
Stat213 Lecture Notes

James Bailie

June 16, 2021

Abstract

These are my lecture notes for Stat213, a second graduate course in statis-

tical inference, lectured by Prof. Pragya Sur in Spring 2021 at Harvard. All

errors are my own. Sections marked add-on were not in the lecture and were

added by me at a later point. Some diagrams are courtesy of Pragya Sur.
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1 Lecture 26/1

1.1 General Framework

1. We are given observations y1, . . . , yn which are components of y ∈ Rdn.

2. Our goal is to learn about the underlying data generation process.

3. We assume that the observations are iid realisation of a random variable: Y1, . . . , Yn
iid∼

p∗ with support Y .

4. The general approach is this course can be summarised as follows:

(a) Introduce a model – that is, a class M = {pθ : θ ∈ H} of probability

distributions parametrised by θ ∈ H.

(b) Assume that the model is well-specified – that is, that the true data gen-

erating process p∗ is in the model class. We will also consider misspecified

models, where p∗ /∈M.

(c) In the well-specified setting, we wish to infer which pθ ∈ M equals p∗. In

the misspecified setting, the goal is to find pθ ∈ M which is “closest” to

p∗ (in a sense that we will make precise later). In either setting, we call

this θ the ‘underlying θ’.
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(d) To find the underlying θ, we design estimators θ̂ based on various tech-

niques.

One technique for designing estimators is the method of moments. This tech-

nique was originally proposed when we had little computation resources and has now

resurfaced as we have too much data to do hard computation. Another is likelihood

based inference, which designs estimators based on the (log) likelihood function: given

Y1, . . . , Yn
iid∼ pθ, the likelihood and log likelihood are (random) functions:

Ln : θ 7→
n∏
i=1

pθ(Yi),

ln : θ 7→
n∑
i=1

log pθ(Yi),

The standard likelihood based inference estimator is the maximum likelihood estima-

tor (MLE), defined as either θ̂ML
n = argmaxθ∈H ln(θ) or as a solution to ∇θln(θ) = 0.

(Notation: θ may be a vector and ∇θ is the gradient with respect to θ.)

Two other ‘pseudo-likelihood’ based techniques which generalise the MLE are M-

and Z-estimators.

1.2 M- and Z-estimators

Definition 1.1. An M-estimator is obtained by maximising a (given) general crite-

rion function

θ 7→Mn(θ) =
n∑
i=1

mθ(Yi).

The M stands for maximise. Mn is only of the form
∑n

i=1 mθ(Yi) when the data

are iid.

Example 1.2.

1. The MLE is an M-estimator where mθ(Yi) = log pθ.
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2. Generalised (including non-linear) regression can be framed as an M-estimator

problem. Given observations (Xi, Zi)
n
i=1 such that Zi = fθ(Xi) + εi for some

θ ∈ H and iid εi. The least squares estimator

θ̂ = argmin
θ∈H

n∑
i=1

(Zi − fθ(Xi))
2 ,

is an M-estimator with mθ(Xi, Zi) = − (Zi − fθ(Xi))
2.

The likelihood function can often be very complex or practically impossible to

specify. An advantage of the M-estimator is that we do not need to consider or even

specify a likelihood function.

Definition 1.3. A Z-estimator is defined as a solution to equations of the form

n∑
i=1

φθ(Yi) = 0 (1)

for given functions φθ. The equation (1) is called the estimator equation(s).

The Z stands for zero. Some estimators are more easily expressed as M-estimators

than Z-estimators and vice versa.

Example 1.4.

1. The MLE is a Z-estimator with φθ = ∇θln(θ).

2. Any M-estimator with mθ differentiable is a Z-estimator with φθ = ∇θmθ.

3. The sample mean and sample median can be expressed as Z-estimator with

φθ(y) = y − θ and φθ(y) = sign(y − θ) respectively.

4. The Huber estimators (also known as the trimmed sample means) are Z-estimators

with

φθ(y) =


k if y − θ ≥ k,

−k if y − θ ≤ −k,

y − θ if |y − θ| < k.
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The limiting function lim k →∞φθ recovers the sample mean. Similarly limk→0 φθ

recovers the sample median. For k ∈ (0,∞), the result Z-estimator is a trimmed

mean (which is robust to outliers for smaller k). The Huber estimators can also

be expressed as M-estimators:

θ̂ = argmin
n∑
i=1

m(Yi − θ),

where m(y) = y2
1{|y| ≤ k}+ (2k|y| − k2)1{|x| > k}.

5. An example of an estimator problem that can be expressed as an M-estimator

but not as a Z-estimator:

Y1, . . . , Yn
iid∼ Unif(0, θ).

(Most of the time if mθ is not differentiable with respect to θ, then we have an

M-estimator which cannot be written as a Z-estimator.)

1.3 Some model and estimator properties

The inference pipeline starts with a hypothesised model. The statistician then con-

structs a “good” estimator and does inference based on the estimators properties and

the observed data.

What do we mean by a “good” estimator? It should satisfy at least two basic

properties: I) It generates estimates which are close to the underlying θ, at least

when given access to infinite samples. II) We should be able to provide rigorous

uncertainty quantification for the estimator.

Definition 1.5. A model M = {pθ : θ ∈ H} is well-specified if there exists θ∗ ∈ H
such that the true data generating process p∗ equals pθ∗ . Note that θ∗ does not have

to be unique (in which case the model is unidentifiable). The goal in this case is to

infer about θ∗.

When no pθ ∈ H equals p∗, then the model M is misspecified.
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Definition 1.6. In the well-specified setting with θ∗ unique, the estimator θ̂n is

consistent if

θ̂n
P∗−−−→

n→∞
θ∗,

where the notation P∗ means convergence in probability under the true p∗.

Consistency is the formal definition of property I. What about property II? How

do we characterise the fluctuation properties of θ̂n? If θ̂n is consistent, then one

measure of the fluctuation properties is the rate of convergence of θ̂n → θ∗. The rate

of convergence rn is defined such that

rn(θ̂n − θ∗)

converges to some distribution F (in this class F will always be Gaussian). rn must

blow up to infinity so as to couteract (θ̂n − θ∗)
P∗−→ 0. Also, rn(θn − θ∗) doesn’t

blow up. So rn is large enough to stop rn(θn − θ∗) → 0 and small enough to stop

|rn(θn − θ∗)| → ∞. Hence rn can be thought of as the rate of convergence.

rn =
√
n is consider to be a fast rate of convergence. A good estimator will have

rn ≥
√
n.

In this course, we will look at estimators with rn(θ̂n − θ∗)
d−→ N (0,V ∗) where V ∗

is positive semidefinite. In the univariate case, if vn is a consistent estimator for v∗,

then we have a natural CI estimator

ĉn = θ̂n ± zα/2
√
vn
rn
,

with P∗(ĉn 3 θ∗)
n→∞−−−→ 1− α.

1.3.1 The misspecified model setting

In the misspecified model setting there is no notion of a true parameter θ∗. The

previous definition of consistency doesn’t make sense in this case.

We need a new notion of consistency. We would still hope that even in the misspec-

ified setting our estimator (such as the MLE) converges and its limit is meaningful.

One reason for hope is that we can still define M- and Z-estimators in the misspecified

setting.
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For M-estimators, suppose that the general criterion function converges

Mn(θ)
P∗−→M∗(θ), (2)

as n→∞. (Note that Mn(θ) is a random variable since it is a function of Y1, . . . , Yn.)

Definition 1.7. Supposing equation (2) holds, then the corresponding M-estimator

θ̂n is consistent if θ̂n
P∗−→ θ∗ where

θ∗ = argmax
θ∈H

M∗(θ).

Similarly for Z-estimators, if φθ,n
P∗−→ φ∗θ, then the corresponding Z-estimator θ̂n is

consistent if θ̂n
P∗−→ θ∗ where θ∗ is the solution to φ∗θ(Y ) = 0.

2 Lecture 28/1

2.1 Method of moments

Method of moments (MoM) defines estimators by matching sample and population

moments. But in general, we do not need to restrict ourselves to moments. We can

obtain estimators by matching any sample and population quantity; in this case, we

have generalised method of moments estimators (although we will usually omit the

term ‘generalised’).

Definition 2.1. Let Y1, . . . Yn
iid∼ pθ∗ with θ∗ ∈ H. (So we are only defining the MoM

estimators in the well specified setting.) A (generalised) method of moment estimator

θ̂ is obtained by solving the system of equations

1

n

n∑
i=1

fj(Yi) = Eθfj(Y ),

in terms of θ, where f1, . . . , fk are some chosen functions and Y ∼ pθ.

Typically if θ ∈ Rd then k = d¿. The standard method of moments use the

functions fj(y) = yj.
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Remark 2.2. One advantage of the method of moments estimators is that we do not

need to specify a criterion function. Another is that certain well known estimators

can be expressed as MoM estimators. There is a class of models where the MLEs

are MoM estimators. (We will see this later.) Moreover, MoM estimators have good

properties in the limit of large samples, thanks to the delta method.

2.1.1 A central limit theorem for method of moments estimators

Theorem 2.3 (the delta method). Suppose θ̂n is a consistent estimator for θ ∈ Rd

with

rn(Tn − θ)
d−→ F , (3)

for some distribution F . (Note that equation (3) implies that θ̂n is consistent.) Sup-

pose φ : Rd → Rk is differentiable at θ. Then

1. rn(φ(θ̂n) − φ(θ))
d−→ φ′(θ)F , where φ′(θ) ∈ Rk×d is the Jacobian of φ evaluated

at θ:

[φ′(θ)]ij =
∂φi(θ)

∂θj
.

2.

rn(φ(θ̂n)− φ(θ))− rnφ′(θ)(Tn − θ)
P−→ 0.

The proof is left as an exercise. (It is a simple application of Taylor’s theorem

using Slutsky’s lemma and the continuous mapping theorem.)

Example 2.4. If
√
n(Tn− θ)

d−→ N (µ,Σ) and φ satisfies the theorem assumptions then

√
n (φ(Tn)− φ(θ))

d−→ N
(
φ′(θ)µ, φ′(θ)Σφ′(θ)T

)
.

So we automatically get asymptotic normality of φ(Tn) from asymptotic normality of

Tn!

Definition 2.5 (some notation from empirical process theory). Given a distribution

(i.e. a probability measure) P on X and a function f : X → Rd, define

Pf :=

∫
fdP =

∫
X
f(x)dP (x) = Ep[f(X)].
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Given observations x1, . . . , xn from P , define

Pnf =
1

n

n∑
i=1

f(xi),

to be the empirical PDF of f(X).

Recall that a MoM estimator θ̂n satisfies

1

n

n∑
i=1

fj(Yi) = Eθ̂n [fj(Y )], (4)

for j = 1, . . . , k. Define
˜
f = (f1, . . . , fk) and e(θ) := Pθ

˜
f where Pθ is the probability

measure under pθ. With this notation, equation (4) becomes

Pn
˜
f = e(θ̂n).

When does a solution to equation (4) exist? A necessary condition is that Pn
˜
f is in

the range of e. Further, if we suppose that e is one-to-one, then θ̂n = e−1(Pn
˜
f) is the

unique MoM estimator.

From the central limit theorem, we know that

√
n
(
Pn

˜
f − Pθ

˜
f
) d−→ N (0,Σ),

where

Σ = Cov(
˜
f(Y )) = Eθ

[
˜
f(Y )

˜
f(Y )T

]
−
[
Eθ

˜
f(Y )

] [
Eθ

˜
f(Y )

]T
= PθffT − Pθf(Pθf)T.

The delta method gives an asymptotic distribution of the (unique) MoM estimator

θ̂n:

√
n
(
θ̂n − θ

)
=
√
n
(
e−1
(
Pn

˜
f
)
− e−1

(
Pθ

˜
f
))

d−→
[
e−1 (Pθf)

]′N (0,Σ)

= N
(

0,
[
e−1 (Pθf)

]′
Σ
([
e−1 (Pθf)

]′)T)
,

where [e−1 (Pθf)]
′

is the Jacobian of e−1 evaluated at Pθf (not the derivative of θ).

That is, [e−1 (Pθf)]
′
= (e−1)

′∣∣
Pθf

.
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Lemma 2.6 (the inverse function theorem). Let F : Rd → Rd be continuously dif-

ferentiable in a neighbourhood of θ ∈ Rd. Suppose that F ′|θ=θ0 ∈ Rd×d is invertible.

Then F−1 is well defined and continuously differentiable in some neighbourhood NF (θ0)

of F (θ0). Moreover, [
F−1

]′∣∣∣
t

=
[
F ′
(
F−1(t)

)]−1
, (5)

for t ∈ NF (θ0).

The LHS of equation (5) is the Jacobian of F−1 evaluated at t. The RHS is the

inverse of {the Jacobian of F evaluated at F−1(t)}.
If e satisfies Lemma 2.6 then[

e−1 (Pθf)
]′

= [e′(θ)]
−1
,

since e(θ) = Pθ
˜
f so that e−1(Pθ

˜
f) = θ. The RHS is the inverse of {the Jacobian of e

evaluated at θ}.
The following theorem recaps the above discussion.

Theorem 2.7. Let e(θ) = Pθ
˜
f be one-to-one on an open set Θ ⊂ Rd and continuously

differentiable at θ∗ ∈ Θ. Assume that e′(θ∗) is non-singular; the L2 norm Pθ∗
∥∥
˜
f
∥∥2

is

finite (so that we can apply the CLT); and Yi
iid∼ Pθ∗ (so we are in the well specified

setting). Then the MoM estimator θ̂n = e−1
(
Pn

˜
f
)

exists with probability going to 1*

(as n→∞) and

√
n
(
θ̂n − θ∗

)
d−→ N

(
0, [e′(θ∗)]

−1
Covθ∗(

˜
f)
(

[e′(θ∗)]
−1
)T)

= N
(

0, [e′(θ∗)]
−1 [Pθ∗

˜
f
˜
fT − e(θ∗)e(θ∗)T

] (
[e′(θ∗)]

−1
)T)

= N
(

0, [e′(θ∗)]
−1 Pθ∗

˜
f
˜
fT
(

[e′(θ∗)]
−1
)T)

,

where the convergence is under Pθ∗�.

So we have obtained a CLT for MoM estimators just from using the delta method.

For other estimators (such as M- and Z-estimators) we will need more theory.

*The MoM estimator exists as soon as Pn
˜
f ∈ e(Θ) which happens with probability tending to

one by the WLLN.
�add-on Apparently we can cancel the term e(θ∗)e(θ∗)T but I don’t understand why.
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2.1.2 MoM Estimators in the high dimensional setting

MoM estimators are useful in modern research in the high dimensional supervised

setting. See the survey paper that Pragya references. In this setting, we have obser-

vations of the outcome Y and the covariates X. The number of samples n goes to

infinity and the number of features p also goes to infinite at a rate comparable to or

faster than n (that is, p 6= o(n)). In this case, we typically must have dim
˜
f →∞.

2.2 The exponential families

Definition 2.8. A class of distributions {pθ : θ ∈ H} with H ⊂ Rd is an exponential

family if there exists a sufficient statistic T : X → Rd such that the density pθ factors

as

pθ(x) = h(x) exp
[
θTT (x)− A(θ)

]
dµ(x),

with regard to the base measure µ and where h and µ do not depend on θ and

A(θ) = log

∫
h(x) exp

[
θTT (x)

]
dµ(x),

is the integrating constant. A is called the cumulant function and θ is called the

natural parameter. The natural parameter space Θ is the set of parameters θ for

which pθ exists (i.e for which A(θ) < ∞). If Θ is non-empty and open then we say

that the family is regular.

2.2.1 Some fundamental properties

The moments of the sufficient statistic can be linked to the derivatives of the cumulant.

Lemma 2.9. A(θ) is convex and infinitely differentiable with

∂keA(θ)

∂θα1
1 . . . ∂θαdd

=

∫
h(x)T1(x)α1 . . . Td(x)αd , (6)

where
∑d

j=1 αj = k and αj ∈ N. (To prove equation (6) we need only prove that we

can exchange derivatives and integrals.)
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(add-on) I think this lemma shows that A is the cumulant generating function.

We omit the proof of this lemma. We have

∇θe
A(θ) = eA(θ)∇θA(θ) =

(∫
X
h(x)Tj(x) exp

(
θTT (x)

)
dµ(x)

)
j=1,...,d

so that

∇θA(θ) = Eθ[T (X)]. (7)

We can also show that the Hessian

∇2
θA(θ) = Cov(T ). (8)

2.2.2 MLE in exponential families

The MLE maximises ln(θ) − h(x) = θTPnT − A(θ). (Recall the notation Pnf from

Definition 2.5.) Differentiating with regard to θ, the MLE is a solution to the equation

PnT −∇θA(θ) = 0.

Yet∇θA(θ) = Eθ[T (X)] (equation 7). Hence the MLE satisfies PnT = Eθ[T (X)]. This

equation should look familiar from Theorem 2.7 – the MLE is a method of moments

estimator with f = T . If e(θ) = Eθ[T (x)] satisfies the conditions of Theorem 2.7,

then the MLE is given by

θ̂n = e−1 (PnT ) ,

and

√
n
(
θ̂n − θ∗

)
d−→ N

(
0, [e′(θ∗)]

−1
Covθ∗ [T (X)]

(
[e′(θ∗)]

−1
)T)

= N
(
0, (Covθ∗ [T (X)])−1)

where the convergence is under Pθ∗ and the second line follows from the fact that

e(θ) = ∇θA(θ) so that e′(θ) = ∇2
θA(θ)|θ=θ∗ = Covθ∗ [T (X)] by equation 8.

Definition 2.10. Note that for the assumptions of Theorem 2.7 to hold, we need

that Covθ∗ [T (X)] is non-singular. If Covθ∗ [T (X)] is non-singular then we call the

exponential family full.
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Can we represent the asymptotic covariance in another form using the likelihood

function? Yes! We know that∇θln(θ) = T (x)−∇θA(θ) and so∇2
θln(θ) = −∇2

θA(θ) =

−Covθ[T (X)]. Since ∇2
θln(θ) doesn’t depend on X, we have

∇2
θln(θ) = Eθ

[
∇2
θln(θ)

]
= −I(θ),

where I(θ) is the Fisher information. So in the case of full exponential families (with

e satisfying the assumptions of Theorem 2.7), we get the classical MLE asymptotic

theorem
√
n
(
θ̂n − θ∗

)
d−→ N

(
0, I(θ∗)−1

)
,

for free, after establishing the MoM asymptotic Theorem 2.7.

Example 2.11 (linear regression). Let (xi, yi)i=1,...,n be paired observations with yi =

xTi θ
∗ + εi and εi

iid∼ N (0, 1). The log likelihood is −1/2‖y −Xθ‖2. We can write the

density as an expoential family and we can show that the MLE is given by

θ̂ML
n =

(
XTX

)−1
XTy.

Using our asymptotic result, we get that

√
n
(
θ̂ML
n − θ∗

)
d−→ N

(
0,Eθ∗

[(
XTX

)−1
])
.

Two examples of exponential families where the assumption of this theory aren’t

satisfied:

1. When Covθ∗ is singular;

2. In curved exponential families (for example {N (θ, θ2) : θ ∈ R}).

3 Lecture 2/2

3.1 Consistency of the MLE

We will work in the following set-up. Let Y1, . . . , Yn
iid∼ p∗. (Note that there is no

parameter, so we are not necessarily in the well-specified setting.) LetM = {pθ : θ ∈

17



H} be the hypothesised model class. The MLE is defined as

θ̂ML = argmax
θ∈H

n∑
i=1

log pθ(yi).

To study the consistency of the MLE, we start with the question, what are the

basic properties of the above criterion function? Fix θ ∈ H. By the SLLN (and the

iid assumption), assuming that E∗|log pθ(Y )| <∞, we have

1

n

n∑
i=1

log pθ(Yi)
P∗−−−→

n→∞
E∗ [log pθ(Y )] ,

where P∗ is convergence in probability under the true data generating process p∗ and

E∗ is expectation with respect to this p∗.

Define l∗ : θ 7→ E∗ [logθ(Y )]. We hope that the MLE, if it converges, converges to

a maximiser of l∗. We will show later that this is true (under some conditions)!

Define θ∗ = argmaxθ∈H l
∗(θ). Note that previously we used the notation θ∗ to

denote the true data generating parameter; this is no longer necessarily the case

(although we will see later that it is under mild assumptions in the well-specificed

case). Instead θ∗ is simply the maximiser of the theoretical log likelihood E∗ [logθ(Y )].

How can we interpret θ∗?

3.1.1 θ∗ in the well-specified setting

Let θ̃ ∈ H be such that pθ̃ = p∗ is equal to the true data generating process. (So θ̃

is the true data generating parameter – this notation replaces the previously used θ∗.

We have also replaced the notation p∗ with p∗.) We would hope that θ∗ = θ̃. This is

true under mild conditions, by the following Proposition.

Proposition 3.1 (Lemma 5.35 of [vdV]). Let {pθ : θ ∈ H} be a well specified model

and θ̃ be the data generating value. Assume that pθ(y) > 0 for all θ ∈ H and all

y ∈ Y and that the model is identifiable. Then the function

θ 7→ l∗(θ) =

∫
Y

log pθ(y)pθ̃(dy),

is maximised uniquely at θ̃, the true data generating parameter.
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Proof. Maximising l∗ is equivalent to maximising

C(θ) =

∫
Y

log

[
pθ(y)

pθ̃(y)

]
pθ̃(dy),

(since C(θ) is equal to l∗(θ) up to an additive constant
∫
Y log[pθ̃(y)]pθ̃(dy).)

Observe that C(θ̃) = 0. Hence it suffices to show that C(θ) < 0 for all θ 6= θ̃. We

can use Jensen’s inequality or (as we will do) use the fact that log x ≤ 2(
√
x− 1) for

all x > 0: For θ 6= θ̃,

C(θ) ≤ 2

∫
Y

(√
pθ(y)

pθ̃(y)
− 1

)
pθ̃(dy)

=

∫
Y

√
pθ(y)pθ̃(y)− pθ̃(y)− pθ(y)dy

= −
∫
Y

(√
pθ(y)−

√
pθ̃(y)

)2

dy

< 0,

where the second line follows from the fact that
∫
Y pθ̃(y)dy =

∫
Y pθ(y)dy = 1 and the

last line follows by identifiability. This provees that the maximiser θ∗ exists, is unique

and equals θ̃.

3.1.2 θ∗ in the misspecified setting

In this setting we replace C with the analogue

D : θ 7→
∫
Y

log

[
pθ(y)

p∗(y)

]
p∗(dy),

where p∗ is the true data generating distribution. Minimising D is equivalent to

minimising the KL-divergence between p∗ and pθ:

θ∗ = argmax
θ∈H

l∗(θ) = argmin
θ∈H

KL(p∗||pθ),

where KL(p||q) =
∫
Y log

[
p(y)
q(y)

]
p(dy). Hence pθ∗ is the KL projection of p∗ onto M.
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In the well-specified case, we have D(θ∗) = 0. In the misspecified case, we have

D(θ∗) = E∗
(

log

[
pθ(y)

p∗(y)

])
< logE∗

(
pθ(y)

p∗(y)

)
= 0.

Hence, D(θ∗) can be interpreted as a measure of how misspecified the model is.

3.1.3 Sufficient conditions for convergence to θ∗

Recap: Recall that θ∗ = argmaxθ∈H E∗ [log pθ(Y )] is the maximiser of the theoretical

log-likelihood; it is not necessarily the true data generating parameter. However,

under mild conditions, we showed (Proposition 3.1) that θ∗ is the true data generating

parameter in the well-specified setting; and in the misspecified setting pθ∗ is the KL-

projection of the true data generating parameter p∗ onto the model space M.

Suppose that 1
n
ln(θ) converges pointwise (in θ) to l∗(θ) in P∗-probability. (Note

that we can view each ln(θ) as a random variable, since it is a function of Y1, . . . , Yn.)

Is this sufficient to guarantee θ̂ML → θ∗? No – here is a counterexample: Suppose H
is infinite. Further suppose that 1

n
ln(θ) has a spike at θ 6= θ∗ and the spike moves as

n increases, so that for each θ, there is an n large enough so that there is no spike

at 1
n
ln(θ). Then we have pointwise convergence, but argmaxθ∈H

1
n
ln(θ) will follow the

spike as n→∞ and not converge to θ∗. More concretely, let H = R and suppose the

spike moves off to infinity as n→∞.

This example shows that we need uniform convergence to guarantee consistency

of the MLE.

Theorem 3.2 (consistency result #1). Let ln be random functions on H (i.e. ln(θ)

is a random variable) and let l∗ be a fixed function on H. Let θ∗ ∈ H be the mode of

l∗. Suppose the assumptions:

1. convergence of ln(θ) to l(θ) which is uniform in θ – that is:

sup
θ∈H

∣∣∣∣ 1nln(θ)− l∗(θ)
∣∣∣∣ P∗−−−→
n→∞

0;

2. the mode of l∗ is well separated: for all ε > 0,

sup
θ∈H

d(θ,θ∗)≥ε

l∗(θ) < l∗(θ∗).
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Figure 1: A situation prohibited by the well-separated mode assumption.

(Note that the supremum of an empty set is negative infinity.) Then any sequence

θ̂n maximising ln converges to θ∗ in P∗-probability. (Here P∗-probability is the true

generating process of the random variables ln(θ).)

Note: throughout this course we will assume that all sets are at least metric spaces.

This means that we can equip a metric d to H. Assumption 2. implies that θ∗ is a

global mode of l∗ but it is a stronger statement: it prohibits a sequence {l∗(θn)} from

reaching l∗(θ∗) except when limn→∞ θn = θ∗ (for example, when H = R, l∗(θ) cannot

increase to l∗(θ∗) as θ →∞). See the section materials for an example of this. add-on

This condition cannot be replaced with supθ∈H
θ 6=θ

< l∗(θ∗) – such a change would force

l∗ to be discontinuous at θ∗.

