved (i.e. the conditions for EDI are satisfied

and the derivatives of F exist and don’t grow too fast, so that E
∣∣∣ ∂F∂xl

∣∣∣ < ∞), and

f(t) = EF (Z(t)), then

f ′(t) =
1

2

∑
i,j

(aij − bij)E
∂2F

∂xi∂xj

(Z(t)) .
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Z(t) should be viewed as some “path” betweenX and Y . It is a linear combination

of Gaussians, and hence is itself Gaussian. Its covariance is a linear interpolation

between X and Y ’s covariance.

Proof of Lemma 23.2, assuming Lemma 23.4. Assume that F is differentiable and

∥∇F (x)∥2 ≤ L, for all x ∈ Rn. (If F is Lipschitz and differentiable then we get

this bound for free.) If F is not differentiable, then we can smooth F .

Let g, g(1), g(2) iid∼ N (0, In) and define

f(t) = E exp
[
λ
(
F
[√

tg(1) +
√
1− tg

]
− F

[√
tg(2) +

√
1− tg

])]
.

There are two immediate, but key, observations:

1. f(0) = 1;

2. Defining X =

[
g(1)

g(2)

]
and Y =

[
g

g

]
, we have X ∼ N (0, I2n) and

Y ∼ N

(
0,

[
In In

In In

])
,

with X y Y . Set

G : R2n → R

(x1, . . . , x2n) 7→ exp [λ (F (x1, . . . , xn)− F (xn+1, . . . , x2n))] .

Then f(t) = E
[
G
(√

tX +
√
1− tY

)]
.

Differentiating in t, using Lemma 23.4,

f ′(t) =
1

2

∑
i,j

(aij − bij)E
[

∂2G

∂xi∂xj

(Z(t))

]

= −
n∑

i=1

E
[

∂2G

∂xi∂xi+n

(Z(t))

]
, (66)

since aij − bij ̸= 0 if and only if j ̸= i + n. (Why? Look at (aij) = I2n and

(bij) =

[
In In

In In

]
.)
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Next observe that

∂2G

∂xi∂xi+n

(x1, . . . , x2n) = −λ2G
∂F

∂xi

(x1, . . . , xn)
∂F

∂xi

(xn+1, . . . , x2n),

so that

−
n∑

i=1

∂2G

∂xi∂xi+n

(x1, . . . , x2n) = λ2G
n∑

i=1

∂F

∂xi

(x1, . . . , xn)
∂F

∂xi

(xn+1, . . . , x2n)

≤ λ2G∥∇F (x1, . . . , xn)∥2 × ∥∇F (xn+1, . . . , x2n)∥2
≤ λ2GL2,

by Cauchy-Schwarz and the bound ∥∇F∥2 ≤ L. Plugging this into (66), we obtain

f ′(t) ≤ λ2L2E
[
G(

√
tX +

√
1− tY )

]
= λ2L2f(t).

So we have obtained a differential equation. (This is crucial for the proof!) Thus,

d

dt

(
f(t)e−λ2L2t

)
=
(
f ′(t)− λ2L2f(t)

)
e−λ2L2t ≤ 0.

So f(1)e−λ2L2 ≤ f(0) = 1 and hence

f(1) ≤ eλ
2L2

. (67)

Also, by Jensen’s inequality

f(1) = E exp
(
λ
[
F (g(1))− F (g(2))

])
≥ Eg(1) exp

(
λ
[
F (g(1))− Eg(2)F (g(2))

])
= E exp (λ [F (g)− EF (g)]) , (68)

where EW denotes the expectation is with respect to the random variable W . Observe

that this is exactly the MGF that we wanted. Combining (68) with (67), we get the

desired result

E exp (λ [F (g)− EF (g)]) ≤ eλ
2L2

.
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We still need to prove Lemmas 23.3 and 23.4.

Proof of Lemma 23.4. By EDI and then chain rule,

f ′(t) =
n∑

i=1

E
[
Z ′

i(t)
∂F

∂xi

(Z(t))

]
.

We want to apply Gaussian IBP (Lemma 23.3). We know that (Z ′
i(t), Z1(t), . . . , Zn(t))

is MVN. Consider the function

Fi(x1, . . . , xn+1) =
∂F

∂xi

(x2, . . . , xn+1).

By IBP,

E
[
Z ′

i(t)
∂F

∂xi

(Z(t))

]
= E [Z ′

iZ
′
i]E
[
∂Fi

∂x1

(Z ′
i(t), Z1(t), . . . , Zn(t))

]
+

n∑
j=1

E [Z ′
iZj]E

[
∂Fi

∂xj+1

(Z ′
i(t), Z1(t), . . . , Zn(t))

]
.