Proof.

1. 1
n
ln(θ∗) = l∗(θ∗) + oP∗(1) by the convergence of ln. (Here oP∗(1) is a random

variable that converges to zero in P∗-probability.)

2. θ̂n maximises 1
n
ln(θ) so that 1

n
ln(θ̂n) ≥ 1

n
ln(θ∗).

We get

l∗(θ∗)− l∗(θ̂n) =
1

n
ln(θ∗) + oP∗(1)− l∗(θ̂n)
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≤ 1

n
ln(θ̂n)− l∗(θ̂n) + oP∗(1)

≤ sup
θ∈H

∣∣∣∣ 1nln(θ)− l∗(θ)
∣∣∣∣+ oP∗(1)

P∗−−−→
n→∞

0,

where the first line follows from 1.; the second from 2. and the third by uniform

convergence (note that we need uniform convergence since we are bounding ln at a

random point θ̂n). But we also know that

l∗(θ∗)− l∗(θ̂n) ≥ 0,

P∗-a.s. So l∗(θ̂n)
P∗−−−→

n→∞
l∗(θ∗).

Fix ε > 0 and some η = η(ε) > 0. As events,

{d(θ̂n, θ
∗) ≥ ε} ⊆ {l∗(θ̂n) ≤ l∗(θ∗)− η}

⊆
{∣∣∣l∗(θ̂n)− l∗(θ∗)

∣∣∣ ≥ η
}

The probability of event
{∣∣∣l∗(θ̂n)− l∗(θ∗)

∣∣∣ ≥ η
}

goes to 0 by the previous reasoning.

Hence P∗
(
d(θ̂n, θ

∗) ≥ ε
)
→ 0.

Remark 3.3. We could modify the definition of θ̂n to be approximate maximisers:

that is, we need only require

ln(θ̂n) ≥ ln(θ) + oP∗(1),

for all θ ∈ H.

Definition 3.4.

1. The definition of small-o in probability : Xn = oP(Rn) if there exists a random

variable Zn such that Xn = ZnRn and Zn
P−−−→

n→∞
0.

2. The definition of big-O in probability : Xn = OP(Rn) if there exists a random

variable Zn such that Xn = ZnRn and Zn is bounded in P-probability – that is,

for all ε > 0, there is a constant M such that

sup
n∈N

P(‖Zn‖ > M) < ε.
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4 Lecture 4/2

4.1 Uniform convergence

Recall the definition of uniform convergence (assumption 1 in Theorem 3.2):

Definition 4.1. A sequence of random functions ln with domain H converges uni-

formly to l∗ if

sup
θ∈H
|ln(θ)− l∗(θ)| P∗−−−→

n→∞
0.

Definition 4.2. Suppose F is a class of functions and {Xn}n∈N are iid random

variables with density p∗. The uniform law of large numbers (ULLN) holds for F and

{Xn} if

sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

f(Xi)− E∗[f(X)]

∣∣∣∣∣ P∗−−−→
n→∞

0.

Example 4.3 (Glivenko-Cantelli theorem). Let {Xn}n∈N be iid from a distribution

with CDF F ∗. Let

F = {1(−∞,t] : t ∈ R}.

Then the ULLN holds for F and {Xn}:

sup
t∈R

∣∣∣∣∣ 1n
n∑
i=1

1(−∞,t](Xi)− F ∗(t)

∣∣∣∣∣ P∗−−−→
n→∞

0.

That is, the empirical CDF converges uniformly to the true CDF in P∗-probability.

(Proof: in section 2 we show a.s. convergence.)

Consider continuous {Xn}
iid∼ p∗. Can you think of a property of |mathcalF such

that the ULLN will not be satisfied? One possible answer: whenever the space of

functions F is too large. For example F = {f |f : R → [0, 1] continuous}. Each f is

bounded so the LLN holds for all f ∈ F . But we will show that the ULLN doesn’t

hold for F .

Take δ > 0, n ∈ N and any x1, . . . , xn ∈ R. Then there exists f ∈ F such that

1

n

n∑
i=1

f(xi) ≥ 1− δ

23



Eθ[f(X)] ≤ δ

The idea for constructing f is to set f to be zero, except it has peaks of 1 at x1, . . . , xn,

and then make it continuous.

We can construct such an f for every realisation of X1, . . . , Xn. Thus,

sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

f(Xi)− E∗[f(X)]

∣∣∣∣∣ ≥ 1− 2δ,

with P∗-probability 1.

We will discuss ULLN more in the section. See also the paper (1979) Empirical

Processes: A survey of results for iid random variables.

What are some sufficient conditions under which ULLN holds?

Proposition 4.4. Let {qθ : θ ∈ H} be a family of functions such that qθ : Y ⊂ Rp →
R is measurable and Y1, Y2, . . .

iid∼ p∗ with support Y. Assume

1. H is compact. (Also, throughout this course we assume that everything is at

least a metric space.)

2. For all y ∈ Y, the function θ 7→ qθ(y) is continuous.

3. A domination condition (which captures the idea that the function class is not

too large): ∫
sup
θ∈H
|qθ(y)|p∗(dy) <∞.
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Then

sup
θ∈H

∣∣∣∣∣ 1n
n∑
i=1

qθ(Yi)− Eθ [qθ(Y )]

∣∣∣∣∣ P∗−−−→
n→∞

0.

(We don’t actually need Y ⊂ Rp.)

Proof. See Question 8, Assignment 1.

add-on The rest of this section is taken from Section 2. The proof of Proposition

uses two lemmas (for their proofs see Section 2):

Lemma 4.5. Let C = {h1, . . . , hK} be a finite family of measurable functions from

some space T to R. Given X1, . . . , Xn iid from some distribution such that E|hi(X)| <
∞ for i = 1, . . . , K, we have a uniform strong law of large numbers (USLLN):

sup
h∈C

∣∣∣∣∣ 1n
n∑
i=1

h(Xi)− E[h(X1)]

∣∣∣∣∣ a.s.−−−→
n→∞

0.

Lemma 4.6. Let F be a class of functions from some space T to R. Assume that for

every ε > 0, there exists a finite number Nε of brackets [lj, uj] such that

1. E?|lj(X)| <∞ and E?|uj(X)| <∞ for all j = 1, . . . , Nε;

2. E?|uj(X)− lj(X)| < ε for all j = 1, . . . , Nε;

3. for all h ∈ F , there exists some j such that h ∈ [lj, uj] – that is, lj(x) ≤ h(x) ≤
uj(x) for all x ∈ T .

Then a USLLN holds:

sup
h∈F

∣∣∣∣∣ 1n
n∑
i=1

h(Xi)− E[h(X)]

∣∣∣∣∣ a.s.−−−→
n→∞

0.

4.2 Consistency of MLE (revisited)

Theorem 4.7 (consistency result #2). Let {pθ : θ ∈ H} be a family of distributions

with common support Y. Suppose we are given observations Y1, . . . , Yn
iid∼ p∗. Assume

that
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1. H is compact.

2. (a) For all θ ∈ H and y ∈ Y, pθ(y) > 0.

(b) The function y 7→ pθ(y) is measurable for all θ ∈ H.

(c) The function θ 7→ pθ(y) is continuous for all y ∈ Y.

3. A domination condition: ∫
sup
θ∈H
|log pθ(y)|p∗(dy) <∞.

4. The function

θ 7→ l∗(θ) = Eθ (log[pθ(y)]) =

∫
log[pθ(y)]p∗(dy)

is uniquely maximised at θ∗.

Then the MLE is consistent: θ̂ML P∗−−−→
n→∞

θ∗.

Proof. We get uniform convergence by Proposition 4.4. It suffices to show that: i) l∗

is continuous; and ii) the mode θ∗ of l∗ is well separated. Then we can apply Theorem

3.2.

To prove i), we will show that if θn → θ0 then l∗(θn)→ l∗(θ0) – that is,

E∗ [log pθn(Y )]→ E∗ [log pθ0(Y )] . (9)

By 2c, we have that log pθn(Y )→ log pθ0(Y ). Condition 3. gives us that the uniform

dominator g(Y ) := supθ∈H|log pθ(Y )| is in L1 so we can apply the DCT to get equation

9 as desired.

Now we will prove ii). We want to show that for all ε > 0, there exists a constant

c > 0 such that

sup
θ∈H

d(θ,θ∗)≥ε

l∗(θ) < l∗(θ∗)− c.

We proceed by contradiction. Suppose there exists ε > 0, a positive sequence {ck}
converging to zero, and a sequence {θk} ⊂ {θ ∈ H : d(θ, θ∗) ≥ ε} such that

l∗(θk) ≥ l∗(θ∗)− ck.
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By compactness, there is a convergent subsequence of {θk} with limit θε and

l∗(θε) ≥ l∗(θ∗).

This contradicts the fact that θ∗ is the unique maximiser, since d(θε, θ
∗) ≥ ε > 0.

(Note that we need compactness of the entire space here otherwise θk can go off to

infinity.)

Example 4.8 (conditions for Theorem 4.7 to hold for natural exponential families).

Given Y1, . . . , Yn
iid∼ fθ with

fθ(y) = exp (θy − A(θ))h(y) ∈M = {fθ : θ ∈ H},

what do we need so that the assumptions of Theorem 4.7 are satisfied?

1. H must be compact.

2. (a) Common support is always satisfied in exponential families.

(b) h(y) is measurable.

(c) A(θ) is continuous.

3. We can bound the domination term, using the triangle inequality∫
sup
θ∈H
|θy − A(θ) + log h(y)|fθ∗(y)dy ≤ sup

θ∈H
|θ|Eθ∗|Y |+sup

θ∈H
|A(θ)|+Eθ∗|log h(Y )|.

(Here θ∗ is the true data generating parameter.) supθ∈H|A(θ)| is bounded since

H is compact and A continuous. supθ∈H|θ| is bounded since H is compact.

Hence to ensure the domination condition is satisfied, we need only require that

Eθ∗(Y ) and Eθ∗|log h(Y )| is bounded. (Since we generally do not know the true

θ∗, we would have to require that these terms are bounded for all θ ∈ H – but

this bound doesn’t have to be uniform!)
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4.3 Generalisations of Theorem 4.7 to M- and Z-estimators

Using Proposition 4.4, Theorem 4.7 can be generalised to M- and Z-estimators. Fur-

ther, Theorem 3.2 applies to M- and Z-estimators, as we spell out in the following

theorem.

Theorem 4.9 (Theorem 3.2 generalised to M-estimators). Consider a sequence of

(random) criterion functions θ 7→ 1
n
Mn(θ) and a function θ 7→M∗(θ) such that

1. (Uniform convergence:) supθ∈H
∣∣ 1
n
Mn(θ)−M∗(θ)

∣∣ P∗−−−→
n→∞

0.

2. (Well separated mode:) θ∗ is the well separated mode of M∗: for all ε > 0,

sup
θ∈H

d(θ,θ∗)≥ε

M∗(θ) < M∗(θ∗).

If θ̂n is a sequence of approximate maxima (or for Z-estimators, look at approximate

roots of criterion functions), that is, if

1

n
Mn(θ̂n) ≥ 1

n
Mn(θ) + oP∗(1),

then θ̂n
P∗−−−→

n→∞
θ∗.

Theorem 4.10 (add-on Theorem 4.7 generalised to M-estimators). Let {pθ : θ ∈
H} be a family of distributions and Mn(θ) = 1

n

∑n
i=1mθ(Yi) be a criterion function.

Suppose we are given observations Y1, . . . , Yn
iid∼ p∗. Assume that

1. H is compact.

2. (a) The function y 7→ mθ(y) is measurable for all θ ∈ H.

(b) The function θ 7→ mθ(y) is continuous for all y ∈ Y.

3. A domination condition: ∫
sup
θ∈H
|mθ(y)|p∗(dy) <∞.
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4. The function

θ 7→M∗(θ) = E∗ (mθ(Y )) =

∫
mθ(y)p∗(dy)

is uniquely maximised at θ∗.

5. θ̂n is a maximiser of Mn(θ).

Then the M-estimator is consistent: θ̂n
P∗−−−→

n→∞
θ∗.

add-on We can weaken the assumption that H is compact – we need only the

existence of a compact set K ⊂ H such that

E∗
[

sup
θ∈H∩Kc

mθ(Y )

]
< M∗(θ∗).

(See Assignment 1, Question 5 for details and proof.)

add-on Consistency of Z-estimators is somewhat easier to establish. See Theorems

6.9.2 (page 513) of [LC06]. We also have an analogue to Theorem 3.2 (which uses

stronger assumptions than Theorem 6.9.2 in [LC06]).

Theorem 4.11 (add-on Theorem 3.2 for Z-estimators). Let Ψn be random real-valued

functions on H with roots θ̂n (not necessarily unique) and let Ψ∗ be a fixed real-valued

function with a unique root θ∗. (Note that uniqueness is implied by assumption 2.)

Suppose

1. Uniform convergence: supθ∈H|Ψn(θ)−Ψ∗(θ)| P∗−−−→
n→∞

0.

2. Well-separated root: Suppose that the root of Ψ∗ is well separated: for all ε > 0,

inf
θ∈H

d(θ,θ∗)≥ε

|Ψ∗(θ)| > 0,

assuming that {θ : d(θ, θ∗) ≥ ε} is non-empty.

Then θ̂n converges to θ∗ in P∗-probability. (Here P∗-probability is the true generating

process of the random variables Ψn(θ).)
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Proof. Establish Ψ?(θ̂n)
P∗−−−→

n→∞
Ψ?(θ?) = 0:∣∣∣Ψ?(θ̂n)

∣∣∣ =
∣∣∣Ψ?(θ̂n)−Ψ?(θ?)

∣∣∣
=
∣∣∣Ψ?(θ̂n)−Ψn(θ̂n)

∣∣∣
≤ sup

θ∈H
|Ψ?(θ)−Ψn(θ)|

P∗−−−→
n→∞

0,

where the second line follows from the fact Ψ?(θ?) = 0 = Ψn(θ̂n). That θ̂n
P∗−−−→

n→∞
θ∗

follows exactly the second half of the proof of Theorem 3.2: Fix ε > 0 and define

η(ε) = inf
θ∈R

|θ−θ∗|≥ε

|Ψ∗(θ)|.

Then

P?
(∣∣∣θ̂n − θ?∣∣∣ ≥ ε

)
≤ P?

(∣∣∣Ψ?(θ̂n)
∣∣∣ ≥ η(ε)

)
P∗−−−→

n→∞
0.

4.3.1 Weakening compactness

Compactness is a strong condition. The MLE can still be consistent when H is not

compact. For example, if θ̂ML is going to lie within a compact subset of H with

overwhelming probability, then θ̂ML will be consistent. (This can be formalised.)

add-on To prove consistency of an M-estimator, we can replace the compactness

assumption with an assumption that there exists a compact set K ⊂ H such that

θ∗ ∈ K and

E∗
[

sup
θ∈H∩Kc

mθ(Y )

]
< E∗ [mθ∗(Y )] ,

where θ∗ is the maximiser of E∗ [mθ(Y )] and the expectation is with respect to some

p∗. With this assumption, we can show that with P∗-probability going to one, the

maximiser θ̂n of Mn(θ) = 1
n

∑n
i=1m(θ) is in the compact set K. (See Assignment 1,

Question 5.) Then apply the Theorem which assumes compactness to get consistency

of θ̂n.
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4.3.2 Weakening uniform convergence

We can replace uniform convergence with weaker notions and get consistency of other

estimators. One notion is epiconvergence, defined by fn
e−→ f if , for all x and all

sequences {xn} converging to x,

lim inf
n→∞

fn(xn) ≥ f(x),

and for all x and some sequence xn → x,

lim sup
n→∞

fn(xn) ≤ f(x).

Epiconvergence is used to get consistency of minimum distance estimators (MDE):

θ̂MDE := argmin
θ

d

(
1

n

n∑
i=1

δYi , pθ

)
,

where 1
n

∑n
i=1 δYi is the empirical PDF, and

δy : t 7→

1 if t = y,

0 otherwise.
.

These are similar to MoM estimators.

5 Lecture 9/2

5.1 Asymptotic distributional properties of the MLE

In the previous lectures we have established consistency of the MLE: θ̂ML
n

P−−−→
n→∞

θ∗.

But we might want to ask how fast θ̂ML
n converges to θ∗ – or equivalently, how precise is

θ̂ML
n as an estimator of θ∗? That is, what is the sequence {rn} (the rate of convergence)

so that rn(θ̂ML
n − θ∗) d−→ F for some distribution F .

Recall why we study asymptotics. On the one hand, asymptotics is an abstraction,

since we will always have a finite sample. But through asymptotics, we can unify

many different parametric models. Moreover, asymptotics are good approximations
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if the rate of convergence rn is good (i.e. rn = Ω(
√
n)). To fully take advantage

of asymptotics, it is therefore important to look beyond consistency and study the

asymptotic distributional properties.

Recall from section 2.2.2, that for MLEs in full exponential families, we already

have established an asymptotic distributional result:

√
n
(
θ̂ML
n − θ∗

)
d−→ N

(
0, I(θ∗)−1

)
,

in the well-specified setting (since in this setting the MLE can be expressed as a MoM

estimator).

5.1.1 Score and Fisher information

Definition 5.1. Let Y1, . . . , Yn
iid∼ p∗ and M = {pθ : θ ∈ H}. The score statistic is

the first derivative of the log-likelihood (appropriately normalised):

S(θ) =
1

n
∇θln =

1

n

n∑
i=1

∇θ log pθ(Yi).

The observed Fisher information is the negative derivative of the score statistic:

− 1

n
∇2
θln = − 1

n

n∑
i=1

∇2
θ log pθ(Yi),

where ∇2
θ is the Hessian.

(add-on I believe it is more appropriate to define the observed Fisher information

as the square of the score statistic S(θ)2, since this always exists, whereas the log-

likelihood may not be twice differentiable.)

The expected Fisher information is the expectation of the observed Fisher infor-

mation (where the expectation is taken with respect to the same model parameter):

I(θ) = Eθ
[
− 1

n
∇2
θln

]
.

Remark 5.2. Suppose Y1, . . . , Yn
iid∼ pθ. Then EθSθ = 0 assuming that you can swap

derivatives and integrals. Moreover, I(θ) = Varθ[S(θ)] = Eθ[S(θ)2]. (See Stat211

notes for proofs.)
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5.1.2 Non-rigorous proof of MLE asymptotic normality

We can prove asymptotic normality of the MLE in more general settings than full

natural exponential families. The gist of the proof follows.

Let Y1, . . . , Yn
iid∼ p∗ (so that we are not necessarily in the well-specified setting).

Assuming consistency of the MLE, the fact that the MLE is a root of the score

equation (i.e. it satisfies ∇θln|θ=θ̂ML
n

= 0) suggests a Taylor expansion around the

true parameter θ∗:

0 = ∇θln|θ=θ̂ML
n

= ∇θln|θ=θ∗ +
(
θ̂ML
n − θ∗

)
∇2
θln
∣∣
θ=θ̃n

,

where θ̃n is between θ∗ and θ̂ML
n . Assuming ∇2

θln|θ=θ̃n is invertible,

√
n
(
θ̂ML
n − θ∗

)
=

[
− 1√

n
∇2
θln
∣∣
θ=θ̃n

]−1 [
1√
n
∇θln|θ=θ∗

]
. (10)

For the second term, suppose that θ∗ maximises E∗ log pθ(Y ) so that

E∗
[
∇θ log pθ(Y )|θ=θ∗

]
= 0,

(assuming EDI). Then we know by the CLT that

1√
n
∇θln|θ=θ∗ =

√
n

(
1

n

n∑
i=1

∇θ log pθ(Yi)|θ=θ∗ − E∗ [∇θ log pθ(Y )|θ=θ∗ ]

)
d−→ N (0,Var∗ [∇θ log pθ(Y )|θ=θ∗ ]) . (11)

For the first term, we assumed consistency, so we get θ̃n
P∗−→ θ∗ and we would expect[

1

n
∇2
θln
∣∣
θ=θ̃n

]−1
CMT−−−→

[
1

n
∇2
θln
∣∣
θ=θ∗

]−1
LLN−−→

[
E? ∇2

θ log pθ(Y )
∣∣
θ=θ∗

]−1
. (12)

Combining (10), (11), (12), we get

√
n
(
θ̂ML
n − θ∗

)
d−→

N
(

0,
[
E? ∇2

θ log pθ(Y )
∣∣
θ=θ∗

]−1
Var∗ [∇θ log pθ(Y )|θ=θ∗ ]

[
E? ∇2

θ log pθ(Y )
∣∣
θ=θ∗

]−1
)

(13)
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(The Hessian is symmetric, so no need to include a transpose in the last term of the

variance.) This is called the sandwich formula for variance. In the well-specified case

I(θ∗) = −E? ∇2
θ log pθ(Y )

∣∣
θ=θ∗

= Var∗ [∇θ log pθ(Y )|θ=θ∗ ] ,

as long as EDI holds and so (13) simplifies to

√
n
(
θ̂ML
n − θ∗

)
d−→ N

(
0, I(θ∗)−1

)
.

In the misspecified case, we can’t simplify (13) further.

5.1.3 Sufficient conditions for exchanging derivatives and integrals (EDI)

Proposition 5.3. Suppose that

1. V is an open subset of Rp;

2. (S,A, µ) is a measure space;

3. f : V × S → R is µ-integrable for every v ∈ V ;

4. for every (v, s) ∈ V × S, the derivative ∂
∂v
f(v, s) exists;

5. v 7→ ∂
∂v
f(v, s) is continuous for every s ∈ S;

6. Suppose there exists a µ-integrable function g : S → R such that for all v ∈
V, s ∈ S, ∥∥∥∥ ∂∂vf(v, s)

∥∥∥∥ ≤ g(s).

Then φ : v 7→
∫
S
f(v, s)dµ(s) is differentiable and

∂

∂v
φ(v) =

∫
S

∂

∂v
f(v, s)dµ(s).

Remark 5.4. In the proof of EθS(θ) = 0, we used the above proposition with f(θ, y) =

pθ(y) and g(y) = supθ∈H‖∇θpθ(y)‖. In the proof of I(θ) = Varθ[S(θ)], we used the

proposition with f(θ, y) = ∇θpθ(y) and g(y) = supθ∈H‖∇2
θpθ(y)‖.
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5.1.4 Asymptotic normality of the MLE

This section makes rigorous the discussion from section 5.1.2 and collects all of the

assumptions into a precise statement

Theorem 5.5. Let M = {pθ : θ ∈ H} be our model and assume that the pθ have

common support Y. Let Y1, . . . , Yn
iid∼ p∗. Suppose that

1. θ∗ is a local maximiser of l∗(θ) = E∗ [log pθ(Y )].

2. The MLE is consistent: θ̂ML
n

P∗−−−→
n→∞

θ∗ (where the MLE is any root of the score

equation).

3. There exists an open set U such that

(a) θ∗ ∈ U ;

(b) for all y ∈ Y, the map θ 7→ pθ(y) is twice continuously differentiable on U ;

(c) y 7→ pθ(y) is measurable for all θ ∈ U .

4. E∗ [∇2
θ log pθ(Y )|θ=θ∗ ] is non-singular and E∗‖∇2

θ log pθ(Y )|θ=θ∗‖
2
< ∞. (The

norm ‖·‖ is the sum of squared entries of the Hessian.)

5. A domination condition: There exists a compact ball K ⊂ U centred at θ∗ such

that

(a) E∗ [supθ∈K‖∇θ log pθ(Y )‖] <∞,

(b) E∗ [supθ∈K‖∇2
θ log pθ(Y )‖] <∞.

(The norm ‖·‖ is the sum of absolute values of entries of the gradient/Hessian.)

Then as n→∞,

√
n
(
θ̂ML
n − θ∗

)
d−→

N
(

0,
[
E? ∇2

θ log pθ(Y )
∣∣
θ=θ∗

]−1
Var∗ [∇θ log pθ(Y )|θ=θ∗ ]

[
E? ∇2

θ log pθ(Y )
∣∣
θ=θ∗

]−1
)

(14)
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add-on The maximiser θ∗ does not have to be unique, nor does it even need to

be a global – a local maximum works fine. But typically θ∗ will be a unique global

maximiser: In the well-specified case, Proposition 3.1 showed that the maximiser is

unique under mild conditions. In the misspecified case, l∗(θ) is maximised at the

KL-projection of p∗ onto M; if M is closed, non-empty and convex then the KL-

projection is unique.

See Theorems 5.41 and 5.42 from [vdV] for a slightly more general result without

the ambiguity in the definitions of θ∗ and θ̂ML
n .

The proof of Theorem 5.5 will be presented in the next lecture.

Remark 5.6. Consider the family of Laplace distributions with scale 1 and mean

θ ∈ R:

pθ(y) =
1

2
exp (−|y − θ|) .

The MLE for θ is the median. pθ does not satisfy assumption 3b of Theorem 2.7, yet

the MLE is asymptotically normal. This example illustrates how weak the theorem

is.

Theorem 5.5 is a classical result. We will see more general and powerful results

in the following lectures.

6 Lecture 11/2

6.1 Proof of Theorem 5.5 (classical MLE asymptotics)

Proof of Theorem 5.5. It suffices to show convergence in distribution only on sets

{An} with P(An)→ 1. That is, we will show that

P(Xn ≤ x ∩ An)→ F (x),

pointwise, at all continuity points x of the CDF F of (14). [This is a useful trick!]

The MLE θ̂ML
n has the property that 1

n
∇θln(θ̂ML

n ) = 0. So the mean value theorem

(i.e. first-order Taylor expansion) says

0 =
1

n
∇θln(θ∗) +

1

n
∇2
θln(θ̃n)(θ̂ML

n − θ∗), (15)
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where θ̃n is between θ̂ML
n and θ∗. But we already know from the CLT

√
n

(
1

n
ln(θ∗)− E∗ [∇θ log pθ∗(Y )]

)
d−→ N (0,Var∗∇θ log pθ∗(Y )) .

Since θ∗ is a local maximiser of E∗ log pθ(Y ), the second term on the LHS of the above

equation is zero by EDI. (add-on I think this is why we need assumption 5.(a).)

Our focus is therefore on the second term in (15). We will prove

1

n
∇2
θln(θ̃n)

P∗−→ E∗∇2
θ log pθ∗(Y ), (16)

at least on a set An with probability going to 1. Once we’ve established the LHS of

(16) is non-singular (again, at least on a set Bn with probability going to 1), a simple

application of Slutsky’s theorem would complete the proof.

To prove (16), we start by noting θ̃n is consistent, since θ̂ML
n is:

P∗
(
d(θ̃n, θ

∗) > ε
)
≤ P∗

(
d(θ̂ML

n , θ∗) > ε
)

n→∞−−−→ 0.

Secondly,∣∣∣∣ 1n∇2
θln(θ̃n)− E∗∇2

θ log pθ∗(Y )

∣∣∣∣ ≤ ∣∣∣∣ 1n∇2
θln(θ̃n)− E∗∇2

θln(θ̃n)

∣∣∣∣
+
∣∣∣E∗∇2

θln(θ̃n)− E∗∇2
θ log pθ∗(Y )

∣∣∣
≤ sup

θ∈K

∣∣∣∣ 1n∇2
θln(θn)− E∗∇2

θln(θn)

∣∣∣∣
+
∣∣∣E∗∇2

θln(θ̃n)− E∗∇2
θ log pθ∗(Y )

∣∣∣, (17)

where the second line holds when θ̃n ∈ K, which is true with probability going to 1.

Applying ULLN (Proposition 4.4, whose assumptions hold by 5.(b)), we get that

sup
θ∈K

∣∣∣∣ 1n∇2
θln(θn)− E∗∇2

θln(θn)

∣∣∣∣ P∗−−−→
n→∞

0.

Use DCT to show that the second term in (17) converges to zero. (In order to

apply the DCT, we need the domination condition 5.(b) and we need to show that

θ 7→ ∇2
θ log pθ(y) is continuous, so that ∇2

θln(θ̃n) → ∇2
θ log pθ∗(Y ). We did a similar

proof of continuity last week.) This proves (16).
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Now
√
n
(
θ̂n − θ∗

)
=

[
− 1

n
∇2
θln(θ̃n)

]−1(
1√
n
∇θln(θ∗)

)
,

only if the Hessian ∇2
θln(θ̃n) is non-singular. We know that E∗ [∇2

θ log pθ(Y )|θ=θ∗ ] is

non-singular and that the Hessian converges in probability to this expectation. It is

left as an exercise to show that there exists events Bn with probability going to 1 such

that the Hessian is non-singular on Bn. (add-on Hint: use the assumptions that the

likelihood is twice continuously differentiable on U , so that non-singularity extends

to an open ball around the expectation; and then observe that the Hessian must be

in this open ball with probability going to 1.)

The proof only holds for univariate θ (but the Theorem holds more generally). We

need to change the Taylor series expansion to allow for multivariate θ. Here ∇2
θln(θ̃)

becomes the matrix of 2nd derivatives of ln with the j-th row evaluated at some θ̃n,j

between θ∗ and θ̂n. Then change

1

n
λnθ ln(θ̃n)

P∗−→ E∗∇2
θ log pθ∗(Y )

to
1

n

∂2

∂θj∂θk
ln(θ̃n,j)

P∗−→ E∗
∂2

∂θj∂θk
log pθ∗(Y ),

for all j, k. See [FWCT] for details on the multivariate Taylor series expansion.

6.2 Quadratic mean differentiability (QMD)

We saw in Example 5.6 that Theorem 5.5 relies on strong assumptions which often

don’t hold, even when the MLE is asymptotically Gaussian. This motivates the

development of more general smoothness conditions which still guarantee that the

MLE is asymptotically Gaussian. This smoothness condition – called quadratic mean

differentiability (QMD) – will replace the twice continuously differentiable likelihood

assumption in Theorem 5.5.

QMD is a regularity condition on the map θ 7→ √pθ rather than on the map

θ 7→ pθ. We will see why this is relevant and powerful.
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Definition 6.1. A family {pθ : θ ∈ H} with H ⊂ Rp is quadratically mean differen-

tiable at θ0 if there exists a vector-valued function η(x, θ0) such that for all h ∈ Rp,∫
X

(√
pθ0+h(x)−

√
pθ0(x)− η(x, θ0)Th

2

√
pθ0(x)

)2

dµ(x) = o(‖h‖2) as h→ 0. (18)

The function η is called the quadratic mean derivative (or sometimes the score).

Intuition: The integrand in (18) looks like a first-order Taylor expansion. If
√
pθ

is twice continuously differentiable at θ0, then

√
pθ0+h(x)−

√
pθ0(x)−

(
∇θ

√
pθ(x)

∣∣∣
θ=θ0

)T

h =
1

2
∇2
θ

√
pθ(x)

∣∣∣
θ=θ0

h2 = o(‖h‖).

In this case we would expect

η(x, θ0)Th

2

√
pθ0(x) =

(
∇θ

√
pθ(x)

∣∣∣
θ=θ0

)T

h,

so that
η(x, θ0)

2

√
pθ0(x) = ∇θ

√
pθ(x)

∣∣∣
θ=θ0

=

∂
∂θ
pθ(x)

∣∣
θ=θ0

2
√
pθ0(x)

,

and hence

η(x, θ0) =

∂
∂θ
pθ(x)

∣∣
θ=θ0

pθ(x)
=

∂

∂θ
log pθ(x)

∣∣∣∣
θ=θ0

.

So intuitively η should be viewed as the ‘derivative’ of the log-likelihood – justifying

it’s name as the score function.

Remark 6.2.

1. Why is QMD better than assuming differentiability of θ 7→ log pθ(x)? There are

some functions which are QMD but not differentiable (for example the double

Laplace distribution from the previous section).

Since the QMD takes an integral over X , we are able to ignore sets of measure

zero. In particular, QMD can ignore the fact that the derivative may not exist

at some points (of measure zero).
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2. Why do we define QMD using
√
pθ(x) and not pθ(x)? This is so that we don’t

require L2-integrability.

Example 6.3.

1. In section, we will prove that the double Laplace distribution

pθ(x) =
1

2
e−|x−θ|,

is QMD. How do we guess what η should be? Where the derivative of the log-

likelihood l exists, we can set η to equal l′. The points where l′ doesn’t exist

form a measure-zero set, so η can be arbitrary on these points and the integral

in (18) will remain unchanged. For example,

η(x, θ0) =


1 if x < θ0,

−1 if x > θ0,

0 if x = θ0,

will satisfy the definition of QMD.

2. Let pθ = Unif([0, θ]). Is this family QMD at any θ0? The answer is no, because

the support depends on θ. Compute

pθ(x) =
1{x ∈ [0, θ]}

θ

log pθ(x) = log 1{θ ∈ [x, θ]} − log θ.

Take θ0 > 0 and h > 0. Then∫ θ0+h

θ0

(√
pθ0+h(x)−

√
pθ0(x)− 1

2
η(x, θ0)h

√
pθ0(x)

)2

dµ(x)

=

∫ θ0+h

θ0

(
1√

θ0 + h

)2

dµ(x)

=
h

θ0 + h
6= o(‖h‖2),

since pθ0(x) = 0 for x ∈ (θ0, θ0 + h].
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6.2.1 QMD generalises Fisher information

Previously, when we wanted to understand the MLE for exponential families, we

used Fisher information. Now we want a generalisation of Fisher information in

QMD families.

Theorem 6.4 (Lemma 12.2.1 of [TSH]). If the parameter space H is an open subset

of Rk and the model is QMD at θ0 ∈ H, then

1. Eθ0 [η(X, θ0)] = 0, and

2. Eθ0 [ηi(X, θ0)ηj(X, θ0)] < ∞, so all the elements of Eθ0η(X, θ0)η(X, θ0)T are

finite.

See proof in Section 3.

Definition 6.5. Suppose pθ is QMD at an interior point θ0 of the parameter space

H. Then the Fisher information of θ0 is given by

I(θ0) = Eθ0η(X, θ0)η(X, θ0)T,

which is well defined by the previous theorem.

When the likelihood θ 7→ pθ(x) is continuously differentiable and I continuous,

this definition agrees with the original definition of Fisher information:

I(θ) = Eθ

(
∂

∂θ
log pθ(X)

[
∂

∂θ
log pθ(X)

]T)
,

by Theorem 6.6.

6.2.2 Sufficient conditions for QMD

Theorem 6.6 (Lemma 7.6 of [vdV]). For every θ in an open subset Θ of Rk, let pθ

be a µ-density. Suppose that the map

Θ→ R,
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θ 7→
√
pθ(x),

is continuously differentiable for all x. If the elements of the Fisher information

matrix

I(θ) :=

∫
X

∇θpθ(x) (∇θpθ(x))T

pθ(x)pθ(x)
pθ(x)dµ(x),

are well defined and continuous in θ, for all θ ∈ Θ, then pθ is QMD at every θ ∈ Θ

with score

η(X, θ) =
∂pθ(X)
∂θ

pθ(X)
=

∂

∂θ
log pθ(X).

The assumptions of this theorem can hold when pθ is not twice continuously

differentiable. See also theorem 3 in section 3, for another set of (slightly different)

sufficient conditions for QMD.

6.3 General MLE asymptotic Normality theorem

Recall that we introduced QMD so that we could develop an asymptotic normality

theorem for MLEs which didn’t rely on twice continuous differentiability. We are now

ready to state that theorem.

Theorem 6.7 (Theorem 7.12 of [vdV]). Let X1, . . . , Xn
iid∼ pθ∗ with θ∗ in the interior

of the parameter space H. Assume pθ is QMD at θ∗. (A locally Lipschitz condition:)

Suppose there exists a measurable function K(x) ∈ L2(θ∗) (i.e. Eθ∗K2(X) <∞) such

that

|log pθ1(x)− log pθ2(x)| ≤ K(x)‖θ1 − θ2‖,

for all x and all θ1, θ2 in a neighbourhood of θ∗. If I(θ∗) (as given in Definition 6.5)

is non-singular and the MLE θ̂ML
n consistent for θ∗, then

√
n
(
θ̂ML
n − θ∗

)
d−→ N

(
0, I−1(θ∗)

)
.

There is analogous theorem for the misspecified case (it just requires much more

notation). This is much stronger than Theorem 5.5 – we have replaced five strong

assumptions with a single smoothness condition (QMD) and a locally Lipschitz con-

dition.
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Intuition for the locally Lipschitz condition: Suppose log pθ(x) is differentiable

with regard to θ. Then the MVT says

log pθ1(x)− log pθ2(x) =
∂

∂θ
log pθ(x)

∣∣∣∣
θ=θ̃

(θ1 − θ2) .

So, if we can find a square-integrable function K(x) that bounds ∂
∂θ

log pθ(x) in a

neighbourhood around θ∗, then K will satisfy the locally Lipschitz condition.

7 Lecture 16/2

In this lecture, we will extend the MLE asymptotic normality theorem to M- and

Z-estimators and then examine some applications (asymptotic influence functions,

robust regression and optimal robust estimators).

7.1 Recap of oP and OP

Recall the definitions of stochastic o and O symbols from Definition 3.4:

1. oP(1) is shorthand for a sequence of random variables that converge to zero in

P-probability.

2. oP(Rn) is a sequence of random variables Xn = RnYn with Yn = oP(1).

3. OP(1) is a sequence of random variables Xn that are uniformly tight (aka

bounded in probability): for every ε > 0, there exists M such that P(|Xn| >
M) < ε for all n.

4. OP(Rn) is defined analogously to oP(Rn).

When Rn < 1, R−1
n can be understood as the ‘rate’ (i.e. speed) of convergence. For

example, if Xn = oP(1/
√
n) then Xn

P−→ 0 faster than 1/
√
n. When Rn > 1, it can be

thought of as a dominator of Xn. If Xn = oP(Rn), then Rn grows asymptotically a

factor faster than Xn – so much so that Xn/Rn tends to zero in probability.
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7.2 Asymptotic distributions of M- and Z-estimators

We can extend the MLE asymptotic results to M- and Z-estimators with some regu-

larity conditions.

Theorem 7.1 (Z-estimators - Theorem 5.21 of [vdV]). Let Y1, . . . , Yn
iid∼ p∗. For

every θ in an open subset H of Rp, let ψθ be a measurable vector-valued function (i.e.

we have a function H× Y → Rk given by (θ, y) 7→ ψθ(y)). Assume that

1. (A local Lipschitz condition:) There exists a measurable L2 function ψ̇ : Y → R
(i.e.

∫
Y ψ̇

2(y)p∗(dy) <∞) such that for all θ1, θ2 in a neighbourhood of θ∗,

‖ψθ1(y)− ψθ2(y)‖ ≤ ψ̇(y)‖θ1 − θ2‖.

(‖·‖ is the Euclidean norm.)

2. θ 7→
∫
Y ψθ(y)p∗(dy) is differentiable at a zero θ∗ with non-singular derivative

matrix V ∗.

3.
∫
Y‖ψθ∗(y)‖p∗(dy) <∞.

4. 1
n

∑n
i=1 ψθ̂n(Yi) = oP∗ (1/

√
n). (That is θ̂n is an approximate zero, or, θ̂n are

approximate Z-estimators with respect to ψθ.)

5. θ̂n
P∗−−−→

n→∞
θ∗ as n→∞.

Then
√
n
(
θ̂n − θ∗

)
= −V ∗−1 1

n

n∑
i=1

ψθ∗(Yi) + oP∗(1).

In particular

√
n
(
θ̂n − θ∗

)
d−→ N

(
0, V ∗−1E∗

[
ψθ∗(Y )ψθ∗(Y )T

]
V ∗−1T

)
(add-on Note: E∗

[
ψθ∗(Y )ψθ∗(Y )T

]
= Cov[ψθ∗(Y )] since E∗ [ψθ∗(Y )]− 0.)

To get the analogous theorem for M-estimators, roughly we will integrate ψ from

the Z-estimator theorem to produce our M-estimator.
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Theorem 7.2 (M-estimators - Theorem 5.23 of [vdV]). Let Y1, . . . , Yn
iid∼ p∗. Let mθ

be a measurable scalar-valued function such that

1. θ∗ is a maximum of θ 7→
∫
Y mθ(y)p∗(dy);

2. θ 7→ mθ(y) is differentiable at θ∗ for P∗-almost every y (in fact it suffices that

the map is differentiable at θ∗ in P∗-probability), with derivative m′θ∗(y);

3. there exists a measurable function ṁ : Y → R in L2 with

|mθ1(y)−mθ2(y)| ≤ ṁ(y)‖θ1 − θ2‖,

for all θ1, θ2 in an open neighbourhood of θ∗.

4. θ 7→
∫
Y mθ(y)p∗(dy) admits a second-order Taylor expansion (i.e. it is twice

differentiable) at θ∗, with non-singular second derivative matrix V ∗.

5. θ̂n are approximate M-estimators:

1

n

n∑
i=1

mθ̂n
(Yi) ≥ sup

θ∈H

1

n

n∑
i=1

mθ(Yi)− oP∗
(

1

n

)
;

6. θ̂n
P∗−−−→

n→∞
θ∗ as n→∞.

Then
√
n
(
θ̂n − θ∗

)
= −V ∗−1 1√

n

n∑
i=1

m′θ∗(Yi) + oP∗(1).

In particular,

√
n
(
θ̂n − θ∗

)
d−→ N

(
0, V ∗−1E∗

[
m′θ∗(Y )m′θ∗(Y )T

]
V ∗−1

)
Example 7.3. Consider the criterion function

mθ(x) = (1− α)[θ − x]+ + α[x− θ]+,

where α ∈ (0, 1). Suppose X is drawn from a continuous distribution. The α-th

quantile

qα = inf {q ∈ R|α ≤ P(X ≤ q)}
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minimises E[mθ(X)] since

∂

∂θ
E[mθ(X)] = (1− α)P(X ≤ θ)− αP(X ≥ θ) = P(X ≤ θ)− α,

(use EDI and the fact that the derivative doesn’t exist only at θ = x, which occurs

with probability 0) and P(X ≤ qα) = α since X is continuous. We can check the

M-estimator theorem conditions:

1. We can choose ṁ(x) = 1 since

|mθ1(x)−mθ2(x)| ≤ |θ1 − θ2|.

2. With probability 1, X 6= θ, in which case the derivative exists:

m′θ(X) = (1− α)1{θ ≥ X} − α1{θ ≤ X} .

3. Twice differentiability of E[mθ(X)] holds:

∂

∂θ
E[mθ(X)] = (1− α)P(X ≤ θ)− αP(X ≥ θ) = P(X ≤ θ)− α,

∂2

∂θ2
E[mθ(X)] = f(θ).

Further, f(qα) > 0, so the non-singularity condition is satisfied.

4. Exercise: find θ̂n and check consistency.

7.3 Asymptotic influence functions (AIF) and robustness

We want to answer the question: “what is the influence of a single data point on the

estimator, as n→∞?” Recall the conclusion of Theorem 7.2:

√
n
(
θ̂n − θ∗

)
= −V ∗−1 1√

n

n∑
i=1

m′θ∗(Yi) + oP∗(1).

Then the difference in the estimator caused by the n-th sample Yn is given by:

θ̂n − θ̂n−1 = − 1

n
V ∗−1m′θ∗(Yn) + oP∗(1). (19)

(The difference between 1
n

and 1
n−1

can be absorbed in the oP∗(1) term.)
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Definition 7.4. For an M-estimator with criterion function mθ,

y 7→ V ∗−1m′θ∗(y),

is called the asymptotic influence function (AIF). For a Z-estimator with estimating

equations
∑n

i=1 ψ(Yi) = 0, the asymptotic influence function is given by

y 7→ V ∗−1ψ(y).

(This definition is in the context of the regularity assumptions of Theorems 7.1 and

7.2.)

An estimator is called robust if it is influenced too much by outliers or extreme

values. (This is deliberately left as a loose notion.) To ensure robustness of M- and

Z-estimators, it suffices that m′θ∗(·) is bounded since this will ensure (19) goes to zero.

This is called B-robustness.

Definition 7.5. An M-estimator is B-robust if its AIF is bounded.

7.3.1 Detour: AIF in high dimensions

In high dimensions, we don’t have consistency, so classical asymptotic distribution

results don’t apply. But it turns out that we can recover much of the classical theory

through AIFs.

The canonical example is logistic regression:

Yi
iid∼ Bern(σ(XT

i β0)),

where σ(x) = ex

1+ex
is the sigmoid function. In the high dimensional setting, the

dimension p(n) of β0 can vary as a function of n: it is assumed that p(n)
n
→ k > 0.

The MLE is no longer consistent, but all hope is not lost since we know that the

MLE is a root of the score function. With some working, we can use this fact to

find the influence function. And we can leverage the AIF to build parallel asymptotic

theory in high dimensions. This is called the leave-one-out trick in statistics (see

[EKBB+13, SC18]); in probability theory and statistical physicals, this is called the

cavity method (and is an important technique for random matrix theory). It is also

used in ML (see [CLC19, HL20]).
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7.3.2 Robust regression

(Example 5.28 of [vdV]:) Consider the following setup: (X1, Y1), . . . , (Xn, Yn) are iid

with Yi = XT
i θ + ei with ei

iid∼ Fe independent of the Xi’s. We can express squared

error loss (not robust) and absolute loss estimators as M-estimators with

M(θ) =
1

n

n∑
i=1

m(Yi − θTXi).

(We have changed notation slightly: the mθ in Theorem (7.2) is now m(y− θTx).) If

we want B-robustness, we need to bound the derivative (y, x) 7→ m′(y− θTxi)x. If Xi

may be unbounded, then bounding m′ is not enough to ensure B-robustness!

This discussion provides a guide to developing robust estimators: 1) examine an

existing M-estimator based on the criterion function mθ; 2) tweak m′θ to some m̃′θ
which is bounded; 3) use the tweaked m̃′θ as the criterion function of a Z-estimator.

For example, the above regression estimator looks like

n∑
i=1

ψ(Yi − θTXi)Xi = 0, (20)

as a Z-estimator. How do we make this robust? One idea is to replace the estimating

equation (20) with
n∑
i=1

ψ(Yi − θTXi)Xi = 0,

where ψ and ν are bounded. What are the optimal choices of ψ and ν?

7.3.3 Optimal robust location estimators

(Example 5.29 of [vdV]:)Loosely, an robust estimator is optimal if it has the minimum

variance while maintaining a certain degree of robustness. For M- and Z-estimators,

we can formalise the robustness requirement as thresholding the AIF; then our prob-

lem becomes one of constrained optimisation: minimise variance subject to a bound

on the AIF.
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We will focus on location estimators in the context of X1, . . . , Xn
iid∼ p∗. Any

function ψ defines a location estimator θ̂n as a solution to

n∑
i=1

ψ(Xi − θ) = 0.

For this section, assume whatever conditions are needed on ψ to guarantee the

assumptions of Theorem (7.1) hold. Assume that θ̂n is consistent for the unique

solution θ0 = 0 to

E∗ [ψ(X − θ)] = 0. (21)

Suppose ψ : R→ R and assume EDI so that the derivative V ∗ to θ 7→ E∗ (ψ(X − θ)]
at θ0 = 0 is −E∗ψ′(X). Then Theorem (7.1) gives

√
nθ̂n

d−→ N
(

0,
E∗ψ2

[E∗ψ′]2

)
.

The AIF under these assumptions is x 7→ [E∗ψ′]−1ψ(x).

Thus, the optimal location estimator ψ is the (unique?) solution to the optimisa-

tion problem:

Minimise:
E∗ψ2

[E∗ψ′]2
, subject to: sup

x

∣∣∣∣ψ(x)

E∗ψ′

∣∣∣∣ ≤ c,

for some threshold c. Immediately we see that this optimisation problem is homoge-

neous in ψ: ψ solves the problem if and only if αψ solves it, for any constant α. We

therefore add a further constraint

E∗ψ′ = 1. (22)

We also need (see (21)) the constraint

E∗ψ = 0. (23)

The Lagrangian is

L(ψ, λ, µ) = E∗ψ2 + λE∗ψ + µ(Eψ′ − 1),
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subject to ‖ψ‖∞ = supx|ψ(x)| ≤ c. With some work, we can solve this and get that

the optimal psi:

ψ(x) =

[
−1

2
λ− 1

2
µ
p′∗(x)

p∗(x)

]c
c

,

where λ and µ must be solved by constraints (22) and (23) and the notation

[y]cd =


y if d ≤ y ≤ c,

c if y > c,

d if y < d.

If p∗ is the standard Normal, then p′∗(x)
p∗(x)

= −x and by symmetry we would require

λ = 0. Then the optimal robust estimator reduces to the Huber estimator (i.e.

trimmed mean, see Example 1.4):

ψ(x) = [x]cc.

More details are in week 5’s Section.

8 Lecture 18/2

8.1 One step estimators

add-on The reference for this lecture is section 5.7 of [vdV].

Limitations of M- and Z-estimators:

1. A maximum of the criterion function may not exist or it may not be unique.

Similarly, a root of the estimating may not exist or be unique. (Note we need

uniqueness of the theoretical root/maximum for consistency.)

2. Even if it does uniquely exist, the maximum/root may be difficult to compute.

The one-step method sidesteps these problems. Despite its name, it is a two-stage

procedure:
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1. Determine a preliminary estimator θ̃n which is ‘reasonably good’ (i.e. within

n−1/2 distance from the true θ∗ in some sense which we will make precise).

2. Apply some carefully crafted function f to obtain an estimator

θ̂n = f(θ̃n),

which has the same variance as the corresponding M- and Z-estimation problem

while avoiding the limitations above.

As in Z-estimation, our goal is to find a root ψn(θ) = 0. Let θ̃n be a preliminary

estimator. Informally, the one step estimator θ̂n is the solution to

ψn(θ̃n) + ψ̇n(θ̃n)(θ − θ̃n) = 0,

where ψ̇n(θ̃n) is the derivative of ψn(θ) with respect to θ, evaluated at θ = θn. So θ̂n

can be thought of as a single Newton-Raphson (NR) update, starting from θ̃n (hence

the name ‘one-step’).

If it is possible to invert ψ̇n(θ̃n) then the solution is

θ̂n = θ̃n −
[
ψ̇n(θ̃n)

]−1

ψn(θ̃n).

An intuitive idea is that to numerically solve ψn(θ) = 0 starting with a reasonable

approximate solution θ̃n, recursively applying NR multiple times would mean the

resulting estimator is close to the root and hence a better estimator. Yet the one-

step estimator does a single NR update. It turns out that there is no asymptotic

improvement from applying multiple NR updates. This shows that for large sample

sizes, multiple NR updates are not very useful (although for small sample sizes, they

may be).

8.1.1 Set-up

Consider a parametric (aka well-specified) setting where X1, . . . , Xn
iid∼ pθ0 . Suppose

the estimating equations ψn(θ) = 0 are given. Assume that there exists a non-singular

matrix ψ̇0 such that

sup
‖θ−θ0‖<M/

√
n

∥∥∥√n (ψn(θ)− ψn(θ0))− ψ̇0

√
n(θ − θ0)

∥∥∥ Pθ0−−→ 0, (24)
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for every constant M .

The LHS of (24) is a generalisation of the first-order Taylor expansion where ψ̇0

takes the place of the derivative.

Definition 8.1. Given a preliminary estimator θ̃n and a sequence ψ̇n,0 of non-singular

random matrices which are consistent for some matrix ψ̇0,

θ̂n = θ̃n − ψ̇−1
n,0ψn(θ̃n),

is the one step estimator.