(Note that ∂Fi

∂xj+1
is the partial derivative of Fi with respect to the (j + 1)-th co-

ordinate.) Since Fi is constant in x1,
∂Fi

∂x1
= 0. For the other terms on the RHS,

E [Z ′
iZj] = E

[(
1

2
√
t
Xi −

1

2
√
1− t

Yi

)(√
tXj +

√
1− tYj

)]
=

1

2
(aij − bij) ,

since X y Y . Thus,

E
[
Z ′

i(t)
∂F

∂xi

(Z(t))

]
=

1

2

n∑
j=1

(aij − bij)E
[

∂Fi

∂xj+1

(Z ′
i(t), Z1(t), . . . , Zn(t))

]
.

We leave the proof of Lemma 23.3 until next lecture.

23.1.2 Application

Let X ∼ N (0, In) and F (X) = max1≤i≤nXi. Since F is 1-Lipschitz,

P
[∣∣∣∣max

1≤i≤n
Xi − E

[
max
1≤i≤n

Xi

]∣∣∣∣ > t

]
≤ 2e−t2/4. (69)
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This suggest that Var (max1≤i≤n Xi) = O(1). This is false – Var (max1≤i≤nXi) → 0!

So in this example, the concentration inequality (Theorem 23.1) is not even tight!

But the same result (69) applies for MVN with any covariance matrix. If the

covariance is a matrix of ones, then

Var

(
max
1≤i≤n

Xi

)
= Var(X1) = O(1).

So the bound (Theorem 23.1) is tight – we can’t do any better than this if we want

to look at MVN with arbitrary covariance.

24 Lecture 27/4

24.1 Gaussian concentrations (cont.)

24.1.1 Proof of Lemma 23.3

Proof of 23.3. Begin in the univariate setting: g ∼ N (0, σ2). It suffices to prove

EgF (g) = σ2EF ′(g),

assuming

E|F ′(g)| < ∞. (70)

We need only prove this for σ = 1 – or z ∼ N (0, 1) – and then use a change of

variables g = σz.

We have that

EF ′(z) =
1√
2π

∫ 0

−∞
F ′(u)e−u2/2du+

1√
2π

∫ ∞

0

F ′(u)e−u2/2du. (71)

Observe that

e−u2/2 =

−
∫ u

−∞ xe−x2/2dx if u ≤ 0,∫∞
u

xe−x2/2dx if u > 0.
(72)

The required result follows by plugging in (72) into (71) and interchanging the inte-

grals (by Fubini, using assumption (70)).
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Now consider the multivariate setting. We will use a typical proof strategy:

Regress out the effect of g1 (i.e. remove the correlation of g1 and gl), allowing us

to apply the univariate result.

Suppose that ν2 = Eg21. Define g′l = gl − λlg1 where λl = ν−2Eg1gl, so that

Eg1g′l = Eg1gl − ν−2Eg1glEg21 = 0,

and hence g′l y g1 for all l.

Denote E1 to be the expectation with respect to g1 only (i.e. condition on

g2, . . . , gn). We have that

E1 [g1F (g)] = E1 [g1F (g′ + g1λ)] .

Conditioning on g2, . . . , gn, g
′ is a constant, so that F (g′ + g1λ) is a function of g1

only. So we can apply univariate Gaussian IBP:

E1 [g1F (g)] = ν2E1

[
∂F (g′ + yλ)

∂y

∣∣∣∣
y=g1

]
.

By the chain rule,

∂F (g′ + yλ)

∂y

∣∣∣∣
y=g1

=
n∑

l=1

λl
∂F

∂xl

(g′ + g1λ)

=
n∑

l=1

λl
∂F

∂xl

(g).

Thus,

E1 [g1F (g)] = ν2

n∑
l=1

λlE1

[
∂F

∂xl

(g)

]
=

n∑
l=1

E [g1gl]E1

[
∂F

∂xl

(g)

]
.

Taking the expectation with respect to g2, . . . , gn completes the proof.
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24.1.2 Applications of Gaussian concentration

First application – supremum of linear functionals: Let g ∼ N (0, In) and A ⊂ Rn

bounded. Consider F (x) =
∑

a∈A⟨a, x⟩. This is Lipschitz:

|F (x)− F (y)| ≤ sup
a∈A

|⟨a, x− y⟩|

≤ sup
a∈A

∥a∥∥x− y∥

=

(
sup
a∈A

∥a∥
)
∥x− y∥,

by the Cauchy-Schwarz inequality, where (supa∈A∥a∥) < ∞ since A is bounded.