Definition 8.2. A set of random vectors {Xα : α ∈ A} is uniformly tight (or equiv-

alently, bounded in probability, or OP(1)) if for all ε > 0, there exists M such that

sup
α∈A

P (‖Xα‖ > M) < ε.

If θ̃n is an estimator for θ0, then θ̃n is
√
n-consistent if

√
n
(
θ̃n − θ0

)
is uniformly

tight.

add-on See Assignment 2, Question 5, Part (a) for some results about bounded in

probability.
√
n-consistency formalises the intuitive notion that the preliminary estimator θ̃n

must be within
√
n distance from the true θ0.

8.1.2 Asymptotic theorem for one step estimators

Theorem 8.3. Suppose:

1.
√
nψn(θ0) converge in distribution to some valid random variable;

2. there exists ψ̇0 which satisfies assumption (24);

3. The one step estimator θ̂n is such that

(a) its preliminary estimator θ̃n is
√
n-consistent;

(b) ψ̇n,0
P−→ ψ̇0.
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Then
√
n
(
θ̂n − θ0

)
= −ψ̇−1

0

√
nψn(θ0) + oP(1).

The conclusion of this theorem is very similar to that of the Z-estimator (Theorem

7.1). The advantage is that we don’t need to know the variance of θ̃n, yet we can

obtain the asymptotic variance of θ̂n. Moreover, the asymptotic variance of θ̂n is the

same as the Z-estimator using estimating equations ψn(θ) = 0. Hence, the one step

estimator is useful in scenarios where the Z-estimator is not well defined or we can’t

find a root easily.

“The Theorem shows that θ̂n is
√
n-consistent so you could use a one step estimator

as the preliminary estimator θ̃n (i.e. do multiple NR updates), but this Theorem shows

you will not improve the asymptotic variance by doing this.” The single update is

enough for large sample sizes (for small sample sizes, it may be worth doing multiple

steps).

Proof. Our goal is to study
√
nψ̇0

(
θ̂n − θ0

)
. We will start by looking at

√
nψ̇n,0

(
θ̂n − θ0

)
=
√
nψ̇n,0

(
θ̃n − ψ̇−1

n,0ψn(θ̃n)− θ0

)
=
√
nψ̇n,0

(
θ̃n − ψ̇−1

n,0ψn(θ̃n) + ψ̇−1
n,0ψn(θ0)− ψ̇−1

n,0ψn(θ0)− θ0

)
= ψ̇n,0

√
n
(
θ̃n − θ0

)
−
√
n
(
ψn(θ̃n)− ψn(θ0)

)
−
√
nψn(θ0)

= (ψ̇n,0 − ψ̇0)
√
n
(
θ̃n − θ0

)
−
√
nψn(θ0) + oP(1)

= −
√
nψn(θ0) + oP(1) (25)

where the second line is valid since we assume ψn(θ0) is not infinite a.s., even as

n→∞; the fourth line follows since by assumption 2.:
√
n
(
ψn(θ̃n)− ψn(θ0)

)
− ψ̇0

√
n(θ̃n − θ0) = oP(1),

and the first term of the fourth line goes to zero in probability by Slutsky’s theorem

since ψ̇n,0
P−→ ψ̇0 and

√
n
(
θ̃n − θ0

)
is uniformly bounded.

(25) shows that θ̂n is also
√
n-consistent for θ0, so

√
nψ̇0

(
θ̂n − θ0

)
−
√
nψ̇n,0

(
θ̂n − θ0

)
= oP(1),

by similar reasoning to above. Combine this with (25) to get the required result.
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8.1.3 Examples of the one step estimator’s utility

Example 8.4. Two concrete examples where one step estimators are a better choice

than maximising likelihood:

1. Suppose X1, . . . , Xn
iid∼ Cauchy(θ, π). (θ is the location parameter and π the

scale.) Then

pθ,π(x) =
1

π(1 + (x− θ)2)
.

The profile log-likelihood (of θ, with π fixed) often has multiple roots. In fact,

the number of roots behaves asymptotically like 2Pois(1/π) + 1. A good choice

for the preliminary estimator θ̃n is the median. (See Assignment 2, Question 5;

example 5.50 of [vdV].)

2. Mixture of densities (likelihood diverges): Let f and g be given probability

densities with common support R. Given the parameter θ = (µ, ν, σ, τ, p), draw

X1, . . . , Xn iid from the distribution with density

x 7→ pf

(
x− µ
σ

)
1

σ
+ (1− p)g

(
x− ν
τ

)
1

τ
.

The likelihood is unbounded on the unrestricted parameter space, so the MLE

is undefined. You could try an M- or Z-estimator (but what to use as the

criterion function/estimation equation?). Or try a one step estimation with a

MoM estimator as the preliminary estimator.

Typically, the preliminary estimator θ̃n is chosen to be a MoM estimator or a

robust estimator (e.g. the median).

8.2 Roadmap: Asymptotic Optimality and Risk

How do we choose among all the estimators we’ve developed? We need a notion

of asymptotic optimality. In Stat210, we looked at finite-sample optimality (e.g.

admissibility, minimaxity, Bayes risk), but this was a case-by-case study. Asymptotics

typically allows for unifying many smooth parametric models – this is the case for

optimality as well.
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The roadmap for the next few lectures is to start by trying to extend finite sample

admissibility to an asymptotic notion; by way of the example of the Hodges estimator,

we will show the natural extension breaks; and this will lead us to a proper definition

of asymptotic optimality.

9 Lecture 23/2

9.1 Asymptotic Admissibility?

Two fundamental questions: Can we design ‘optimal’ estimators? Can we design

‘asymptotically optimal’ estimators?

For this discussion of optimality, we will restrict to the parametric setting. Given

X1, . . . , Xn
iid∼ pθ with θ ∈ H, our goal is to estimate g(θ).

Definition 9.1. Given a risk function R(δn, g(θ)) = Eθ (l(δn(X), g(θ))), an estimator

δn is inadmissible (in a class C of estimators) if δn is dominated by another estimator

– i.e. there exists another estimator δ̃n ∈ C with

R(δ̃n, g(θ)) ≤ R(δn, g(θ)),

for all θ, and strict inequality for at least one θ.

How can we extend this notion to the asymptotic setting? A natural definition is

to say δn is asymptotically inadmissible if there exists δ̃n with

lim
n→∞

R(δ̃n, g(θ))

R(δn, g(θ))
≤ 1,

for all θ and strict inequality for at least one θ. (add-on Technically we should

probably use lim sup instead of lim.) This is just a notion to motivate our discussion

– it’s not a definition found in the literature since we will see it is not useful in the

following example.

Example 9.2. Given X1, . . . , Xn
iid∼ N (θ, 1), consider the Hodges estimator

δ̃n =

X̄n if
∣∣X̄n

∣∣ ≥ n−1/4,

0 otherwise.
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Also, define δn = X̄n to be the sample mean. Consider the loss l(u, v) = (u − v)2.

Then

lim
n→∞

nR(δn, θ) = lim
n→∞

nVarθ(X̄n) = 1,

for all θ.

What is the risk of the Hodges estimator δ̃n? Intuition: when θ = 0, X̄n converges

to zero at the rate
√
n (by the CLT) – so it converges faster than n−1/4. This

means X̄ will be in the interval [−n−1/4, n1/4] with probability going to one. Hence

nR(δ̃n, 0) → 0. Outside a local neighbourhood of θ = 0, δ̃n behaves like the sample

mean δn. We can make this argument rigorous (see Assignment 2, Question 6) and

show

lim
n→∞

nR(δ̃n, θ) =

1 if θ 6= 0,

0 if θ = 0.

Hence the sample mean δn is dominated by the Hodges estimator δ̃n.

What about the finite sample picture? For the sample mean R(δn, θ) = 1 every-

where, for all n.
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For the Hodges estimator,

sup
θ∈R

R(δ̃n, θ)→∞, (26)

as n → ∞ (see Assignment 2, Question 6 for calculations). The spike at n−1/4

goes to infinity as n → ∞. So δ̃n has really bad minimax risk. Our definition of

asymptotic admissibility is not a unifying notion since it doesn’t capture/explain

this phenomenon. (This is also an argument for looking at minimaxity and not just

admissibility.)

A natural fix is to discard sets of measure zero from consideration.

Definition 9.3. δ̃n is asymptotically admissible if, for all δn satisfying

lim
n→∞

R(δn, g(θ))

R(δ̃n, g(θ))
≤ 1,

for all θ, strict inequality only occurs for θ in a set of Lebesgue measure zero.

(This definition is not in the literature – instead there is an analogous notion,

which we might cover later in class. add-on This definition doesn’t really make sense

since it assumes that the limit always exists.)

Under this definition, δn = X̄n from Example 9.2 is asymptotically admissible.

Our primary concern with the old definition of asymptotic admissibility is that

it didn’t capture the finite sample phenomenon of the Hodges estimator. This is a

crucial point since a basic requirement of asymptotics is that they reflect finite sample

behaviour. Yet this new definition also doesn’t address this concern. The fix is local

asymptotic analysis.

9.2 Local asymptotic analysis

Why was the previous asymptotic analysis lacking? It missed important behaviour

which occurred locally around zero. From this emerges a natural thought: can we

study the normalised risk locally around θ0?
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Definition 9.4. Given parameter space H ⊂ Rp, fix some α > 0 and h ∈ Rp. The

local risk at θ0 of an estimator δn (in the direction h with scale α), is given by

lim
n→∞

nR(δn, g(θ0 + h/nα)) = lim
n→∞

nEθ0+h/nα [l(δn, g(θ0 + h/nα))] .

The choice of α matters – some α will capture finite sample phenomenon and some

α will not. We will take it as given that α = 1/2 captures finite sample behaviour for

most smooth parametric models. (See Section.)

Example 9.5 (continuation of Example 9.2). Consider X1, . . . , Xn
iid∼ N (h/

√
n, 1).

With some work, we can compute

[ lim
n→∞

nR(δ̃n, h/n
α) = h2,

while the MLE X̄n has local risk 1. So for |h| < 1, the Hodges estimator is ‘better’;

otherwise the MLE is.

We used n−1/4 in the Hodges estimator. What happens if we change the exponent?

How will that change the local risk? Define

δ′n =

X̄n if
∣∣X̄n

∣∣ ≥ n−2.5,

0 otherwise.

For α = 1/2, the local risk captures the behaviour of δ′n (i.e. it gives similar answers to

δ̃n). For other α¡ the local risk goes to infinity or doesn’t capture the local behaviour

of δ′n¿ This is meant to be an example to illustrate that α = 1/2 is the right value to

use.

There are two takeaways from this discussion: There is a need for local asymptotic

analysis. And the scale α of the local analysis is crucial. We should take as given

that α = 1/2 is the right scale as long as you are in smooth parametric families (e.g.

ones that satisfy the assumptions of the asymptotic normality of MLE theorem.)

9.3 Local asymptotic distribution

We have consider local analysis in terms of risk. But we may be interested in other

local properties. Specifically, can we understand the asymptotic distribution of
√
n
(
δn − g(θ0 + h/

√
n)
)
, (27)
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where X1, . . . , Xn
iid∼ pθ0+h/

√
n? Understanding the asymptotic distribution in local

neighbourhoods of θ0 will allow for a more refined analysis/capture more information,

as compared to a local asymptotic risk analysis.

Can we study the local asymptotic distribution with tools we’ve already seen? No,

because the data generating distribution is changing with n. (Aside: this is probably

the first time that we are really touching on a link to high dimensional research, where

dim(θ) can grow – and hence the model choice changes – as a function of n.) But we

can transform (27) into something that looks more familiar:

√
n
(
δn − g(θ0 + h/

√
n)
)

=
√
n (δn − g(θ0)) +

√
n
(
g(θ0)− g(θ0 + h/

√
n)
)
.

We can understand the second term:

√
n
(
g(θ0)− g(θ0 + h/

√
n)
)

=
√
n
g(θ0)− g(θ0 + h/

√
n)

h/
√
n

h√
n

n→∞−−−→ −Aθ0h,

where Aθ0 is the Jacobian of g(θ) at θ0. We would know the first term if the true

data generating parameter was θ0. But to understand it under pθ0+h/
√
n, we will need

to develop some theory of ‘tilted measures’.

10 Lecture 25/2

10.1 Preview

Recall the set-up of section 9.3: Given X1, . . . , Xn
iid∼ pθ0+h/

√
n and an estimator δn of

g(θ0), we want to understand the asymptotic distribution of
√
n (δn − g(θ0 + h/

√
n)).

In the previous lecture, we reduced this to understanding the asymptotic distribution

of
√
n (δn − g(θ0)) under pθ0+h/

√
n.

Let Tn =
√
n (δn − g(θ0)). Under some assumptions we know that Tn

d−−→
pθ0

T . By

the Portmanteau theorem, this is equivalent to∫
f (Tn) p⊗nθ0 →

∫
f(t)dP (t),

for all bounded continuous functions f , where P (t) is the law of T and p⊗nθ0 is the

n-fold product measure with each component pθ0 . We want to study the asymptotic

59



distribution of Tn. By the Portmanteau theorem, this is equivalent to studying the

convergence of
∫
f(Tn)dp⊗n

θ0+h/
√
n
. If p⊗n

θ0+h/
√
n

is absolutely continuous with regard to

p⊗nθ0 then ∫
f(Tn)dp⊗n

θ0+h/
√
n

=

∫
f(Tn)

dp⊗n
θ0+h/

√
n

dp⊗nθ0
dp⊗nθ0 .

If we know that (
Tn,

dp⊗n
θ0+h/

√
n

dp⊗nθ0

)
d−−→
pθ0

(T, V ) ,

then we would expect that∫
f(Tn)

dp⊗n
θ0+h/

√
n

dp⊗nθ0
dp⊗nθ0 →

∫
f(t)v dP (T, V ), (28)

where P (T, V ) is the law of (T, V ). So we would have achieved our goal of under-

standing the asymptotic distribution of Tn under pθ0+h/
√
n:

Tn
d−−−−→

p⊗n
θ0+

h√
n

T ′,

where the law of T ′ is given by PT ′(B) = EP [1{T ∈ B}V ].

For this to work, we assumed absolutely continuity of p⊗n
θ0+h/

√
n

with respect to

p⊗nθ0 . But even if we don’t have absolutely continuity for some n, it will still work as

long as we have absolutely continuity for large n – i.e. as long as we have some notion

of “asymptotic absolutely continuity”. This notion is called contiguity.

10.2 Some necessary measure theory

To rigorously prove (28), we need to develop some measure theory. Throughout this

section, we will use P and Q to denote two measures – as a concrete example, take

Q to be some measure on Rk and P to be the Lebesgue measure on the same space.

Definition 10.1. Let P and Q be two measures defined on a measure space (Ω,A).

Q has a density f with respect to P if

Q(A) =

∫
A

fdP,

for all measurable sets A ∈ A. In this context P is called the base measure.
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When does a density f exist? The critical requirement is absolute continuity.

Definition 10.2. Let P and Q be two measures on the measure space (Ω,A). We

say Q is absolutely continuous with respect to P and write Q� P if

P (A) = 0⇒ Q(A) = 0,

for all measurable sets A.

If P and Q have densities fP and fQ, absolute continuity requires the support of

fQ to lie inside the support of fP . Absolutely continuity of measures is related to the

notion of absolutely continuous functions: If µ is a finite measure on (R,BR) then µ

is absolutely continuous with respect to the Lebesgue measure if and only if µ’s CDF

is absolutely continuous. This shows that a probability measure F has a density if

and only if F is absolutely continuous with respect to to the Lebesgue measure�.

10.2.1 The Radon-Nikodym derivative

Theorem 10.3 (Radon-Nikodym). Let P and Q be two σ-finite§ measures on (Ω,A)

and Q� P . Then there exists a measurable function f : Ω→ [0,∞] (i.e. a density)

such that for any measurable set A ∈ A,

Q(A) =

∫
A

fdP.

f is called the Radon-Nikodym derivative. When P and Q have densities (with

respect to same base measure – typically Lebesgue measure), f is simply the ratio of

the densities (which exists by absolute continuity). Hence a common name for f in

statistics is the likelihood ratio.

If f and f̃ are two Radon-Nikodym derivatives, then f = f̃ a.e. with respect to

P .

�Continuity of F is not sufficient for a density to exist. The canonical counterexample is the

Cantor function. Differentiability of F is a sufficient but not necessary condition.
§A measure P on (Ω,A) is σ-finite if Ω can be covered by countably many measurable sets with

finite, or equivalently if there exists a strictly positive measurable function f : Ω→ R whose integral

with respect to P is finite.
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How do we construct the Radon-Nikodym derivative? If Ω is a metric space

(maybe with some regularity conditions) and Q is a finite measure then

dQ

dP
(ω) := lim

r→0

Q(B(ω, r))

P (B(ω, r))
, (29)

exists P -a.e., where B(ω, r) is the open ball centred at ω with radius r. (This is

Theorem 35.7 of [Bil12].) Further, if Q � P then dQ
dP

equals the Radon-Nikodym

derivative P -a.e.

Claim 10.4. For any measurable function h and any measurable set A,∫
A

hdQ =

∫
A

h
dQ

dP
dP,

assuming Q� P , (so that dQ
dP

equals the Radon-Nikodym derivative.)

The proof is a simple application of InSiPoD.

10.2.2 Lebesgue’s decomposition theorem

(Jordan’s decomposition:) A probability measure Q on R can always be decomposed

into an absolutely continuous part and a discrete¶ part:

Q(A) = Qc(A) +Qd(A)

=

∫
A

fdµ(x) +Qd(A),

where f is the density of Qc and µ is the Lebesgue measure. This result can be

generalised beyond the Lebesgue measure.

Definition 10.5. Let P and Q be two measures on (Ω,A). P and Q are singular

with respect to to each other (denoted P ⊥ Q) if Ω can be partitioned into two

disjoint sets A and B such that P (B) = Q(A) = 0.

¶A random variable is discrete if its support is countable.
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Theorem 10.6 (Lebegue’s decomposition). Suppose P and Q are two σ-finite mea-

sures on (Ω,A). Then we can decompose

Q = Qa +Qs,

where Qa � P and Qs ⊥ P . Further, this decomposition is unique.

How can we characterise this decomposition? (Lemma 6.2 from [vdV]:) If P and

Q are absolutely continuous with respect to a base measure µ, with densities p and

q, then

Qa(A) = Q(A ∩ {p(x) > 0})

Qs(A) = Q(A ∩ {p(x) = 0}).

For any σ-finite measures P and Q,

Q(A) = Qa(A) +Qs(A)

=

∫
A

fdP +Qs(A),

where f is the Radon-Nikodym derivative of Qa with respect to P .

Claim 10.7. On the set (of P -measure 1) where dQ
dP

(29) exists, it is equal to the

Radon-Nikodym derivative f of Qa with respect to P .

Hence, from herein we will use dQ
dP

to denote the Radon-Nikodym derivative f of

Qa with respect to P and we will call dQ
dP

the likelihood ratio.

We can generalise Claim 10.4 when Q is not necessarily absolutely continuous

with respect to P :

Claim 10.8. ∫
A

h
dQ

dP
dP ≤

∫
A

hdQ,

for any σ-finite measures Q and P defined on the same measure space and any mea-

sureable set A.

63



10.2.3 Contiguity

Contiguity is the generalisation of absolute continuity to asymptotics.

Definition 10.9. Let (Ωn,An) be a sequence of measure spaces, each equipped with

probability measures Pn and Qn. Then {Qn} is contiguous with respect to {Pn}
(denoted Qn C Pn) if

Pn(An)→ 0⇒ Qn(An)→ 0,

for every sequence {An} of measurable sets.

Example 10.10. Fix Pn = Unif[0, 1].

1. Qn = Unif[n, n+ 1] is not contiguous with respect to Pn since Pn(An) = 0 and

Qn(An) = 1 for An = [n, n+ 1].

2. Qn = Unif[0.5 + 1/n, 1.5 + 1/n] is not contiguous with respect to Pn. Why?

Take An = [1, 1.5]. Then Pn(An) = 0 and Qn(An) = 0.5 for n ≥ 2.

3. Qn = Unif[1/n, 1 + 1/n] is contiguous with respect to Pn. To prove this, fix An

and partition R according to the supports’ of Pn and Qn: Define

Bn = An ∩ [1/n, 1]

Cn = An ∩ [0, 1/n]

Dn = An ∩ [1, 1/n]

En = An \ (Bn ∪ Cn ∪Dn) .

To show Qn(An) → 0, show that the Qn-measure of Bn through En goes to

zero.

4. Qn = Unif[0.5 + 1/n, 1 + 1/n] is contiguous with respect to Pn. To prove this,

use the same idea as 3.

5. Now define Pn = N (0, 1) and Qn = N (n, 1). Then Qn 6 Pn – take An =

[n− c, n+ c] for some constant c as the counterexample.
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Loosely: a necessary condition for contiguity is that the support of Qn converges

to a subset of the support of Pn. Further, if Pn and Qn have the same support, their

centres of mass cannot move away from each other.

Example 5. shows that it is possible that Qn � Pn for all n but Qn 6 Pn.

Example 4. shows that it is possible for Qn 6� Pn for all n but Qn C Pn.

11 Lecture 2/3

11.1 Local asymptotic analysis

Theorem 11.1 (“Le Cam’s main theorem”). Let Pn and Qn be two sequences of

probability measures on (Ωn,An) and Xn be a sequence of random vectors (of constant

dimension k). Suppose

(i) Qn C Pn;

(ii)
(
Xn,

dQn
dPn

)
d−→
Pn

(X, V )�.

Then

Xn
d−→
Qn

L,

that is, the law of Xn induced by Qn converges to the law

QL(B) = EP [1{X ∈ B}V ] =

∫
1{x ∈ B} vdP (x, v), (30)

(where the expectation is under the joint distribution P of (X, V ) from (ii)).

Notation: Xn
d−→
Pn

X means that the law of Xn induced by the measure Pn con-

verges weakly to the law of X.

Analogy: If Q and P are probability measures with Q� P , then∫
fdQ =

∫
f
dQ

dP
dP,

�This may seem confusing since on the face of it, dQn

dPn
doesn’t appear to be a random – so how

can it converge to a random variable? But dQn

dPn
is a random variable – it is a function Ω→ R!
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for all measurable f . Choose f(x) = 1{x ∈ B}. ThenQ(X ∈ B) = EP
[
1{X ∈ B} dQ

dP

]
,

which is very similar to (30). More generally,∫
fdQ =

∫
f
dQa

dP
dP +

∫
fdQs,

where Q = Qa +Qs is the Lebesgue decomposition. Then

Q(X ∈ B) = EP
[
1{X ∈ B} dQa

dP

]
+Qs(X ∈ B).

The intuition is that on the support ofQn,s, the measure Pn is zero – that is, Qn,s(B) =

Qn(B ∩ pn(x) = 0) (where pn is the density of Pn) yet Pn(B ∩ pn(x) = 0) = 0. So by

contiguity Qn,s(B) must shrink to zero, for all B. This then implies

lim
n→∞

Qn(Xn ∈ B) = lim
n→∞

EPn
[
1{Xn ∈ B}

dQn,a

dPn

]
+ lim

n→∞
Qn,s(Xn ∈ B)

= lim
n→∞

EPn
[
1{Xn ∈ B}

dQa,n

dPn

]
.

We want to use this theorem with Pn = p⊗nθ0 and Qn = p⊗n
θ0+ h√

n

where Xn =

√
n
(
θ̂n − θ

)
or Xn =

√
n
(
θ̂n − θ − h√

n

)
. We would then need to show that p⊗n

θ0+ h√
n

C

p⊗nθ0 and that the limiting distribution of

(
Xn,

dp⊗n
θ0+h/

√
n

dp⊗nθ0

)
exists.

Proof. First we need to prove that QL is a valid probability law (that is
∫
dQL = 1).

(This is where contiguity is used.) We omit the proof of this.

Second, use the portmanteau theorem (Lemma 2.2 of [vdV]), which gives an equiv-

lanet characterisation of convergence in distribution: Xn
d−→
Qn

L if and only if

lim inf
n→∞

EQn [f(Xn)] ≥ EQL [f(X)] ,

for every non-negative continuous measurable function f .

lim inf
n→∞

EQn [f(Xn)] ≥ lim inf
n→∞

EPn
[
f(Xn)

dQn

dPn

]
≥ EP [f(X)V ]

= EQL [f(L)]

where the first line uses Claim 10.8; the second line uses the portmanteau theorem

and the convergence of
(
Xn,

dQn
dPn

)
; and the final line follows by InSiPoD.
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11.2 Equivalent characterisations of contiguity (Le Cam’s

first lemma)

How can we show contiguity in practice? Typically we will use the following lemma.

Lemma 11.2 (Le Cam’s first lemma (Lemma 6.4 of [vdV])). Suppose Pn and Qn

are sequences of probability measures on measure spaces (Ωn,An). Then the following

statements are equivalent:

1) Qn C Pn;

2) dQn
dPn
 
d

Pn
V along a subsequence then E[V ] = 1;

3) If dPn
dQn
 
d

Qn
U along a subsequence then P (U > 0) = 1;

4) For any statistics Tn : Ωn → Rk, if Tn
Pn−→ 0, then Tn

Qn−→ 0.

The proof is given in Section 6.

Corollary 11.3 (an application of Le Cam’s first lemma). If Pn and Qn are such

that

log
dPn
dQn

d−→
Qn
N (µ, σ2),

then

(i) Qn C Pn; and

(ii) Pn C Qn if and only if µ = −1
2
σ2.

(If Qn C Pn and Pn C Qn then we say Pn and Qn are mutually contiguous and we

write Pn CB Qn.)

Proof. Use CMT to get that

dPn
dQn

d−→
Qn

exp
[
N (µ, σ2)

]
.

Then 3) from Lemma 11.2 is satisfied so Qn C Pn. Use 2) from Lemma 11.2 with the

fact that

E
(
exp

[
N (µ, σ2)

])
= eµ+ 1

2
σ2

,

which equals 1 if and only if µ = −1
2
σ2.
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12 Lecture 4/3

In Theorem 11.1, we were able to characterise the limiting distribution L of Xn under

Qn by PL ∈ B) = E [1{X ∈ B}V ]. In practice, we would often like a more concrete

formulation/characterisation of L. This is the goal for this lecture. We will first study

the MLE and then generalise this to a wide class of estimators.

12.1 Local asymptotic analysis of the MLE

Setup: X1, . . . , Xn
iid∼ pθ. Assume the MLE exists. We wish to study the limiting

distribution of
√
n(θ̂ML − θ− h/

√
n) under Qn = p⊗n

θ+h/
√
n
. Since h is fixed, it suffices

to study
√
n(θ̂ML − θ) under Qn.

Terminology: We call Qn = p⊗n
θ+h/

√
n

the alternative distribution or the distribution

under the local alternative. (We will see later that this local analysis has a hypothesis

testing interpretation.) Pn = p⊗nθ is called the null, or the null distribution.

Define Xn =
√
n(θ̂ML− θ). We want to apply Theorem 11.1 to establish the local

asymptotic distribution of Xn. There are three steps to do this:

1. Check contiguity Qn C Pn.

2. Establish joint convergence of
(
Xn,

dQn
dPn

)
under Pn.

3. Simplify the definition of L (hopefully determining it has a well-known distri-

bution).

12.1.1 Step 1: Contiguity

We will use Corollary 11.3 (the Normal example of Le Cam’s 1st Lemma). To apply

the corollary, we will calculate the log likelihood ratio converges to a Gaussian under

Qn. Given X1, . . . , Xn
iid∼ pθ,

log
dp⊗n

θ+h/
√
n

dp⊗nθ
=

n∑
i=1

[
li(θ + h/

√
n)− li(θ)

]
=

hT√
n

n∑
i=1

∇θli(θ) +
hT

2n

n∑
i=1

∇2
θli(θ)h+ op⊗nθ0

(1)
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d−−→
p⊗nθ0

N
(
−1

2
hTIθh, h

TIθh

)
,

where for the second line, we assume ln is thrice continuously differentiable so that

we can Taylor expand and the third line follows since hT√
n

∑n
i=1∇θli(θ) converges to

N (0, hTIθh) by the CLT and hT

2n

∑n
i=1∇2

θli(θ)h converges to −1
2
hTIθh by the WLLN.

Hence p⊗n
θ+h/

√
n
CB p⊗nθ .

We assumed a smoothness condition so that we could apply a Taylor expansion.

In fact, all this is needed is QMD. (In some sense, QMD is the weakest notion that

allows for this unifying parametric theory.)

Theorem 12.1. Suppose the parameter space H is an open subset of Rk and that the

model pθ is QMD at θ0. If Xi
iid∼ pθ0,∣∣∣∣∣log

dp⊗n
θ0+h/

√
n

dp⊗nθ0
− hT√

n

n∑
i=1

η(θ0, Xi) +
1

2
hTIθ0h

∣∣∣∣∣ P−−→
p⊗nθ0

0.

Hence p⊗n
θ0+h/

√
n
CB p⊗nθ0 by Corollary 11.3.

We omit the proof of this Theorem. Here Iθ0 is given as in Definition 6.5 for QMD

families. Recall that under some conditions, η(θ0, Xi) = ∇θ log pθ(Xi)|θ=θ0 and we

recover the original definition of Fisher information.

12.1.2 Step 2: Joint convergence of the MLE and the tilted measure

The goal of this step is to understand the joint asymptotic distribution of(
√
n
(
θ̂ML − θ

)
, log

dp⊗n
θ+h/

√
n

dp⊗nθ

)
,

under p⊗nθ . In QMD families, we know the asymptotic distribution of both the MLE

and the log likelihood ratio in terms of the score function η(θ, x) and the Fisher

information Iθ. So we can determine the joint asymptotic distribution. To keep the

exposition simple, we will spell this out assuming 3rd order smoothness of ln (i.e. ln

is thrice continuously differentiable). Then we know

Xn =
√
n
(
θ̂ML − θ

)
= I−1

θ

1√
n

n∑
i=1

∇θln(θ) + op⊗nθ
(1)

69



log
dp⊗n

θ+h/
√
n

dp⊗nθ
= hT

1√
n

n∑
i=1

∇θln(θ)− 1

2
hTIθh+ op⊗nθ

(1).

Since everything on the RHS is in terms of the score statistic, dependence be-

tween Xn and log
dp⊗n
θ+h/

√
n

dp⊗nθ
is taken care of. We know that Xn

d−−→
p⊗nθ

N
(
0, I−1

θ

)
and

log
dp⊗n
θ+h/

√
n

dp⊗nθ

d−−→
p⊗nθ

N
(
−1

2
hTIθh, h

TIθh
)
. Since Cov(I−1

θ ∇θln(θ), hT∇θln(θ)) = h,

(
√
n
(
θ̂ML − θ

)
, log

dp⊗n
θ+h/

√
n

dp⊗nθ

)
d−−→
p⊗nθ

N

([
0

−1
2
hTIθh

]
,

[
I−1
θ h

hT hTIθh

])
.

12.1.3 Step 3: Characterise L by Le Cam’s third lemma

Theorem 12.2 (Le Cam’s third lemma). Let Pn and Qn be sequences of probability

measures and Xn a sequence of random vectors. If(
Xn, log

dQn

dPn

)
d−→
Pn
N

([
µ

−1
2
σ2

]
,

[
Σ τ

τT σ2

])
,

then Xn
d−→
Qn
N (µ+ τ,Σ).

τ is generally a function of h, but not necessarily equal to h (as in the case of the

MLE).

Observe that we have assumed a relationship between the mean and variance of

V . When we have this relationship, the term σ2 vanishes in the distribution of L. So

Xn
d−−→
p⊗nθ

X and Xn
d−−−−−→

p⊗n
θ+h/

√
n

L with the variance of L completely determined by the

variance of X.

Applying Le Cam’s third lemma to the MLE, we have

√
n
(
θ̂ML − θ

)
d−−−−−→

p⊗n
θ+h/

√
n

N
(
h, I−1

θ

)
,

or
√
n

(
θ̂ML −

[
θ +

h√
n

])
d−−−−−→

p⊗n
θ+h/

√
n

N
(
0, I−1

θ

)
. (31)
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This is basically the classic (non-local) asymptotic MLE result. So it turns out

perturbing by h/
√
n doesn’t change much. It also suggests that 1√

n
is the right

scling for the perturbation – it’s likely a larger power would result in Xn diverging to

infinity under p⊗n
θ+h/

√
n

and a smaller power would result in convergence to a degenerate

distribution.

Proof sketch of 12.2. See Question 1, Assignment 3 for a full proof. Use the charac-

teristic function ψL(t) = E
[
eit

TL
]
: We know that P [L ∈ B] = E

[
1{X ∈ B} eV

]
. By

InSiPoD, this implies, ∫
f(l)dPL(l) = E

[
f(X)eV

]
,

for every measurable function f . Hence

ψL(t) = E
[
e−t

TXeV
]
.

Observe that the RHS is the characteristic function of (X, V ) at (t,−i). We know

the characteristic function of (X, V ) since (X, V ) is multivariate normal. With some

simple algebra we can then show that ψL(t) has the required form.

12.2 Local asymptotic analysis for other estimators

Above we found the local asymptotic distribution for the MLE by working through

the three steps above. For other estimators, we can also go through these steps again

to determine their local asymptotic distribution. But this would be on a case-by-

case basis. Can we get a general set of results for a number of estimators? For

what estimators ∆n and what kinds of parametric families {pθ} can we characterise

the joint distribution of ∆n and
dp⊗n
θ+h/

√
n

dp⊗nθ
under the local alternative? (Note that

we will always have contiguity of the local alternative distribution under some mild

smoothless conditions.)

The vague answer is that we can do this for any parametric family that asymp-

totically it locally looks Gaussian. We will formalise this answer.
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12.2.1 Local asymptotic normality (LAN)

Definition 12.3. A class of models {pθ : θ ∈ H} withH ⊂ Rd is locally asymptotically

Normal (LAN) at θ0 ∈ H with precision (aka information) K ∈ Rd×d if there exists

(i) invertible matrices rn ∈ Rd×d;

(ii) random vectors ∆n with

∆n
d−−→
p⊗nθ0

N (0, K);

such that for every sequence hn → h,

log
dp⊗n

θ0+r−1
n hn

dp⊗nθ0
= hT∆n −

1

2
hTKh+ op⊗nθ0

(‖h‖) .

In the earlier calculations, we were relying on the score and the asymptotic nor-

mality of the score with variance Iθ. In the definition of LAN, we replace the score

function with ∆n and the Fisher information with K. So we can do the exact same

calculations using Zn = K−1∆n + op⊗nθ0
(1) instead of

Xn =
√
n
(
θ̂ML − θ

)
= I−1

θ

1√
n

n∑
i=1

∇θln(θ) + op⊗nθ0
(1),

and get (
Zn, log

dp⊗n
θ0+r−1

n hn

dp⊗nθ0

)
d−−→
p⊗nθ0

N

([
0

−1
2
hTKh

]
,

[
K−1 h

hT hTKh

])
.

Then Le Cam’s third lemma gives

Zn
d−−−−−−→

p⊗n
θ0+r

−1
n hn

N (h,K−1).

So we get local asymptotic analysis for a large class of families. But Zn is a very

specific estimator, since it is defined byK and ∆n, which are specified by the definition

of LAN. What about other types of estimators? With the LAN property, we can also

derive results for M- and Z-estimators. For Z-estimators, we have

√
n (Tn − θ) =

1√
n

n∑
i=1

ψθ(Xi) + op⊗nθ0
(1),
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(see Theorem 7.1), which has a Gaussian limit distribution by the CLT. Since(
Tn, log

dp⊗n
θ0+r−1

n hn

dp⊗nθ0

)
,

is asymptotically multivariate Normal, all we need to get its joint asymptotic distri-

bution is to calculate

Cov

(
1√
n

n∑
i=1

ψθ(Xi),∆n

)
.

Hence, we can do local asymptotic analysis when the model is LAN and we can

calculate this covariance.

Example 12.4. Examples of LAN families:

1. In Theorem 12.1 (which showed that log
dp⊗n
θ0+h/

√
n

dp⊗nθ0
converges in QMD families),

we used rn =
√
nI, ∆n = 1√

n

∑n
i=1 η(θ0, Xi) and K = Iθ0 . Hence any family

that is QMD at θ0 is LAN at θ0, as long as the parameter space H is open.

2. Gaussian local families: Yi = hn√
n

+ ξi where ξi
iid∼ N (0,Σ).

3. See [vdV] and the Homework for more examples.

12.2.2 Local asymptotic analysis for non-iid data

Up until now, we have consider iid data and the n-fold product. Yet this has not

actually been necessary for our conclusions. In the non-iid scenario, we can generalise

LAN as follows:

Definition 12.5. A sequence (indexed by n) of model families {pθ,n : θ ∈ H, n ∈ N}
is locally asymptotically Normal at θ0 ∈ H with precision K ∈ Rd×d if there exists

(i) invertible matrices rn ∈ Rd×d;

(ii) random vectors ∆n with

∆n
d−−→
pθ,n
N (0, K);
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such that for every sequence hn → h,

log
dpθ0+r−1

n hn,n

dpθ,n
= hT∆n −

1

2
hTKh+ opθ,n (‖h‖) . (32)

In this setup we observe data (X1, . . . , Xn) ∼ pθ,n (not necessarily iid). As long

as we have the expansion of the log likelihood ratio as in (32), we can do all of the

computations as in section 12.2.1 and obtain the same conclusions.

This is useful for time series or other autoregressive data – for example when

Xt = θXt−1 + Zt.

12.3 Recap of the last four lectures

We began this topic four lectures ago by studying the Hodges estimator through a

risk analysis. This motivated the need for a local asymptotic analysis of risk. We

made a jump to local asymptotic distribution since a distributional analysis gives

more refined information as compared to the risk. We found that we needed a notion

of asymptotic absolute continuity, which we formalised in the definition of contiguity.

Today we looked at how to calculate the local asymptotic distribution. But recall

why we began this local analysis: we wanted to compare estimators with the goal

of choosing the ‘optimal’ estimator. In the next class, we will develop a notion of

asymptotic optimality so that we can do this.

13 Lecture 9/3

Overview for today’s lecture: We will discuss notions of asympotic optimality of

estimators: 1) Asymptotic relative efficiency (ARE); 2) what is an optimal minimax

estimator in terms of local asymptotic risk; 3) what are other sensible notions of

optimality?

13.1 Asymptotic relative efficiency (ARE)

The basic (non-asymptotic) idea here is to compare the variances of two (or finitely

many) proposal estimators. The optimal estimator will be the one with minimum
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variance. This analysis only makes sense if the proposed estimators are unbiased.

For asymptotic analysis, we consider estimators which are consistent – or which

are centred around the parameter of interest (after appropriate scaling) – and we

compare their asymptotic variances.

Definition 13.1. Suppose two sequences of estimators {δn}, {δ′n} satisfy

√
n (δn − g(θ))

d−→
θ
N
(
0, σ2

1(θ)
)

√
n (δ′n − g(θ))

d−→
θ
N
(
0, σ2

2(θ)
)
,

where g(θ) is the parameter of interest. Then the asymptotic relative efficiency of δn

with respect to δ′n is

ARE =
σ2

2(θ)

σ2
1(θ)

.

Note that we assumed the estimators are asymptotically Gaussian for simplicity

but this is not necessary – we only need to assume the estimators converge to a

distribution with a variance.

If ARE > 1 then we prefer δn. With multiple estimators that are all centred

around g(θ), pick the one with the minimum asymptotic variance.

This definition of optimality is very restrictive, since we must assume the limit

distribution’s variance characterises the spread of the estimator; and that ranking of

the variances across the two (or more) limit distributions corresponds to a ranking on

the spreads of the estimators. In general, to compare between multiple estimators,

just looking at the variance may not suffice. We should compare risks with respect to

a loss function that reflects the desired properties of the estimator for the particular

application in mind.

13.2 Minimaxity for local asymptotic risk

Setup: Suppose δn is
√
n-consistent for θ and consider the squared error loss. The

asymptotic risk is

Rs(δn, θ) = lim
n→∞

nE [δn − θ]2 .
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This depends on the (unknown) value of θ. How should we summarise Rs(δn, θ)

into a single number for each estimator δn. Minimaxity takes the worst case risk

supθ Rs(δn, θ).

Can we generalise minimaxity to asymptotic risk? No, at least not straight away

due to the problems highlighted by the Hodge’s estimator. Recall the asymptotic risk

of the Hodge’s estimator

Rs

(
θ̂H
n , θ
)

=

1 if θ 6= 0,

0 otherwise.

So θ̂H
n will be asymptotically minimax if the MLE is, since they both have the same

worse case limit risk. But this doesn’t capture the finite sample behaviour, nor does

it capture the fact that limn→∞ supθ Rn

(
θ̂H
n , θ
)

=∞ (26).

The fix is to apply minimaxity to the local asymptotic risk. Define

Rs(δn, θ, h) = lim
n→∞

nE
[
δn − θ −

h√
n

]2

,

where the expectation is with respect to the local alternative p⊗n
θ+h/

√
n
. (Note that we

have fixed the scaling at 1√
n

since we decided in Section 4 that this is the right scale

for studying local asymptotic risk.)

The optimal minimax estimator δn in the sense of the local asymptotic risk is

defined as the minimiser of

sup
h
Rs(δn, θ, h), (33)

for every θ (assuming that such a minimiser exists and is unique).

This seems like a very strong notion. It is not trivial that such an optimal estimator

would exist. Yet we will see that one does, assuming the parametric family has some

smoothness conditions.

We’ve seen how to calculate the local asymptotic distribution. But now we need

to be able to calculate the local asymptotic risk for a large class of estimators simulta-

neously – otherwise we will have no hope of being able to find the optimal estimator.

Thankfully, there is a way to simplify this problem considerably.
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Theorem 13.2 (Theorem 8.3 of [vdV]). Let {pθ : θ ∈ H} be QMD at θ0 ∈ IntH,

with non-singular Fisher information Iθ0. Let g be differentiable at θ0 and δn be an

estimator of g(θ0). Suppose that

√
n

[
δn − g

(
θ0 +

h√
n

)]
d−−−−−→

p⊗n
θ0+h/

√
n

Lθ0,h, (34)

for all h. Then there exists a randomised function** T of X ∼ N
(
h, I−1

θ0

)
such that

T − Ah ∼ Lθ0,h,

for all h, where A is the Jacobian of g at θ0.

We delay the proof of this Theorem until the end of the lecture.

The point of this Theorem is that it allows us to characterise Lθ0,h for all h. (34)

is just saying that δn (appropriately centred and scaled) converges weakly under the

local alternative, for all h. Usually, we know that (34) holds by using Theorems 11.1

and (12.1) – so it is not as strong an assumption as it may appear – yet until now we

haven’t had a general way to characterise Lθ0,h.

Note that X is not ‘fresh‘, in the sense that it is not independent of everything

else. In fact, it turns out that X depends on the local likelihood ratio.

Insights from this theorem:

1. Lθ0,h is essentially a function of a single observation X from a Gaussian. So

instead of trying to work with Lθ0,h, we can do all our calculations with T −Ah
under the Gaussian model.

2. For all QMD families, the local asymptotic distribution of any estimator se-

quence is completely described by the distribution of T − (∂g
∂θ

)ijh where T is a

function of X ∼ N
(
h, I−1

θ0

)
.

3. The downside is that we don’t know how T transforms X, so it is harder to go

further than this.

**A function is randomised if it depends on a uniform random variable which is independent of

everything else.
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Assume that {pθ} is QMD at all θ and that (34) can be strengthened to

E
(√

n

[
δn − g

(
θ0 +

h√
n

)])2

→ EL2
θ0,h

, (35)

(where the square is component-wise if δn, g and Lθ0,h are multi-dimensional). Also

suppose that g(θ) = θ. Then

Rs(δn, θ, h) = E‖T − h‖2,

since A = I, where T = f(X) with X ∼ N
(
h, I−1

θ0

)
and ‖·‖ is the Euclidean norm.

So (33) is equivalent to minimising

suphE‖T − h‖2.

Considering T as an estimator of the location of N
(
h, I−1

θ0

)
, we have transformed

the calculation of local asymptotic risk minimaxity to the problem of minimaxing

the squared error loss in a Gaussian location family. We know that the MLE of h is

minimax with respect to square error loss, so we would expect the MLE of θ to be

optimal in the sense of (33). The next theorem verifies this intuition.

Theorem 13.3. Let pθ be QMD at θ0 ∈ IntH with non-singular Fisher information

Iθ0. Let g be differentiable at θ0 and δn an estimator of g(θ0). Suppose that

√
n

[
δn − g

(
θ0 +

h√
n

)]
d−−−−−→

p⊗n
θ0+h/

√
n

Lθ0,h,

for all h. (Note that these are exactly the assumptions of the previous theorem.) Then

sup
h
Rs(δn, θ0, h) ≥ I−1

θ0
.

We know that

√
n

(
θ̂ML − θ0 −

h√
n

)
d−−−−−→

p⊗n
θ0+h/

√
n

N
(
0, I−1

θ0

)
,

when {pθ} is QMD at θ0. Assuming also that the second moments converge (as in

(35)), then we get Rs(θ̂
ML, θ0, h) = I−1

θ0
for all h. Theorem 13.3 implies that the MLE

is optimal in the sense of local asymptotic risk minimaxity (33), assuming that the

family is QMD at all θ ∈ H and H open.
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Proof. We will prove the Theorem for g(θ) = θ. By Theorem 13.2,

√
n

(
δn − θ −

h√
n

)
d−→ T − h.

Then

sup
h
Rs(δn, θ, h) = sup

h
lim
n→∞

nE
(
δn − θ −

h√
n

)2

= sup
h

lim inf
n→∞

nE
(
δn − θ −

h√
n

)2

≥ sup
h

E (T − h)2

≥ inf
T

sup
h

E (T − h)2

= I−1
θ0
,

where the third line follows by the Portmanteau theorem using the non-negative

continuous function f(x) = x2; the infT in the second last line is over all possible

functions T of X ∼ N
(
h, I−1

θ0

)
; and the final line follows since we know from Stat211,

that T = ĥML = X is minimax with respect to squared error loss in a Gaussian

location family, and X has variance I−1
θ0

.

Proof of Theorem 13.2. Our goal is to show there exists a randomised function T

such that T − Ah = Lθ0,h for all h. Write out

√
n

[
δn − g

(
θ0 +

h√
n

)]
=
√
n [δn − g (θ0)]−

√
n

[
g

(
θ0 +

h√
n

)
− g (θ0)

]
. (36)

We have already seen that the second term goes to Ah in probability (see section

9.3) since g is differentiable at θ0. We need to understand the first term Xn =
√
n [δn − g (θ0)] under the local alternative distribution. By Le Cam’s main theorem

(Theorem 11.1), we can determine this by studying

Vn =

(
Xn, log

dp⊗n
θ0+h/

√
n

dp⊗nθ0

)
,

79



under p⊗nθ0 . We know that Xn
d−−→
p⊗nθ0

Lθ0,0 by assumption and that

log
dp⊗n

θ0+h/
√
n

dp⊗nθ0
= hT

1√
n

n∑
i=1

ηθ(Xi)−
1

2
hTIθ0h+ op⊗nθ0

(1),

since we assume QMD.

So Vn = Op⊗nθ0
(1). Prokhorov’s theorem states that there exists a subsequence

{nj} such that Vn has a weak limit along {nj}. That is,

Vnj =

(
Xnj , log

dp
⊗nj
θ0+h/

√
nj

dp
⊗nj
θ0

)
d−−−→

p
⊗nj
θ0

(S, hTIθ0∆−
1

2
hTIθ0h),

as j → ∞, where ∆ ∼ N (0, I−1
θ0

) is the limiting distribution of hT 1√
n

∑n
i=1 ηθ(Xi);

and S is some random variable.

We need to express S as some function of ∆. We claim that

S = T (∆, U), (37)

where U is a uniform random variable independent of ∆. Why? We will prove it for

the univariate case where Xn, S ∈ R. For a given value δ of ∆, let FS|∆=δ(s) be the

conditional distribution of S. Then by the probability integral transform (PIT),

F−1
S|∆=δ(U) ∼ S,

and T = F−1
S|∆=δ is a function of ∆ and U as desired. (This naive hack of using the

conditional distribution and PIT is surprisingly useful.)

By Theorem 11.1,

Xnj
d−−−−−→

p
⊗nj
θ0+

h√
nj

L,

with L given by

P(L ∈ B) = E
[
1{T (∆, U) ∈ B} exp

(
hTIθ0∆−

1

2
hTIθ0h

)]
= EU

∫
1{T (∆, U) ∈ B} exp

(
hTIθ0∆−

1

2
hTIθ0h

)
exp

(
−1

2
δTIθ0δ

)√
2πI−1

θ0

dδ
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= EU
∫
1{T (∆, U) ∈ B} 1√

2πI−1
θ0

exp

(
−1

2
(δ − h)TIθ0(δ − h)

)
dδ

= P
(
T (∆, U) ∈ B|U uniform independent of ∆ ∼ N (h, I−1

θ0
)
)
,

where the second line follows by explicitly writing out the expectation with respect to

∆, noting that f(δ) = 1√
2πI−1

θ0

exp
(
−1

2
δTIθ0δ

)
is the density of ∆. Thus L ∼ T (∆, U)

and by (36),

√
nj

[
δnj − g

(
θ0 +

h
√
nj

)]
= Xnj − Ah+ o(1)

d−−−−−→
p
⊗nj
θ0+

h√
nj

T (∆, U)− Ah.

Hence we have established the required result along a subsequence nj. Extending this

result to hold on the entire sequence will complete the proof. Yet we assumed the en-

tire sequence weakly converges, and its limit must equal the limit on the subsequence

{nj}.

14 Lecture 11/3

14.1 Regular estimators

Definition 14.1. An estimator δn is regular at θ0 (for estimating g(θ0)) if, for all h,

√
n

[
δn − g

(
θ0 +

h√
n

)]
d−−−−−→

p⊗n
θ0+h/

√
n

Lθ0 , (38)

where Lθ0 does not depend on h.

So an estimator is regular if its local asymptotic distribution doesn’t depend on

the direction h it approaches θ0.

If an estimator is regular, then small vanishing changes (i.e. the direction h)

around θ0 does not affect the limit distribution. So regular estimators converge to

their limit in a “locally uniform” fashion.

Example 14.2.
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1. The MLE is regular since we showed that Lθ0 ∼ N (0, I−1
θ0

) (see 31).

2. The Hodges estimator

θ̂H
n =

X̄n if
∣∣X̄n

∣∣ > n−1/4,

εX̄n otherwise,

is not regular since

√
n

(
θ̂H
n −

h√
n

)
d−−−→

p⊗n
h/
√
n

N
(
h(1− ε), ε2

)
.

(See Homework 2.)

The following theorem establishes a notion of the “best” possible asymptotic dis-

tribution.

Theorem 14.3 (Theorem 8.8 of [vdV]). Let pθ be QMD at θ0 ∈ IntH with non-

singular Fisher information Iθ0. Let g be differentiable at θ0. Then the local asymp-

totic limit distribution Lθ0 (from 38) for any regular estimator δn of g(θ0) satisfies

Lθ0 = Zθ0 + ∆θ0 ,

where Zθ0 ∼ N
(
0, AI−1

θ0
A
)
; A is the Jacobian of g at θ0; and ∆θ0 is a random variable

independent of Zθ0 (but beyond that we cannot say more about ∆θ0).