Hence,

P
[∣∣∣∣sup

a∈A
⟨a, g⟩ − E

[
sup
a∈A

⟨a, g⟩
]∣∣∣∣ > t

]
≤ 2 exp

(
− t2

4 supa∈A∥a∥
2

)
. (73)

But, why is supa∈A⟨a, g⟩ interesting? It has a geometric significance: How can

we determine the “width” of A, particularly when A is irregular? Assuming that

A contains the origin, then 1
∥g∥ supa∈A⟨a, g⟩ is the distance from the origin to the

boundary of A in the direction g. Similarly, − 1
∥g∥ infa∈A⟨a, g⟩ is the distance from the

origin to the boundary of A in the direction −g. Thus,

1

∥g∥

[
sup
a∈A

⟨a, g⟩ − inf
a∈A

⟨a, g⟩
]

is the width of A in the direction g. Choosing a Gaussian g ∼ N (0, In) is like choosing

a direction at random. So supa∈A⟨a, g⟩ is like the width of A in a random direction g.
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It turns out that determining the width of sets is relevant in many applications. So

we need to understand supa∈A⟨a, g⟩. The concentration inequality (73) says that it

suffices to study its expected value E [supa∈A⟨a, g⟩] – called the Gaussian width of A.

This can be easy or hard to estimate, depending on A.

Second application – concentration of Gaussian maxima. Let X ∼ (0,Σ) be n-

dimensional with max1≤i≤n Σii ≤ 1. We can write X = Σ1/2g where g ∼ N (0, In).

Hence Xi = ⟨ai, g⟩ for some ai. We know that VarXi = ∥ai∥2 ≤ 1 for all i.

Applying our previous result (73),

P
[∣∣∣∣max

1≤i≤n
Xi − E

[
max
1≤i≤n

Xi

]∣∣∣∣ ≥ t

]
≤ 2 exp

[
−t2

4

]
.

This result holds for any covariance Σ with max1≤i≤nΣii ≤ 1. The RHS is small

if t → ∞. This suggests that max1≤i≤nXi has fluctuations on O(1) (of n) scale. This

bound is not tight for iid Gaussians, but this bound is tight for arbitrary covariance

structure. (In particular, the bound is tight when X1 = . . . = Xn = g ∼ N (0, 1).) In

many applications,

E
[
max
1≤i≤n

Xi

]
≫ O(1). (74)

SO the concentration inequality says that the fluctuations are small relative to the

expected value. So it suffices to study the expected value (under assumption (74)).

24.2 Review and further directions

Recall what we have covered in the course:

1. Limit theorems for martingales:

(a) L1 and Lp convergence;

(b) The role of UI, reverse martingales and exchangeability.

2. Brownian motion:

(a) the strong Markov property;

(b) the reflection principle;
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(c) Wald’s lemma.

3. Donsker’s theorem (why Brownian motion is the equivalent of Gaussianity in

the world of stochastic processes).

4. General stochastic theory:

(a) The existence of stochastic processes and continuous modifications;

(b) The Kolmogorov extension theorem;

(c) The Kolmogoriv-Chentsov criteria (continuity of moments imply continu-

ous modification).

5. Stochastic integration:

(a) SDEs and their solutions.

6. Concentration inequalities:

(a) This topic was far removed from the rest of the semester. It provided

a glimpse into modern probability and how it supports high dimensional

inference.

(b) Yet it has links to the rest of the course: Concentration inequalities try

to understand the cumulative effect of many small effects, like Donsker’s

theorem.

What else is ‘out there’? What are some related and important topics which we

didn’t cover?

1. Poisson processes and stochastic integration with respect to point processes:

(a) The Poisson process is a canonical process, like Brownian motion;

(b) Stocastic integration with respect to point processes has a very similar

theory to integration with respect to Brownian motion.

2. Lèvy processes and stable laws:
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(a) What model should be used (instead of Brownian motion) when we do

not want to assume continuous trajectories? For example, we may want

to model stock prices with discontinuous catastrophes. Typically, a Lèvy

process is used.

(b) Lèvy processes can be represented as the sum of a Brownian motion, a

Poisson process and some deterministic jumps.

3. The Gaussian free field:

(a) Brownian motion is like choosing a continuous function at random. What

if we wanted to sample a random continuous surface? This would be a

Gaussian free field.

(b) The study of the properties of these random surfaces is an active research

area.

4. Gaussian fluctuations:

(a) The CLT states that Sn√
n

d−→ N (0, 1) if X1, . . . , Xn are iid with EX1 = 0

and EX2
1 = 1. Donsker’s theorem states that{(

k

n
,
Sk√
n

)
: k ≤ n

}
+ linear interpolation

d−−−→
n→∞

sBM.

What about general functions (not just rescaled sums)? What functions

exhibit Gaussian limits? Two important results in this field are Stein’s

method and the second order Poincarè inequalities. They try to show that

if a function doesn’t depend too heavily on any single co-ordinate then it

should have Gaussian fluctuations.

5. Probability in high dimensions:

(a) Research in this area in expanding rapidly and often intersects with geom-

etry.
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