So VarLθ0 = VarZθ0 + Var∆θ0 ≥ AI−1
θ0
A – that is, the local asymptotic variance

of a regular estimator is always bounded below by AI−1
θ0
A. Thus, a regular estimator

is asymptotically efficient if its asymptotic variance is AI−1
θ0
A.

Recall (31):
√
n

(
θ̂ML −

[
θ +

h√
n

])
d−−−−−→

p⊗n
θ+h/

√
n

N
(
0, I−1

θ

)
.

By the delta method (assuming A is non-singular),

√
n

(
g
(
θ̂ML

)
− g

(
θ +

h√
n

))
d−−−−−→

p⊗n
θ+h/

√
n

N
(
0, AI−1

θ A
)
,

and g
(
θ̂ML

)
is the MLE of g(θ0) by equivariance. So the MLE achieves optimal local

asymptotic variance (assuming that A is non-singular).
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14.1.1 Superefficient Estimators

Question: Theorems 13.2 and 14.3 both formalise the notion that the MLE is optimal

in ‘nice’ families. But then how do superefficient estimators�� – such as the Hodges

estimator – exist (in these ‘nice’ families)? The following theorem reconciles this

apparent contradiction.

Theorem 14.4 (Theorem 8.9 of [vdV]). Suppose the model {pθ : θ ∈ H} is QMD

at every θ ∈ H with non-singular Fisher information Iθ0. Let g : H → Rk be a

differentiable function and δn a sequence of estimators of g(θ) such that

√
n (δn − g(θ))

d−−→
p⊗nθ

Lθ,

for all θ. (All this is saying is that δn converges in distribution.)

Then there exists a random vector ∆θ such that, for Lebesgue-a.e. θ,

Lθ = Zθ + ∆θ,

where Zθ ∼ N (0, AθI
−1
θ Aθ) and Aθ is the Jacobian of g at θ. (We no longer conclude

that ∆θ is independent of Zθ.)

Hence, superefficient estimators in QMD families that converge weakly for all θ

must have variance at least AθI
−1
θ Aθ for almost all θ. That is, they can only be

superefficient on a set of Lebesgue measure zero!

14.2 Local asymptotic minimax theorem

Theorem 14.5 (Theorem 8.11 of [vdV]). Given a family that is QMD at θ0 ∈ H ⊂
Rk with non-singular Fisher information Iθ0, a function g differentiable at θ0, an

��An estimator is superefficient if its asymptotic variance is less than I(θ0)−1. See Section 4, part

2 for more details.
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estimator δn of g(θ0) and a bowl-shaped loss function�� l,

sup
I

lim inf
n→∞

sup
h∈I

Ep⊗n
θ0+h/

√
n
l
(√

n
[
δn − g(θ0 + h/

√
n)
])
≥ EX∼p(·)l(X), (39)

where supI is taken over all finite subsets I ⊂ Rk; p(·) is the density of N (0, AI−1
θ0
A);

and A is the Jacobian of g at θ0.

Ep⊗n
θ0+h/

√
n
l (
√
n [δn − g(θ0 + h/

√
n)]) is the local risk and the LHS of (39) is the

worst case local risk. We use lim infn→∞ since we want to bound the worst case local

risk from below.

14.3 Connections to modern research

This module on local asymptotics has presented classical results, but they are used

in modern statistics. See [JO20, AKJ20, BM18, LS20] for papers on spike matrices

M = λvvT + Z. Notions of asymptotic optimality in high dimensional regression

remain unresolved. The following are some open questions in this area:

1. What is the notion of asymptotically optimal estimators?

2. What kind of local expansions to the log likelihood ratio are useful and what

do you get out of this?

3. What is the right local resolution? Just using n−1/2 is naturally not enough,

since p is also diverging. We will need to use something like pα, nβ, but for what

values of α, β?

��A bowl shaped loss function l is a function with values in [0,∞] such that the sublevel sets

{x : l(x) ≤ c} are convex and symmetric about the origin. The loss of δn estimating g(θ) is

l(δn − g(θ)). The bowl-shaped property ensures that l(δn − g(θ)) = l(g(θ)− δn) and that, roughly,

the loss increases with ‖δn − g(θ)‖.
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15 Lecture 18/3

15.1 Hypothesis testing

In Stat211, we looked at testing in finite samples, the Neyman-Pearson framework

and the UMP. We now move to an asymptotic study of hypothesis testing, since –

analogous to estimation – asymptotics provides a unifying general theory.

15.1.1 Setup and preliminary definitions

Our goal is to test whether the null hypothesis H0 : θ ∈ Θ0 holds versus the alternative

hypothesis H1 : θ ∈ Θ1. We observe X1, . . . , Xn
iid∼ pθ. Write Tn for the test statistic

based on the n observed samples.

Definition 15.1. The critical function φn of a test is the statistic

φn(X1, . . . , Xn) = P (Tn rejects the null given observations X1, . . . , Xn) .

(The probability in φn solely reflects the fact that there may be some randomisa-

tion within the test Tn – it is not a probability over the Xi’s or something else.) The

critical function completely characterises the test; it will prove to be a convenient

way of working with tests.

Definition 15.2. For a test Tn that rejects if Tn is in some critical region Kn, define

the power function

πn : θ 7→ Pθ(Tn ∈ Kn).

More generally,

πn : θ 7→ Eθφn.

(The expectation/probability in πn is taken over the data Xi.) The power function

πn(θ) is the probability of rejecting the null hypothesis, under parameter θ.

Definition 15.3. The size of a test is defined as

sup
θ∈Θ0

πn(θ).
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A test is level α if its size is no greater than α. A test is asymptotically level α if

lim sup
n→∞

sup
θ∈Θ

πn(θ) ≤ α.

Definition 15.4. Define the limiting power function of a test as the point-wise limit

of the power

π(θ) = lim
n→∞

πn(θ),

assuming that the limit exists (which it usually does).

A test with power function πn is better than one with power function
¯
πn if

πn(θ) ≤
¯
πn(θ) ∀θ ∈ Θ0,

πn(θ) ≥
¯
πn(θ) ∀θ ∈ Θ1. (40)

Naively, we could make an analogous asymptotic definition using the limiting power

function. However, the following example shows that such a definition will have very

little utility.

Example 15.5. Let X1, . . . , Xn ∼ N (θ, 1). Suppose we want to test H0 : θ = 0 versus

the two-sided alternative H1 : θ 6= 0. Let

Tn = 1

{∣∣X̄n

∣∣ > z1−α/2√
n

}
,

where z1−α/2 is the (1− α/2)-quantile of N (0, 1). Since X̄n ∼ N (θ, 1
n
),

π(θ) = lim
n→∞

Pθ
(∣∣X̄n

∣∣ > z1−α/2√
n

)
= lim

n→∞
1− Pθ

(
z−α/2 −

√
nθ < Z < z1−α/2 −

√
nθ
)

=

1 if θ 6= 0,

α if θ = 0,

where Z ∼ N (0, 1). We can take α to be very small and then we can almost perfectly

distinguish between the null and the alternative asymptotically. This phenomenon

– the power going to 1 and α – is common. Hence the asymptotic version of (40)

will not be a useful way to compare tests. We need a better way to distinguish tests

asymptotically.
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15.1.2 The sign test

Consider the scenario where H0 : θ = 0 versus H1 : θ > 0 and X1, . . . , Xn are iid

from a location family F (x− θ). Assume that F (x) has a unique median 0. The sign

statistic is defined as

Sn =
1

n

n∑
i=1

1{Xi > 0} .

Define

µ(θ) = EθSn = Pθ(Xi > 0) = 1− F (−θ).

Further

σ2(θ)Var(Sn) =
1

n
[1− F (−θ)]F (−θ),

since nSn ∼ Binom(n, 1− F (−θ)). Then

√
n(Sn − µ(θ))

d−→ N (0, σ2(θ)).

Under the null µ(0) = 1− F (0) = 1
2

and µ2(0) = 1
4
. Hence the test that rejects when

√
n

(
Sn −

1

2

)
>

1

2
z1−α,

has asymptotic size α. The power function can be calculated by

πn(θ) = Pθ
[√

n (Sn − µ(0)) >
1

2
z1−α

]
= Pθ

[√
n
Sn − µ(θ)

σ(θ)
>

1
2
z1−α −

√
n (µ(θ)− µ(0))

σ(θ)

]
= 1− Φ

[ 1
2
z1−α −

√
n (µ(θ)− µ(0))

σ(θ)

]
+ oP(1).

We know that

√
n (µ(θ)− µ(0)) =

√
n (F (0)− F (−θ)) .

If θ > 0 then F (0)− F (−θ)) > 0 since the median is unique. Hence the argument of

Φ goes to negative infinite and πn(θ)→ 1 under the alternative. On the other hand,

when θ = 0,

πn(θ) = 1− Φ

( 1
2
z1−α

1
2

)
+ oP(1) = α + oP(1).
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The limiting power function is thus

π(θ) =

1 if θ > 0,

α if θ = 0.

This is another example of the phenomenon of asymptotic power going to one. We

will define a test to be consistent if it observes this phenomenon.

15.1.3 Consistency (of hypothesis tests)

Definition 15.6. A sequence of tests with power function πn(θ) is asymptotically

consistent at level α if

lim sup
n→∞

sup
θ∈Θ0

πn(θ) ≤ α, (41)

and limn→∞ πn(θ) = 1, for all θ ∈ Θ1.

Like consistency for estimators, we that all reasonable hypothesis test are consis-

tent. It can be viewed as a minimum baseline for a ‘decent’ hypothesis test.

(41) is a departure from the Neyman-Pearson paradigm where we require level α

for every finite n. Now we only care about the level in the limit. (41) is usually the

easier of the two conditions of consistency to satisfy, since we can choose the critical

region so as to bound the type 1 error. The second condition – a pointwise limiting

power of 1 – is the main feature of consistency.

15.1.4 Local limiting power discussion

How can we compare between different tests asymptotically? Consistency is too easier

to obtain, since the pointwise limit function is not really informative. To make an real

comparison between sequences of consistent tests, we need to study the performance

of tests in problems that get harder and harder as n increases.

Consistency shows that it is too easy to distinguish between a fixed null and a fixed

alternative. One way to make the testing problem harder is to choose the null and

and alternative hypothesis to move closer to each other as n→∞. The idea is very

similar to the local asymptotic analysis that we have been already been considering:
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fix the null and consider a sequence of alternative hypotheses that converge to the

null. Then calculate the power of the test along this sequence of alternatives.

Recall the sign test. Suppose that θn ↓ 0. We know that

πn(θn) = 1− Φ

( 1
2
z1−α −

√
n [F (0)− F (−θn)]

σ(θn)

)
+ oP(1).

The limiting behaviour of πn(θn) depends on the rate θn converges to zero and

how this affects the rate that F (0) − F (−θn) converges to zero. Assuming that σ(·)
is continuous at 0, there are two cases:

1. θn → 0 too fast so that
√
n [F (0)− F (−θn)]→ 0,

and hence πn(θn) → α. In this case, the testing problem is too hard, since we

are unable to distinguish between the alternative and null hypotheses.

2. θn → 0 too slow so that
√
n [F (0)− F (−θn)]→∞,

and hence πn(θn)→ 1. In this case, the testing problem is too easy.

What is crucial is the rate of convergence of F (0) − F (−θn) as compared to the

rate
√
n. What is the rate at which we require θn → 0 so that the testing problem is

neither too easy nor too hard – ie so that limn→∞ πn(θn) ∈ (α, 1)?

Assume that F is differentiable at zero with positive derivative. Then the Taylor

expansion
√
n [F (0)− F (−θn)] =

√
nθnf(0) +

√
no(θn). (42)

If f(0) is bounded then we need θn = Θ(n−1/2), in order that (42) does not converge

to zero or infinity. That is, θn should be converge to zero at rate n−1/2. This is

a specific example for the sign test, but the phenomenon is universal across a wide

class of smooth parametric families. This is tied to why α = 1
2

is the right rate of

convergence for local asymptotics.

For θn = h√
n
,

πn

(
h√
n

)
→ 1− Φ (z1−α − 2hf(0)) .
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15.1.5 Local limiting power function

To recap the discussion of the previous section: in order to asymptotically compare

two sequences of consistent tests for H0 : θ = 0 versus H1 : θ > 0, consider the local

limiting power function, defined as

π(h) = lim
n→∞

πn

(
h√
n

)
.

For a one sided test, consider h > 0; for a two sided test, consider any h ∈ R; for a

multi-dimensional parameter, consider any h ∈ Rk.

For any sequence of “nice” test statistics, π(h) has a “nice” formula; and this

formula provides a way to compare consistent tests.

For simplicity, assume the one sided setting where H0 : θ = 0 against H1 : θ > 0.

Suppose that the sequence of tests reject the null for large values of Tn
§§, and for all

h ≥ 0, √
n (Tn − µ(θn))

σ(θn)

d−−→
pθn
N (0, 1), (43)

where θn = h√
n

and µ(θn), σ(θn) are some know functions (commonly – but not

necessarily – the mean and standard deviation of Tn).

(43) is what we mean by “nice” test statistic. (For a two sided test, Tn should

reject for large absolute values and (43) should hold for all h.)

For the one sided test, (43) implies that the critical value σ(0)z1−α√
n

+ µ(0) defines

an asymptotically level α test. Further,

πn(θn) = Pθn
[√
n (Tn − µ(0)) > σ(0)z1−α

]
= Pθn

[√
n (Tn − µ(θn))

σ(θn)
>
σ(0)z1−α −

√
n (µ(θn)− µ(0))

σ(θn)

]
.

If θn = h√
n
, µ(·) differentiable at zero and σ(·) continuous at zero, then under (43),

π (h) = 1− Φ

[
σ(0)z1−α − hµ′(0)

σ(0)

]
§§“The test statistic rejects the null for large values” is a common statement. It is a useful

ambiguity since it allows us to specify the test without exactly specifying the rejection region. We

like this since we want to be able to change the rejection region depending on the desired level α;

we may also want to defer the specification of the rejection region until later.

90



= 1− Φ

[
z1−α −

hµ′(0)

σ(0)

]
, (44)

by similar derivations to the sign test example in the previous example. (44) is the

“nice” formula for π(h).

Therefore, to compare the asymptotic local power of tests which satisfy (43), it

suffice to compare

β =
µ′(0)

σ(0)
.

For one sided tests with h > 0, larger values of β result in larger asymptotic local

power.

Theorem 14.7 of [vdV] summarises the discussion of this section.

16 Lecture 23/3

16.1 Slope and relative efficiency

Definition 16.1. Consider H0 : θ = 0 versus H1 : θ > 0. Given a sequence of tests

that reject the null for large values of Tn which satisfy (43),

β =
µ′(0)

σ(0)
,

is called the slope of the tests, assuming that µ is differentiable at zero and σ contin-

uous at zero.

Now consider two sequences of tests that reject the null for large values of Tn,1

and Tn,2. Assume that they satisfy (43) and that µi is differentiable at zero, σi is

continuous at zero and µi(0) > 0, σi(0) > 0, for i = 1, 2. The asymptotic relative

efficiency (ARE) of the tests is defined as the square of the ratio of the slopes:

ARE =

(
β1

β2

)2

.

Typically, the ARE is studied under scenarios which satisfy the following assump-

tions:
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1. The statistical model {pn,θ : θ ≥ 0} satisfies a local smoothness condition around

θ = 0:

‖pn,θ − pn,0‖TV → 0,

as θ → 0, for all n.

2. Both tests have asymptotic level α and pointwise power limiting to γ ∈ (α, 1]

for all θ > 0.

Under these assumptions, the ARE has a sample size interpretation – see the discus-

sion around Theorem 13.9 of [vdV].

16.1.1 Limitations of the ARE

The ARE cannot handle nuisance parameters. For example, suppose we are interested

in testing H0 : θ = 0 against H1 : θ > 0 in a family {pn,θ,σ : θ ≥ 0} parametrised

by both θ and σ. (We argue that this is actually the more typical scenario than one

without nuisance parameters.) In this setup, the ARE can depend on the value of

σ. So for some σ, one test may be better, while for other σ, the other test may be

better. Yet typically, we do not know the true σ, so we don’t know which test to

choose based on this ARE analysis. This motivates a better way to compare tests –

asymptotic optimality of tests – which we will introduce next class.

16.2 Sufficient conditions for consistency

Lemma 16.2 (14.15 of [vdV]). Let Tn be a sequence of statistics such that Tn
Pθ−→ µ(θ)

for every θ. Then the family of tests that reject the null hypothesis H0 : θ = 0 for

large values¶¶ of Tn is consistent against every θ with µ(θ) > µ(0).

For a proof, see Section 8.

Example 16.3. Consider the two sample setting where we observe X1, . . . , Xn
iid∼ F

and Y1, . . . , Yn
iid∼ G. We want to test H0 : EX = EY . Consider the test statistic

Ȳ − X̄
S

P−→ E (Y −X)

σ
,

¶¶So we are looking at one sided tests.
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where S2 is the sample variance of Yi−Xi and σ2 = limn→∞Var
(
Ȳ − X̄

)
. This lemma

shows that the test is consistent against every alternative of the form EY > EX.

Also see Lemma 14.16 in [vdV] (Lemma 2 in Section 8) for another set of sufficient

conditions for consistency.

16.3 The Wald test

Consider the setup where X ∼ Pθ (we could also have X1, . . . , Xn
iid∼ Pθ) and we want

to test H0 : g(θ) = 0 against H1 : g(θ) 6= 0, where g : Θ→ Rk is differentiable.

The Wald test statistic is based on g(θ̂ML). To control the Wald test’s size, we

need to understand g(θ̂ML) under the null. Assume regularity conditions so that

√
n
(
θ̂ML − θ

)
d−→ N (0, I−1

θ ).

Then the delta method gives

√
n
(
g(θ̂ML)− g(θ)

)
d−→ N (0, JθI

−1
θ JT

θ ),

where Jθ is the Jacobian of g at θ. Since g(θ) = 0 under the null,

√
nV
−1/2
θ g(θ̂ML)

d−→
H0

N (0, I), (45)

where Vθ = JθI
−1
θ JT

θ .

We would like to use (45) as our test statistic. There are two issues:

1. The null space Θ0 may not be a singleton set. In this case, what θ should be

used in Vθ in the ‘test statistic’ (45)?

2. Even if there is a unique θ in the null, g(θ) = 0 may not yield a closed form

expression for θ and hence it may be hard or impossible to compute Vθ.

So we cannot just plug in V
−1/2
θ for some θ ∈ Θ0 into (45) and get a test statistic.

Instead, assuming θ 7→ Vθ is a continuous function in θ, then

Vθ̂ML

Pθ−→ Vθ,
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and hence
√
nV
−1/2

θ̂ML
g(θ̂ML)

d−→
H0

N (0, I). (46)

(46) is the definition of the Wald test. Equivalently, we can also use the test statistic

ngT(θ̂ML)V −1

θ̂ML
g(θ̂ML)

d−→
H0

χ2
k,

where k is the dimension of g(θ).

We could replace θ̂ML with any consistent and asymptotically Normal estima-

tor. This is useful in practise when the MLE is difficult to compute, while another

estimator (e.g. the one-step estimator) is not.

Questions: Is the Wald test consistent? Yes – this is not hard to prove using the

fact
√
nV −1

θ̂ML

(
g(θ̂ML)− g(θ)

)
d−→ N (0, I).

What is the asymptotic local power of the Wald test? There are two subtleties:

Firstly, we need to find the asymptotic distribution of g(θ̂ML) (with appropriate cen-

tring and scaling) under p⊗n
θ+h/

√
n
. We can’t apply the delta method out of the box as

the distribution is changing with n. (But I think it turns out that we can get a delta

method for this case.) Also, we need V
−1/2

θ̂ML

P−→ V
−1/2
θ under p⊗n

θ+h/
√
n
. We don’t know

yet know a result to handle this either; although proving one is easy:

Proposition 16.4. If {Xn} is a sequence of random variables such that Xn
Pn−→ X

and Qn / Pn then Xn
Qn−→ X (where the convergences are in probability).

The proof of this proposition is an easy consequence of contiguity.

With some calculations, we get

√
n
(
g(θ̂ML)− g(θ)

)
d−−−−−→

p⊗n
θ+h/

√
n

N (Jθh, Vθ),

and assuming contiguity – so that V
−1/2

θ̂ML

P−−−−−→
p⊗n
θ+h/

√
n

V
−1/2
θ – we have

√
nV
−1/2

θ̂ML
g(θ̂ML)

d−−−−−→
p⊗n
θ+h/

√
n

N (V
−1/2
θ Jθh, I).
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16.3.1 The Wald test with nuisance parameters

As a running example for this section, consider Xi
iid∼ N (µ, σ2) where µ and σ2 are

both unknown; and we are interested in testing H0 : µ = 0 against H1 : µ 6= 0.

More generally, we are in a setting where we only care about estimating functions

of θ that depend on only a few co-ordinates of θ.

Notation: For v ∈ Rd, write

[v]1:k =


v1

...

vk

 ,
for the first k co-ordinates of v, where k ≤ d. For A ∈ Rd×d, write A(k) for the leading

principal minor of order k (i.e. the top left square submatrix of size k × k).

Then,
√
n
(

[θ̂ML]1:k − [θ]1:k

)
d−→ N (0, I−1

θ

(k)
).

Consider testing H0 : g([θ]1:k) = 0. One issue with applying the previous calculations

is that I−1
θ

(k)
depends on all of the co-ordinates of θ, so it is not necessarily constant

if we fix the first k co-ordinates. The fix is to take I−1

θ̂ML

(k)
and use the following linear

algebra fact: If

A =

[
A11 A12

A21 A22

]
,

is symmetric, positive definite and M = A−1 then M11 =
(
A11 − A12A

−1
22 A21

)−1
. This

fact allows us to prove consistency of
[
I−1

θ̂ML

(k)
]
.

16.4 The Rao/Score Test

Instead of using the MLE, we could use the score function. We know that

1√
n

n∑
i=1

∇θ log pθ(Xi)
p⊗nθ−−→
d
N (0, Iθ),

and

1

n

(
n∑
i=1

∇θ log pθ(Xi)

)T

I−1
θ

(
n∑
i=1

∇θ log pθ(Xi)

)
d−−→
p⊗nθ

χ2
d,
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where d is the dimension of θ. We can establish consistency and asymptotic local

power with a similar derivation to the Wald test.

16.4.1 Nuisance parameters (in modern research)

Nuisance parameters are common in high dimensional and causal inferences, amongst

other areas. See [CCD+18] for general strategies on dealing with nuisance parameters.

add-on One approach to deal with nuisance parameters is to replace them with a

consistent (under the null) estimator (e.g. their MLE) in the test statistic.

17 Lecture 25/3

17.1 Generalised Likelihood Ratio Tests

In Stat211, we say that for a simple null H0 : θ = θ0 versus a simple alternative

H1 : θ = θ1, we can construct the likelihood ratio

Rn(θ1, θ0) =
Ln(θ1)

Ln(θ0)
,

and the Neyman-Pearson lemma states that the test which rejects the null for large

values of Ln(θ1, θ0) is universally most powerful (UMP). The generalised likelihood

ratio test (GLRT) extends this idea to composite null versus composite alternative

testing.

Definition 17.1. Let X ∼ Pθ, for θ ∈ Θ where Θ = Θ0 ∪Θ1. We want to test

H0 : θ ∈ Θ0 vs H1 : θ ∈ Θ1.

The GLRT has test statistic

Rn =
supθ∈Θ pθ(x)

supθ∈Θ0
pθ(x)

,

and critical function

φGLRT(x) =


1 if Rn > k,

0 if Rn < k,

γ if Rn = k.
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k and γ are chosen so that the level constraint of the test is satisfied.

The numerator of Rn is pθ̂ML(x) and the denominator is the maximum likelihood

when restricting to the null hypothesis. So intuitively, if the fraction is large then it

is much more likely that the data is drawn from the alternative distribution than the

null.

Example 17.2.

1. Consider X = (X1, . . . , Xp)
T ∼ N (θ,Σ) where θ ∈ Rp and Σ is known. The

goal is to test H0 : θ = 0 versus H1 : θ 6= 0. The test statistic is

Rn =
supθ∈Rp exp

[
−1

2
(X − θ)TΣ−1(X − θ)

]
exp

[
−1

2
XTΣ−1X

] .

The numerator is maximised when X = θ, so Rn = exp
(

1
2
XTΣ−1X

)
. Hence,

we can write the critical region as {x : xTΣ−1x > k′}. But what should k′ be?

We need that

PH0

[
XTΣ−1X > k′

]
= α.

We know that under H0, XTΣ−1X ∼ χ2
p. So set k′ as the 1− α quantile of the

χ2
p distribution.

2. Goodness of fit testing: Consider X1, . . . , Xn
iid∼ Bern(p) and test H0 : p = π

versus H1 : p 6= π. The test statistic is

Rn =
supp∈[0,1] p

∑n
i=1Xi(1− p)n−

∑n
i=1Xi

π
∑n
i=1Xi(1− π)n−

∑n
i=1Xi

.

The numerator is maximised at the MLE p̂ = 1
n

∑n
i=1 Xi, so

Rn =
p̂np̂(1− p̂)n(1−p̂)

πnp̂(1− π)n(1−p̂) .

Two equivalent test statistics are

R′n = np̂ [log p̂− log π] + n(1− p̂) [log(1− p̂)− log(1− π)] ,

and

R′′n = p̂ log
p̂

π
+ (1− p̂) log

1− p̂
1− π

.
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This is the KL divergence between Bern(p̂) – the empirical distribution of the

data – and Bern(π)! This is to be expected, since the MLE can be interpreted

as a KL projection.

How should we set the cut off for R′′n? We need to derive the null distribution

of R′′n. This is difficult. But we can understand the asymptotics of the GLRT in

a general class of families. Hence we can get cutoffs (for large sample sizes) for

the GLRT statistic without working out the null distribution on a case-by-case

basis.

There are two basic questions about the GLRT which we should answer: Is the

GLRT consistent? And what is its asymptotic local power?

17.1.1 Consistency of the GLRT

To resolve the question of consistency of the GLRT, we need to understand how to set

the cutoff to achieve the right significance level. To do this, we need the asymptotic

null distribution of the GLRT.

Theorem 17.3 (12.4.2 of [TSH] – Wilk’s theorem). Let X1, . . . Xn
iid∼ pθ where {pθ :

θ ∈ Θ} with partition Θ = Θ0 ∪ Θ1. Assume that the family is QMD; Θ is an open

subset of Rk and Iθ is positive definite.

(i) Under a simple-vs-simple testing problem: – H0 : θ = θ0 versus H1 : θ 6= θ0 –

we have

2 logRn
d−→
H0

χ2
k.

(ii) Suppose Θ0 can be represented as

Θ0 :
{
θ : (g1(θ), . . . , gp(θ))

T = 0
}
,

for some continuously differentiable gi : Rk → R (i.e. Θ0 is the nullset of g).

Define D = D(θ) ∈ Rp×k by

Dij =
∂gi
∂θj

.
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If rankD = p then

2 logRn
d−→
H0

χ2
p.

This Theorem directly answers how to set the significant level. You can also use

this to prove consistency of the GLRT (see Assignment 4, Question 3).

Proof of (i). We know that

2 logRn = 2
n∑
i=1

[log pθ̂ML(Xi)− log pθ0(Xi)] .

The regularity conditions imply that θ̂ML is consistent for θ0 under H0 : θ = θ0.

For this proof, we assume further smoothness conditions: θ 7→ pθ is thrice contin-

uously differentiable. Then Taylor expand around θ̂ML = θ0 (assuming the parameter

is univariate):

2 logRn = 2
n∑
i=1

 ∂

∂ log pθ

∣∣∣∣
θ=θ0

(
θ̂ML − θ0

)
+

∂2

∂θ2
log pθ

∣∣∣∣
θ=θ0

(
θ̂ML − θ0

)2

2

+ op⊗nθ0
(1).

(47)

We know that

0 =
n∑
i=1

∂

∂θ
log pθ

∣∣∣∣
θ=θ̂ML

=
1√
n

n∑
i=1

∂

∂θ
log pθ

∣∣∣∣
θ=θ0

+
1√
n

n∑
i=1

∂2

∂θ2
log pθ

∣∣∣∣
θ=θ0

(
θ̂ML − θ0

)
+ pp⊗nθ0

(1),

by the first order Taylor expansion of ∂
∂θ

∑n
i=1 log pθ around θ = θ0.

Hence
√
n
(
θ̂ML − θ0

)
=
− 1√

n

∑n
i=1

∂
∂θ

log pθ
∣∣
θ=θ0

+ op⊗nθ0
(1)

1
n

∑n
i=1

∂2

∂θ2
log pθ

∣∣
θ=θ0

. (48)

Plug (48) into (47):

2 logRn =
−2
[∑n

i=1
∂
∂θ

log pθ
∣∣
θθ0

]2

∑n
i=1

∂2

∂θ2
log pθ

∣∣
θ=θ0

+

[∑n
i=1

∂
∂θ

log pθ
∣∣
θ=θ0

]2

∑n
i=1

∂2

∂θ2
log pθ

∣∣
θ=θ0

+ op⊗nθ0
(1)
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=
−
(

1√
n

∑n
i=1

∂
∂θ

log pθ
∣∣
θ=θ0

)2

1
n

∑n
i=1

∂2

∂θ2
log pθ

∣∣
θ=θ0

+ op⊗nθ0
(1)

d−→
H0

(√
I−1
θ0
N (0, Iθ0)

)2

∼ χ2
1.

There are three properties that are crucial for the above proof:

1) The consistency of the MLE is necessary so that the Taylor approximation term

is op⊗nθ0
(1);

2) The normalised score is asymptotically Gaussian;

3) The negative gradient converges in probability to the Fisher information.

In setups where these properties hold, 2 logRn will converge to a χ2 random variable.

17.1.2 The asymptotic local power of the GLRT

To ascertain the asymptotic local power of the GLRT – assuming a simple null – we

need to understand the distribution of 2 logRn under p⊗n
θ0+h/

√
n
. By Theorem 11.1, it

suffices to understand the weak convergence of(
2 logRn, log

dp⊗n
θ0+h/

√
n

dp⊗nθ0

)
, (49)

under p⊗nθ0 . Yet

2 logRn = 2
n∑
i=1

log
pθ̂ML(Xi)

pθ0(Xi)
= 2 log

p⊗n
θ̂ML

p⊗nθ0
.

So we need to look at the log-likelihood at θ̂ML, θ0 and θ0 + h/
√
n.

Assume that the model family is QMD at θ0; the parameter space is an open

subset of Rk and that Iθ0 is positive definite. The natural approach is to recall all

of the expansions of logRn that we have just computed. Then we can compute the

joint distribution of (49). After some calculations, we arrive at

2 logRn
d−−−−−→

p⊗n
θ0+h/

√
n

XTIθ0X,
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where X ∼ N (h, I−1
θ0

).add-on This implies 2 logRn
d−−−−−→

p⊗n
θ0+h/

√
n

χ2
k

(
‖h‖2

2

)
, where k is

dimension of θ.

This connects with earlier results on estimators: Before we saw (Theorem 13.2)

that the local asymptotic distribution of an estimator can be written in terms of a

function of a single Gaussian X ∼ N (h, I−1
θ0

). Now we observe a similar phenomenon:

the local asymptotic distribution of the log-likelihood ratio is the log-likelihood ratio

of a single X ∼ N (h, I−1
θ0

).

In summary, the log-likelihood ratio before under the local alternative in QMD

families effectively reduces to studying a corresponding testing problem in the Gaus-

sian location model.

17.1.3 An example where the GLRT isn’t nice

Consider a high-dimensional regression scenario where

1. X(n) ∈ Rn×p(n),

2. y(n) ∈ Rn×1,

3. β?(n) ∈ Rp(n), where p(n)→∞ as n→∞.

Suppose that y(n) = f(X(n)β?(n), U), where U is some independent uniform. For

example

yi(n) = 1{U ≤ exp [Xi(n)β?(n)]} .

(This setup covers all the logistic regression examples.) Suppose that

[β?(n)]1:(n−1) = β?(n− 1),

where [x]1:m denotes the vector of the first m co-ordinates of x. We want to test

H0 : [β?(n)]1 = 0 versus H1 : [β?(n)]1 6= 0.

The likelihood ratio is given by

Rn =
supβ∈Rp(n) L(β|X(n), y(n))

sup β∈Rp(n)
[β(n)]1=0

L(β|X(n), y(n))
.
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We have p(n)− 1 nuisance parameters: [β?(n)]2:p(n). The number of nuisance param-

eters is diverging to infinity.

An issue in this set-up is that the MLE is inconsistent. So we can’t apply the

classical derivations as above. We can however fall back on leave-one-out analysis

and the asymptotic influence function, under certain relationships between p(n) and

n.

Suppose also that p(n)
n
→ k with 0 ≤ k ≤ 1. The logRn = l(β̂)− l(β̃), where β̂ is

the MLE of β? in the full model and β̃ is the MLE in the reduced model without β1.

Using the facts that

∇ln,p(β̂) = ∇ln,p−1(β̃) = 0,

we can simplify

logRn =
β̂2

1

1
p
Tr

([
∇2l(β̃)

]−1
) + op⊗nθ0

(1).

∇2l(β̃) is the Hessian of the full log-likelihood evaluated at the reduced MLE. It looks

reminiscent of the Fisher information.

Under H0 : β?1 = 0, one can show

√
pβ̂1

d−→ N (0, σ2),

and

Tr

([
∇2l(β̃)

]−1
)

P−→ λ,

where λ is a constant. Hence

logRn
d−→ σ2

λ
χ2

1.

So we have almost recovered the asymptotic null distribution of the GLRT, modulo

a rescaling factor.

See [SC18] for more details; generalisations beyond logistic regression are in a

forthcoming publication.
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18 Lecture 30/3

Recall our progress on understanding the asymptotic properties of hypothesis testing:

so far, we have covered

1. consistency of tests;

2. the limiting local power (and its motivation);

3. asymptotic relative efficiency (ARE);

4. the Wald, score and GLR tests.

Today we want to understand how to pin down which test is optimal in a broad

family of tests, or in a certain given parametric situation.

18.1 Asymptotic optimality of hypothesis tests

Suppose X1, . . . , Xn
iid∼ pθ and the one-sided test:

H0 : θ = θ0 versus θ > θ0.

In Stat211, we used ‘uniformly most powerful’ (UMP) as an optimality criterion in

this setting. But in many scenarios the UMP test does not exist. As usual, we go to

asymptotics to build a more general theory. We will show that with weak smoothness

assumptions, asymptotically optimal tests do exist.

To characterise tests, we know we should use local power, since local alterna-

tives allow for situations where there is non-trivial limiting power. So asymptotic

optimality is most naturally studied in local settings.

18.1.1 Simple-vs-simple testing

Consider testing H0 : θ = θ0 versus H1 : θ = θn,h = θ0 + h/
√
n. Under the Neyman-

Pearson paradigm, for a sequence {αn} of levels converging to α, the NP lemma says

that the MP test φn,h at level αn rejects when the likelihood ratio

Ln,h =
p⊗n
θ0+h/

√
n

p⊗nθ0
,
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is sufficiently large. Specifically,

φn,h =


1 if logLn,h > cn,h,

γn,h if logLn,h = cn,h,

0 if logLn,h < cn,h,

(50)

where the constants cn,h, γn,h are determined so that Eθ0φn,h = αn.

Lemma 18.1 (13.3.1 of [TSH]). Assume a simple-vs-simple testing problem where

H0 : θ = θ0 versus H1 : θ = θ0 + h/
√
n with levels {αn} converging to α ∈ (0, 1).

Suppose that {pθ : θ ∈ Θ} is QMD at θ0, with Ω an open subset of R.

1. As n→∞,

cn,h →
−h2Iθ0

2
+ hI

1/2
θ0
z1−α.

2. Pθ0 [logLn,h > cn,h]→ α so that Pθ0 [logLn,h = cn,h]→ 0.

3. The power of φn,h satisfies

Ep⊗n
θ0+h/

√
n
φn,h → 1− Φ

[
z1−α − hI1/2

θ0

]
.

3. can be generalised to the scenario with alternatives H1 : θ = θ0 +hn/
√
n where

hn → h as long as |h| <∞.

18.1.2 Asymptotically most powerful (AMP) tests

Definition 18.2. For testing H0 : θ = θ0 versus θ = θn, {φn} is asymptotically most

powerful (AMP) at asymptotic level α if

(i) lim supn→∞ Eθ0 (φn) ≤ α; and

(ii) For any other sequence of test functions {ψn} satisfying (i),

lim sup
n→∞

Eθn [ψn − φn] ≤ 0.
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I find it more intuitive to write property (ii) as

lim inf
n→∞

Eθn [φn − ψn] ≥ 0.

Theorem 18.3 (13.3.1 of [TSH]). Suppose {pθ : θ ∈ Θ} is QMD at θ0 with Θ an open

subset of R. Given X1, . . . , Xn
iid∼ pθ, test H0 : θ = θ0 versus H1 : θ = θ0 + hn/

√
n

where hn → h > 0. Then φn = φn(X1, . . . , Xn) is AMP at level α if and only if

Eθ0φn → α and

lim sup
n→∞

Eθ0+hn/
√
nφn = 1− Φ

(
z1−α − hI1/2

θ0

)
.

This is what we would expect since this is the limiting power of the Neyman-

Pearson MP test.

Unfortunately, the AMP φn,h (from (50) can depend on the value of h! With

different choices of h, we are looking at different parts of the local neighbourhood

around θ0. The choice of h is usually arbitrary. So we would like a sequence {φn}
that doesn’t depend on h. Ideally, we want a sequence {φn} test which is AMP for

“all possible choices of h”. (We will make this precise later.) The test (50) based on

the log-likelihood ratio does not necessarily satisfy this.

18.1.3 The score test

In QMD families, the (local) log-likelihood ratio satisfies

logLn,h =
h√
n

n∑
i=1

ηθ0(Xi)−
1

2
h2Iθ0 + op⊗nθ0

(1).

The log-likelihood ratio depends on the data Xi only through the QMD ηθ0 . And η

doesn’t depend on h. So a test based on η is an obvious candidate for a test which is

AMP “for all possible h”.

Definition 18.4. Define the score statistic,

Zn =
1√
n

n∑
i=1

ηθ0(Xi).
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and the score test,

φ̃n =

1 if Zn > I
1/2
θ0
z1−α,

0 otherwise.

Why do we expect φ̃n to be AMP “for all possible h”? We know that if Xn−Yn =

oPn(1) and Qn / Pn then Xn − Yn = oQn(1) [TSH, Prob. 2.24]. Hence

logLn,h =
h√
n

n∑
i=1

ηθ0(Xi)−
1

2
h2Iθ0 + op⊗n

θ0+h/
√
n
(1),

in QMD families. (This follows since we proved contiguity of p⊗n
θ0+h/

√
n

in QMD fami-

lies.) Hence the power of the LRT φn,h is derived from ηθ0(Xi). Since φn,h is AMP, we

would expect φ̃n to be as well. Yet φ̃n is not dependent on h, so its power corresponds

to the power of φn,h for every h.

Lemma 18.5 (13.3.2 of [TSH]). Suppose {pθ : θ ∈ Θ} is QMD at θ0 where Θ is

an open subset of R. Consider testing H0 : θ = θ0 versus H1 : θ = θ0 + h/
√
n with

significance levels αn → α. Then the score test φ̃n is asymptotically level α and for

any 0 < c <∞,

sup
0≤h≤c

∣∣∣Eθ0+h/
√
nφ̃n −

[
1− Φ

(
z1−α − hI1/2

θ0

)]∣∣∣ n→∞−−−→ 0.

So the limiting power of the score test against the local alternatives converges to

the optimal limiting power uniformly in h ∈ [0, c] for any c > 0. But the Lemma does

not imply that the score test is universally optimal across all h, with h unconstrained

in R.

18.1.4 Asymptotically uniformly most powerful (AUMP)

Definition 18.6. Consider the one-sided simple-vs-composite testing: H0 : θ = θ0

versus θ > θ0. A sequence of tests {φn} is asymptotically uniformly most powerful

(AUMP) at (asymptotic) level α if

(i) lim supn→∞ Eθ0φn ≤ α, and

106



(ii) For any other sequence of tests {ψn} satisfying (i),

lim sup
n→∞

sup
θ>θ0

Eθ [ψn − φn] ≤ 0.

So φn is AUMP if and only if it is asymptotically level α and it is AMP against

any sequence of alternatives {θn} with θn > θ.

We can reparametrise property (ii) to be the supremum over local alternatives:

lim sup
n→∞

sup
h>0

Eθ0+h/
√
n [ψn − φn] ≤ 0.

So this is the natural extension of AMP to simple-vs-composite tests.

AUMP is typically too strong a definition. In most cases, an AUMP test will

not exist. We can weaken AUMP by replacing the supremum over h > 0 with a

supremum over compact sets (as in Lemma 18.5).

18.1.5 Locally asymptotically uniformly most powerful (LAUMP)

Definition 18.7. Consider the same setup as in Definition 18.6. A sequence of test

{φn} is locally asymptotically uniformly most powerful (LAUMP) at (asymptotic)

level α if

(i) lim supn→∞ Eθ0φn ≤ α, and

(ii) For any other sequence of tests {ψn} satisfying (i) and any 0 < c <∞,

lim sup
n→∞

sup
0<θ≤θ0+c/

√
n

Eθ [ψn − φn] ≤ 0.

This is exactly the definition of AUMP except supθ>θ0 is changed to sup0<θ≤θ0+c/
√
n

for all 0 < c <∞.

As in the definition of AUMP, property (ii) can be reparametrised as

lim sup
n→∞

sup
0<h≤c

Eθ0+h/
√
n [ψn − φn] ≤ 0.
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18.1.6 Asymptotic optimality results in simple-vs-composite testing

Theorem 18.8 (13.3.2 of [TSH]). Consider testing H0 : θ = θ0 verus H1 : θ > θ0

in a family which is QMD at θ0 with non-zero Fisher information Iθ0 at θ0. If φn =

φn(X1, . . . , Xn) is a sequence of tests such that Eθ0φn → α then

(i) lim supn→∞Eθ0+h/
√
n ≤ 1−Φ

(
z1−α − hI1/2

θ0

)
, for any h. (This follows by work-

ing with the Neyman-Pearson MP test from earlier.)

(ii) φn is AUMP at level α if and only if

sup
h>0

∣∣∣Eθ0+h/
√
nφn −

[
1− Φ

(
z1−α − hI1/2

θ0

)]∣∣∣→ 0.

(iii) φn is LAUMP at level α if and only if, for all c > 0,

sup
0<h≤c

∣∣∣Eθ0+h/
√
nφn −

[
1− Φ

(
z1−α − hI1/2

θ0

)]∣∣∣→ 0.

The score test φ̃n is LAUMP in QMD families (from earlier calculations). The

following Theorem states that we can use the score test as a reference.

Theorem 18.9 (13.3.3 of [TSH]). Consider testing H0 : θ = θ0 versus H1 : θ > θ0 in

a family which is QMD at θ0 with derivative ηθ0 and non-zero Fisher information Iθ0

at θ0. Define the score test

φ̃n =

1 if Zn = 1√
n

∑n
i=1 ηθ0(Xi) ≥ I

1/2
θ0
z1−α,

0 otherwise.

Then,

(i) φ̃n is LAUMP at level α;

(ii) Sufficient condition: Any test sequence ψn satisfying ψn − φ̃n
P−→ 0 under pθ0 is

also LAUMP at level α.

(iii) Necessary condition: If a test sequence {ψn} is LAUMP at level α, then ψn −
φ̃n

P−→ 0 under pθ0.
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(iv) If, in addition, Zn →∞ in p⊗nθn -probability whenever

√
n (θn − θ0)→∞,

then the score φ̃n is also AUMP at level α.

Note that (ii) does not require anything of the behaviour of ψn under the alterna-

tive hypothesis! Why can (ii) be true, despite this? Since we are looking at LAUMP,

we only need to consider a local neighbourhood of θ0. Further, the behaviour in this

local neighbourhood is governed by pθ0 since the family is QMD at θ0.

Statement (iv) is saying that if you take a sequence {θn} which goes to θ0 slower

than rate n−1/2 and

Zn =
1√
n

n∑
i=1

ηθ0(Xi)→∞,

when Xi
iid∼ pθn , then the score test φ̃n is AUMP.

What does Zn →∞ in p⊗nθn -probability mean? It means that for all C ∈ R,

Pp⊗nθn (Zn < C)→ 0.

19 Lecture 1/4

19.1 Examples of asymptotic optimality

Example 19.1. Consider the Laplace density

pθ(x) =
1

2
exp (−|x− θ|) ,

and test H0 : θ = 0 against H1 : θ > 0. The QMD is given by

ηθ(x) =


p′θ(x)

pθ(x)
if pθ(x) > 0 and p′θ(x) exists,

0 otherwise,

from Section 3. Under the null,

η0(Xi) = sign(Xi) and I0 = 1,
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so the score statistic is

Zn =
1√
n

n∑
i=1

sign(Xi),

and we reject if Zn > z1−α.

The score test is LAUMP by Theorem 18.9. To determine if it is AUMP, use

Theorem 18.9 again: We need to check whether Zn →∞ in p⊗nθn -probability whenever
√
nθn →∞. We can compute

VarθnZn = Var signXi ≤ E [signXi]
2 = 1,

and

EθnZn =
√
nEθn sign(Xi)

=
√
n [Pθn (Xi > 0)− Pθn (Xi < 0)]

=
√
n
(
1− e−θn

)
→∞,

as
√
nθn →∞ by L’Hôpital’s rule. Chebychev’s inequality then proves Zn

P−−→
p⊗nθn

∞.

Example 19.2. Suppose

Xi = (Ui, Vi)
iid∼ MVN

(
0,

[
1 ρ

ρ 1

])
,

and consider testing H0 : ρ = 0 against H1 : ρ > 0. The score statistic is given by

Zn =
1√
n

n∑
i=1

∂

∂ρ
logLn(ρ)

∣∣∣∣
ρ=0

= . . . =
1√
n

n∑
i=1

UiVi.

We can use the same reasoning as in the previous example to show that the score test

is AUMP:

EρnZn =
√
nρn,
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and

Varρn(Zn) = Varρn (UiVi)

≤ E
(
U2
i V

2
i

)
= Eρn

[
V 2
i Eρn

(
U2
i

∣∣V 2
i

)]
= Eρn

[
V 2
i

(
ρ2
nV

2
i + (1− ρ2

n)
)]

= ρ2
nEV 4

i + (1− ρ2
n)EV 2

i

≤ 4,

where the fourth line follows since Ui|Vi ∼ N (ρnVi, 1 − ρ2
n); and the last line follows

since 0 ≤ ρn ≤ 1 and EV 4
i = 3 and EV 2

i = 1.

19.2 Asymptotic optimality in two-sided testing

If we want to move to two-sided testing, then the notions of AUMP and LAUMP

are typically unrealistically strong. (There will be no LAUMP test in most setups.)

Instead, look at optimality within a smaller class of tests – tests which satisfy (local)

asymptotic unbiasedness. See Homework 5 for more details.

19.3 Generalisations beyond QMD families

We have been studying one-sided testing in QMD families where the parameter space

Θ is an open subset of R. In practise, we will encounter problems with multivariate

parameters, nuisance parameters and non-iid data. See [TSH] after Theorem 13.4.1

for examples.

We know that in simple-vs-simple hypothesis tests, the NP lemma shows that the

log-likelihood ratio is UMP. When we wanted to look at the LAUMP, we realised that

we needed a test that was uniform across any choice of h. This let to the score test

in QMD families, since we could expand the local log-likelihood ratio in terms of the

score. But we can study an equivalent test in a broader class of families.

Recall that local asymptotically normal families in section 12.2.1. Here we ex-

panded the log-likelihood ratio in terms of some random vectors ∆n. It turns out
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that we can replace the score statistic 1√
n

∑n
i=1 ηθ0(Xi) with ∆n and maintain many

of the asymptotic optimality properties.

Definition 19.3. Let {Qn,h : h ∈ Rk} be a family parametrised by h ∈ Rk where

the subscript n denotes the density when n samples (not necessarily indepedent) are

observed. Define

Ln,h =
dQn,h

dQn,0

,

assuming that Qn,h has a density with respect to some base measure.

{Qn,h : h ∈ Rk} is asymptotically normal if there exists a sequence of random

vectors Zn and covariance matrix C such that

logLn,h = hTZn −
1

2
hTCh+ oQn,0(1), (51)

where

Zn
d−−→

Qn,0
N (0, C).

The RHS of (51) looks like the log-likelihood ratio hTZ − 1
2
hTCh from observing

Z ∼ N (Ch,C).

Theorem 19.4 (13.4.1 of [TSH]). Let {Qn,h : h ∈ Rk} be an asymptotically Normal

sequence of models with covariance matrix C and random vector Zn. Let φn be a test

– i.e. a function defined on the same probability space as Qn,h, and taking values in

[0, 1]. Let πn(h) = EQn,hφn denote the power of φn against Qn,h.

For every subsequence {nj} of N, there exists a further subsequence {njm} and a

test φ based on Z ∼ N (Ch,C) such that, for every h,

πnjm (h)→ π(h),

as m→∞, where π(h) is the power of φ.

Why is this Theorem useful? The idea is that you can correspond a test φn of

Qn,h with a test φ of the limiting model N (Ch,C). So the UMP test in the limiting

model N (Ch,C) gives an upper bound on the limiting power of tests φn. Further,

if you can construct φn with limiting power equal to this upper bound, then φn is

optimal in some sense. See Section 10 for details.
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19.4 Minimax Testing

add-on This section was given as a guest lecture from Prof. Subhabrata Sen and is

not assessable.

History: Minimax testing was initiated in the 1980’s in the Soviet school (Ingster)

and was developed in parallel to Le Cam’s work.

Setup: Suppose a parametric model with X1, . . . Xn
iid∼ pθ where θ ∈ R. Consider

testing H0 : θ = θ0 against H1 : θ > θ0. We have studied the sequence of alternatives

θn = θ0 + hn:

1. If hn = o(n−1/2) then “detection is impossible” – i.e. no test can do better than

random guessing.

2. If
√
nhn →∞ then “testing is easy” – i.e. there exists a test with both type 1

and type 2 errors going to zero as n→∞. (We call such a test powerful.)

So hn = h/
√
n is the right regime for these parametric problems – the testing problem

is neither too easy nor too difficult. In this case, we can use all the theory we have

developed earlier to answer this testing problem.

Question: what happens in non-parametric or high dimensional settings?

Example 19.5. The Gaussian sequence model: For 1 ≤ i ≤ n¡ let Xi = θi + εi, where

εi
iid∼ N (0, 1). We want to test

H0 : θ =


θ1

...

θn

 = 0

against

H1 : θ ∈ Θ(s, A) = {τ ∈ Rn : τ is s-sparse and τi ≥ A if τi 6= 0} ,

where s-sparse means that at most s co-ordinates are non-zero. This is a high dimen-

sional problem as θ grows with n.
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Example 19.6. Non-parametric regression: Suppose

yI = f

(
i

n

)
+ εi,

where εi ∼ N (0, 1) and i
n

is the fixed design values. Suppose f ∈ H(α) (the Hölder

class) and test

H0 : f = 0 versus H1 : f ∈ H(α) such that ‖f‖2
2 ≥ ρn.

In these types of examples, we have to give up on the “fine properties” that we

derived in parametric models and look at “coarse properties” of the testing problem.

We need to think broadly about the separation parameters (in the above examples,

these are ρn and (A, s)).

Following the approach taken in the parametric problem (that is, finding that

the rate hn = h/
√
n allowed for non-trivial testing), can we identify the “minimum

separation” required for non-trivial testing? (We will make this question precise.)

Definition 19.7. Given a test H0 : θ = θ0 against H1 : θ ∈ Θn, the risk of a sequence

of tests {Tn : n ∈ N} is defined as

Risk(Tn,Θn) = Eθ0Tn + sup
θ∈Θn

(1− EθTn) .

The minimax risk of the testing problem is defined as

Rn(Θn) = min
Tn

Risk(Tn,Θn).

The first term of the risk is the type 1 error rate and the second term is the type

2 error rate.

Definition 19.8. A test sequence {Tn : n ∈ N} is asymptotically poweful if Risk(Tn,Θn)→
0 as n→∞.

We say that “detection is possible” if there exists a sequence of asymptotically

powerful tests. So “the minimum separation for non-trivial testing” means “the min-

imum separation such that detection is possible”.

If you can find a sequence of asymptotically powerful tests at a certain separation

d, then d is an upper bound on the minimum separation. Actually determining the

minimum separation is much harder.
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20 Lecture 6/4

20.1 Bayesian Asymptotics

The reference for this section is [GR].

20.1.1 Framework and set-up

The hypothesis model is M = {pθ̃ : θ̃ ∈ H}. The data generating process goes in

two steps: First generate Θ ∼ π(·) (π is called the prior distribution) to get the

realised parameter θ. Second, draw Y1, . . . , Yn
iid∼ pθ(·). So there are random variables

(Θ, Y1, . . . , Yn) with joint density:

(θ, y1, . . . , yn) 7→ p(θ, y1, . . . , yn) = π(θ)
n∏
i=1

pθ(yi).

The goal is to infer about the unknown (realised) parameter θ, via the posterior

distribution

π(θ|y1, . . . , yn) =
π(θ)

∏n
i=1 pθ(yi)∫

H π(ν)
∏n

i=1 pν(yi)dν
.

(This posterior distribution is only defined if the integral in the denominator is finite.)

Denote the likelihood Ln : ν 7→
∏n

i=1 pν(yi). The denominator
∫
H π(ν)

∏n
i=1 pν(yi)dν

is the marginal likelihood (aka the marginal density of y1, . . . , yn).

In Bayesian inference, all we care about is the posterior distribution. So the

questions that make sense here are properties of the posterior as the sample size

goes to infinity. We will describe properties of the posterior that are analogous to

properties that we’ve been studying in the frequentist setting.

Remark 20.1. The posterior density might still exist even when the prior is not a

proper density (i.e.
∫
H π(ν)dν = ∞). Priors with infinity mass are called improper

priors. An example is the flat prior, where π(ν) is constant for all ν ∈ H. (This is

an improper prior if H is not bounded.) In this setting, there is no joint distribution

for (Θ, Y1, . . . , Yn) but there is a posterior distribution Θ|y1, . . . , yn.
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20.1.2 Intepretation of the posterior

The posterior distribution can be characterised as the minimiser of the quantity

−
∫
H

log

[
n∏
i=1

pθ(yi)

]
ν(θ)dθ +

∫
H

log

[
ν(θ)

π(θ)

]
ν(θ)dθ, (52)

over all probability distributions ν satisfying some regularity conditions that ensure

the above quantity exists. (This is proven formally in Homework 5.)

The first term of (52) is minimised by the probability distribution ν that maximises

the likelihood. This can be viewed as an analogue to the MLE.

The second term of (52) is the minimiser of the KL divergence KL(ν‖π). Thus,

the posterior can be interpreted as simultaneously trying to optimise the likelihood

while staying “true” to the prior.

This elucidates the Bayesian perspective to inference: update the prior information

based on the data likelihood.

Bayesian inference can also be interpreted in terms of “entropic inference” [Cat11].

20.1.3 Consistency

We focus on the behaviour of the posterior as n → ∞ in the context of parametric

and finite dimensional models. This material doesn’t carry across to the general,

non-parametric setting. (For details here, see [GR] and [Rou16].)

We would intuitively expect that the posterior distribution would converge to a

point if we had access to an infinite amount of data. That is, we expect that as

n → ∞, the posterior distribution would concentrate around some value θ?. This

idea is formalised by the notion of consistency.

Definition 20.2 (1.3.1 of [GR]). Assume that Y1, . . . , Yn
iid∼ p?. A sequence of poste-

rior distributions {π(dθ|Y1, . . . , Yn)}∞n=1 is consistent at θ? if, p?-a.s., for every neigh-

bourhood*** U of θ?,

π(U |Y1, . . . , Yn)
n→∞−−−→ 1. (53)

***A set containing an open set around θ?
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The ∀ neighbourhoods quantifier is within the a.s. quantifier – that is (53) is

stating:

Pp? ({π(U |Y1, . . . , Yn)→ 1 : U neighbourhood of θ?}) = 1.

In metric spaces (where the countable set {B1/n(θ?) : n ∈ N} forms a base for

neighbourhoods of θ?), consistency is equivalent to

π(d(θ, θ?) ≤ ε|Y1, . . . , Yn)
p?-a.s.−−−→
n→∞

1,

for all ε > 0. (So in metric spaces, we can swap the order of the ∀ and a.s. quantifiers.)

If a.s. is replaced with an ‘in probability’ statement, then the property is called

weak consistency.

The following consistency theorem (in the well-specified setting) is due to Doob:

Theorem 20.3 (1.3.2 of [GR], 10.10 of [vdV]). Assume that the model is identifiable

– that is, the map H 3 θ 7→ [pθ] (where [p] is the equivalence class of a.e.-equal

densities) is injective. Further, suppose that H ⊂ Rd, Y ⊂ Rp and π is a proper

prior.

Then there exists H0 ⊂ H such that π(H0) = 1 and such that the posterior is

consistent at every θ ∈ H0 whenever the data generating distribution is pθ.

Proof. Define Mn = π(A|Y1, . . . , Yn), where A is a measurable subset of H. We will

show that Mn is a martingale with respect to the σ-algebra Fn = σ(Y1, . . . , Yn):

E [Mn+1|Fn] = EYn+1 [π(A|Y1, . . . , Yn+1)]

= EYn+1 [EΘ (1{Θ ∈ A} |Y1, . . . , Yn+1)]

= EΘ [1{Θ ∈ A} |Y1, . . . , Yn]

= π(A|Y1, . . . , Yn)

= Mn, (54)

where the notation EXg(X, Y ) denotes the expectation E [g(X, Y )|Y ] is over the ran-

dom X, conditioning on the other variables Y ; and (I think) the third line follows by

Fubini-Tonelli (I think this is where we need that π is proper).
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Thus, the sequence of posteriors Mn is a martingale and bounded between zero

and one. Lévy’s upward theorem implies that

π(A|Y1, . . . , Yn)
a.s.−−→ n→∞π(A|Y1, Y2, . . .).

With some work, we can use this to show that there exist measurableH0 with π(H0) =

1 such that for any measurable set A, if θ ∈ A ∩H0, then

π(A|Y1, Y2, . . .) = 1,

p⊗∞θ -a.s. (we haven’t properly defined this notation yet, but intuitively it is simply

p⊗nθ in the limit as n→∞).

Where does the proof break down in the misspecified setting? Assume that

Y1, . . . , Yn+1
iid∼ p?. The LHS of (54) is

EYn+1 [π(A|Y1, . . . , Yn+1)] =

∫
Rp

∫
A

∏n+1
i=1 pθ(Yi)π(dθ)

p(Y1:n+1)
p?(Yn+1)dYn+1,

and the RHS is ∫
A

∏n
i=1 pθ(Yi)π(dθ)

p(Y1:n)
,

where p(Y1:n) =
∫
H pν(Y1:n)π(ν)dν is the marginal distribution.

The LHS and RHS are not equal unless special relations hold between p?(Yn+1)

and p(Y1:n+1). (add-on To be honest, I don’t really understand this argument.) So

π(A|Y1, . . . , Yn) is not necessarily a martingale.

Theorem 20.4 (Wald type consistency, 1.3.4 of [GR]). Let H be compact, {pθ : θ ∈
H} be distributions on Y and Y1, . . . , Yn

iid∼ p?. Assume that θ 7→ pθ(y) is continuous

for all y ∈ Y; and for all θ ∈ H, y 7→ pθ(y) measurable. Further suppose∫
Y

sup
θ∈H
|log pθ(y)|p?(dy) <∞.

Then the MLE converges to θ?, p?-a.s., where θ? is assumed to be the unique max-

imiser of

l? : θ 7→
∫
Y

log pθ(y)p?(dy).
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Further, if θ? is in the support of the prior, then the posterior is consistent at θ?, in

the sense that p?-a.s.,

π(U |Y1, . . . , Yn)→ 1,

as n→∞, for any neighbourhood U of θ?.

The first half of the Theorem is a frequentist result, which we have proved already.

The second half is a Bayesian consistency-type result. However, the second half does

not prove consistency in the sense of Definition 20.2, since it is a statement under p?,

not pθ? .

This theorem shows that both the MLE and the posterior converge to the same

limiting value θ?. It is an important example of Bayesian-frequentist reconciliation.

21 Lecture 8/4

21.1 Wald-type consistency proof

Proof of Theorem 20.4. We will prove the Theorem only for metric spaces. Fix a

neighbourhood U of θ?. Our goal is to show that

π(U |Y1, . . . , Yn) =

∫
U

∏n
i=1 pθ(Yi)π(dθ)∫

H
∏n

i=1 pθ(Yi)π(dθ)

p?-a.s.−−−→ 1,

as n → ∞. (Note that this is only sufficient to prove the Theorem, when we are

working in a metric space.)

Write H = U ∪K where K = U c ∩H. Define

R =

∫
K

∏n
i=1 pθ(Yi)π(dθ)∫

U

∏n
i=1 pθ(Yi)π(dθ)

,

and observe that

π(U |Y1, . . . , Yn) =
1

1 +R
.

Thus, it suffices to show that R converges to zero p?-a.s. To show this, we will find a

lower bound on the denominator of R, and an upper bound on the numerator.
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From the assumptions, the strong ULLN holds:

sup
θ∈H

∣∣∣∣ 1nln(θ)− l?(θ)
∣∣∣∣ p?-a.s.−−−→
n→∞

0.

Define Uδ ⊂ U by

Uδ = {θ : d(θ, θ?) < δ} ∩ U,

for any δ > 0. Let L1 = supθ∈K l
?(θ) and L2 = infθ∈Uδ l

?(θ). We know that l?(θ?) >

L1, L2 by assumption. Also, as δ → 0, L2 → l?(θ?) by continuity of l?. Hence, for

small enough δ, we have L2 > L1, or equivalents, A2 > A1, where Ai = Li − l?(θ?).
Choose ε > 0 such that A1 + ε < A2 − ε. From the strong ULLN, there exists

N ∈ N, such that, for all n ≥ N and all θ ∈ H,∣∣∣∣ 1nln(θ)− l?(θ)
∣∣∣∣ < ε.

Thus, for all θ ∈ K, we have 1
n
ln(θ) < L1 + ε while for all θ ∈ Uδ, we have 1

n
ln(θ) >

L2 − ε. This gives ∫
K

n∏
i=1

pθ(Yi)π(dθ) < exp (n(L1 + ε))π(K)

∫
Uδ

n∏
i=1

pθ(Yi)π(dθ) > exp (n(L2 − ε)) π(Uδ).

Further, exp (n(L2 − ε))π(Uδ) > 0, since θ? is in the support of π. Putting this

together,

R ≤ exp (n(L1 + ε))π(K)

exp (n(L2 − ε))π(Uδ)

= [exp (L1 + ε− (L2 − ε))]n
π(K)

π(Uδ)
n→∞−−−→ 0,

since L1 + ε < L2 − ε.
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21.2 Robustness (to the prior)

“Any nice prior will lead to the same posterior, given enough data.”

Theorem 21.1 (Theorem 1.3.1 of [GR]). Let {pθ : θ ∈ H} be a well specified model

and observe Y1, . . . , Yn
iid∼ pθ? for some θ? ∈

∫
H. Let π1, π2 be two (proper) priors,

which are positive and continuous at θ?. If both posteriors are consistent at θ?, then∫
H
|π1(θ|Y1:n)− π2(θ|Y1:n)|dθ pθ? -a.s.−−−−→

n→∞
0.

Informally, this Theorem means that if two researchers perform Bayesian inference

with different, but well behaved, priors and the same well specified model, then their

conclusions will be the same for large amounts of data. For the misspecified setting,

see [Rou16].

21.3 The Bernstein-von Mises theorem

Last lecture we say the Bayesian analogue of the frequentist notion of consistency.

Now we will see that analogue of asymptotic Gaussianity in the Bayesian context.

Let Θn be a random variable with distribution π(·|Y1:n). Let θ̂n be the MLE and

Tn =
√
n
(

Θn − θ̂n
)

. Denote the distribution of Tn by πn.

The Bernstein-von Mises (BvM) theorem states that, under appropriate regularity

conditions, ∫
H

∣∣∣∣∣πn(t)− 1√
(2π)k|V ?|

exp

(
−1

2
tTV ?−1t

)∣∣∣∣∣dt p?-prob.−−−−→
n→∞

0, (55)

where k is the dimension of H, V ? is some positive definite matrix and p?-a.s. is the

true data generating distribution.

The second term of the integrand is the density of N (0, V ?). So the BvM theorem

states that πn converges in TV distance to N (0, V ?), in p? probability. Informally,

this means the posterior distribution behaves asymptotically like N (θ̂n, V
?/n).

This theorem is useful since it directly leads to the formulation of the Bayesian

information criteria (BIC) for model selection. See the section for details.
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21.3.1 What is V ??

We will see that

V ? =
[
E?
(
− ∇2

θ log pθ(Y )
∣∣
θ=θ?

)]−1
,

where the expectation is with respect to the true data generating distribution p?. In

the well-specified setting, θ? is the true data generating parameter, so that p? = pθ? .

In the misspecified setting, θ? is the limit of θ̂n (i.e. the KL projection of p? onto

M = {pθ : θ ∈ H}).
So the asymptotic variance of Θn is the same as the MLE θ̂n in the well specified

setting. But it is different to the asymptotic variance of θ̂n, given by the sandwich

formula, in the misspecified setting. This means that the credible intervals will agree

with the confidence intervals in the well specified case. (Why? Both intervals will

eventually be centred at θ̂n and their widths will be the same, since the variances are

equal.) But this is not so in the misspecified case.

21.3.2 Intuition for BvM

Let t =
√
n
(

Θn − θ̂n
)

. Taylor expanding,

ln(θ̂n + t/
√
n) ≈ ln(θ̂n) +

t√
n
∇θln(θ̂n) +

1

2n
tT∇2

θln(θ̂n)t.

We know that the second term on the RHS is zero by the property of the MLE and

that the third term

1

n
∇2
θln(θ̂n)→ −J? = −E?

[
−∇2

θ log pθ(Y )
∣∣
θ=θ?

]
.

Hence

ln(θ̂n + t/
√
n)− ln(θ̂n) ≈ −1

2
tTJ?t.

The idea here is that if the prior density is flat (i.e π(θ̂n + t/
√
n) − π(θ̂n) ≈ 0) in

small neighbourhoods around the MLE, then the posterior density is approximately

Gaussian with variance V ? = [J?]−1.
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21.3.3 Proof of BvM

Proof of (55). Assume the univariate setting H = R. (The multivariate setting is an

easy extension.) We will state the assumptions as we go along, and recap them at

the end.

Assume the required conditions for consistency of the MLE: θ̂np
?-a.s.θ?.

Let t =
√
n
(
θ − θ̂n

)
. The density πn(·) of the random variable

√
n
(

Θn − θ̂n
)

is

given by

πn(t) =
π(θ̂n + t/

√
n) exp

(
ln(θ̂n + t/

√
n)
)

∫
R π(θ̂n + u/

√
n) exp

(
ln(θ̂n + u/

√
n)
)
du

=
π(θ̂n + t/

√
n) exp

(
ln(θ̂n + t/

√
n)− ln(θ̂n)

)
∫
R π(θ̂n + u/

√
n) exp

(
ln(θ̂n + u/

√
n)− ln(θ̂n)

)
du
,

for all t ∈ R. We will complete the proof in the next lecture.

22 Lecture 13/4

22.1 Proof of BvM (cont.)

Recall the statement of the Bernstein-von Mises (BvM) theorem: Let Y1, . . . , Yn
iid∼

p?. Suppose Θn is a random variable that follows the posterior distribution given n

observations and θ̂n is the MLE. Let πn be the density of Tn =
√
n(Θn − θ̂n). Then

under regularity conditions (defined later),∫
H

∣∣∣∣∣πn(t)− 1√
(2π)k|V ?|

exp

[
−1

2
tTV ?−1t

]∣∣∣∣∣dt p?-prob.−−−−→
n→∞

0, (56)

where k is the dimension of the parameter space H,

V ? =
[
E?
(
−∇2

θ log pθ(Y )
∣∣
θ=θ?

)]−1
,

and θ? is the unique maximiser of θ 7→ E? [log pθ(Y )].

(56) is the total variation distance between πn and an MVN. So the BvM theorem

is saying that the posterior is going to a Gaussian random variable in TV.
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Proof cont. From last lecture,

πn(t) =
π(θ̂n + t/

√
n) exp

(
ln(θ̂n + t/

√
n)− ln(θ̂n)

)
∫
R π(θ̂n + u/

√
n) exp

(
ln(θ̂n + u/

√
n)− ln(θ̂n)

)
du
. (57)

Let Cn be the denominator.

To show (56), it suffices to show that

I =

∫
R

∣∣∣∣π (θ̂n + t/
√
n
)

exp
(
ln(θ̂n + t/

√
n)− ln(θ̂n)

)
− π(θ?) exp

(
− 1

2V ?
t2
)∣∣∣∣dt p?-prob.−−−−→

n→∞
0.

(58)

Why? Assuming (58), we get

Cn
p?-prob.−−−−→
n→∞

π(θ?)
√

2πV ?,

since ∣∣∣∣Cn − π(θ?)

∫
R

exp

(
− 1

2V ?
t2
)∣∣∣∣ ≤ I.

Further,∫
R

∣∣∣∣∣πn(t)− 1√
(2π)k|V ?|

exp

[
−1

2
tTV ?−1t

]∣∣∣∣∣dt
≤ 1

Cn

∫
R

∣∣∣∣π(θ̂n + t/
√
n) exp

[
ln(θ̂n + t/

√
n)− ln(θ̂n)

]
− Cn

1√
2πV ?

exp

(
− 1

2V ?
t2
)∣∣∣∣dt

≤ 1

Cn
I +

1

Cn

∫
R

∣∣∣∣∣π(θ?) exp

(
− 1

2V ?
t2
)
− Cn

exp
(
− 1

2V ?
t2
)

√
2πV ?

∣∣∣∣∣dt,
where the second line follows by (57). Both of the terms on the RHS go to 0 in

p?-probability if (58) holds.

We now shift our attention to proving (58). Assume that θ? is the unique max-

imiser of l? and that the required conditions hold so that θ̂n
p?−→ θ?, a.s. Define

hn = − 1
n

∑n
i=1∇2

θ log pθ̂n(Yi) and assume

hn
p?-a.s.−−−→ V ?−10.
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First we will show that∫
R

∣∣∣∣π(θ̂n) exp

(
−hn

2
t2
)
− π(θ?) exp

(
− 1

2V ?
t2
)∣∣∣∣dt p?-prob.−−−−→

n→∞
0. (59)

How will we do this? Assume π is continuous so that π(θ̂n) → π(θ?) a.s. Use the

dominated convergence theorem with dominator

exp

(
−hn

2
t2
)
≤ exp

(
− c

2
t2
)
,

for some c and large enough n. (This holds since V ?−1 > 0 by assumption, so that

hn is positive eventually.)

Now the idea is that in I, replace π(θ?)
(
− 1

2V ?
t2
)

with π(θ̂n) exp
(
−hn

2
t2
)
. (59)

implies that (58) holds if∫
R

∣∣∣∣π (θ̂n + t/
√
n
)

exp
(
ln(θ̂n + t/

√
n)− ln(θ̂n)

)
− π(θ̂n) exp

(
−hn

2
t2
)∣∣∣∣dt p?-prob.−−−−→

n→∞
0

(60)

Split the integral in (60) into two parts:

I1 =

∫
|t|>δ

√
n

∣∣∣∣π (θ̂n + t/
√
n
)

exp
(
ln(θ̂n + t/

√
n)− ln(θ̂n)

)
− π(θ̂n) exp

(
−hn

2
t2
)∣∣∣∣dt,

I2 =

∫
|t|≤δ

√
n

∣∣∣∣π (θ̂n + t/
√
n
)

exp
(
ln(θ̂n + t/

√
n)− ln(θ̂n)

)
− π(θ̂n) exp

(
−hn

2
t2
)∣∣∣∣dt.

By the triangle inequality,

I1 ≤
∫
|t|>δ

√
n

π
(
θ̂n + t/

√
n
)

exp
(
ln(θ̂n + t/

√
n)− ln(θ̂n)

)
dt

+

∫
|t|>δ

√
n

π(θ̂n) exp

(
−hn

2
t2
)
dt

= I11 + I12.

First we show that I12
p?-prob.−−−−→
n→∞

0: For sufficiently large n (so that hn > 0, p?-a.s.),

I12 = π(θ̂n)

√
2π

hn

∫
|t|>δ

√
n

√
hn
2π

exp

(
−hn

2
t2
)
dt
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≤ π(θ̂n)

δ
√
nhn

exp

(
−δ

2nhn
2

)
p?-prob.−−−−→
n→∞

0,

where the second line follows using the inequality P (Z > z) ≤ exp(−z2/2)
2
√

2π
, for Z ∼

N (0, 1); and the third line follows since hn → V ?−1 > 0 and π(θ̂n)
p?-a.s.−−−→ π(θ?). Next

we prove that I11
p?-prob.−−−−→
n→∞

0: Assume that, with p? probability going to 1,

sup
|u|>δ

1

n
ln(θ̂n + u) <

1

n
ln(θ̂n)− η,

for some η = η(δ) > 0 which doesn’t depend on n. (This looks a lot like the well-

separate mode condition that we have seen earlier.) Then

I11 ≤ exp

(
sup
|u|>δ

∣∣∣ln(θ̂n + u)− ln(θ̂n)
∣∣∣)∫

|t|>δ
√
n

π(θ̂n + t/
√
n)dt

≤ exp (−nη)
√
n

∫
|u|>δ

π(θ̂n + u)du

→ 0,

as n→∞ (surely), since the integral is bounded between zero and one, and η > 0.

Now we consider I2: Here we can do a Taylor expansion. First do a change of

variables:

I2 =
√
n

∫
{θ:|θ−θ̂n|≤δ}

∣∣∣∣π(θ) exp
(
ln(θ)− ln(θ̂n)

)
− π(θ̂n) exp

(
−hn

2
n(θ − θ̂n)2

)∣∣∣∣dθ.
Suppose that π(·) is continuous in a neighbourhood of θ? and that θ̂n

p?-a.s.−−−→ θ?. Then

for any ε > 0, we can guarantee that

π(θ) ∈
[
π(θ̂n)(1− ε), π(θ̂n)(1 + ε)

]
,

for all θ satisfying
∣∣∣θ − θ̂n∣∣∣ ≤ δ, by picking δ small enough and n large enough.

Then

I2 ≤
√
n (1 + ε)π(θ̂n)

∫
{θ:|θ−θ̂n|≤δ}

∣∣∣∣exp
[
ln(θ)− ln(θ̂n)

]
− exp

[
−hn

2
n
(
θ − θ̂n

)2
]∣∣∣∣dθ.
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Now Taylor expand:

ln(θ) = ln(θ̂n) +
∇2
θln(θ̂n)

2

(
θ − θ̂n

)2

+
∇2
θln(θ̃n)−∇2

θln(θ̂n)

2

(
θ − θ̂n

)2

,

for all θ satisfying
∣∣∣θ − θ̂n∣∣∣ ≤ δ. Denote the third term on the RHS by Rn(θ). Then

ln(θ)− ln(θ̂n) = −nhn
2

(
θ − θ̂n

)2

+Rn(θ).

We will bound the remainder term Rn(θ). We need to assume that for all ε > 0, we

can find δ small enough such that

sup
θ:|θ−θ̂n|≤δ

∣∣∣∣∣∇2
θln(θ)−∇2

θln(θ̂n)

n

∣∣∣∣∣ ≤ ε,

with p?-probability going to 1. Hence

sup
θ:|θ−θ̂n|≤δ

|Rn(θ)| ≤
εn
(
θ − θ̂n

)2

2
, (61)

with p?-probability going to 1. With some algebra,

I2 ≤
√
n(1 + ε)π(θ̂n)

∫
{θ:|θ−θ̂n|≤δ}

exp

[
−nhn

2
(θ − θ̂n)2

]
|exp(Rn(θ))− 1|dθ

≤
√
n(1 + ε)π(θ̂n)

∫
{θ:|θ−θ̂n|≤δ}

exp

[
−nhn

2
(θ − θ̂n)2

]
|Rn(θ)| exp|Rn(θ)|dθ

≤ εn3/2

2
(1 + ε)π(θ̂n)

∫
{θ:|θ−θ̂n|≤δ}

exp
[
−nc

2
(θ − θ̂n)2

] (
θ − θ̂n

)2

dθ

=
εn3/2

2
(1 + ε)π(θ̂n)

[
1

nc

√
2π

nc

]

=
ε(1 + ε)π(θ̂n)

√
2π

2c3/2
,

where the second line uses the inequality |exp(x)− 1| ≤ |x| exp|x|; the third uses the

upper bound (61) on Rn(θ) and a lower bound c > 0 of hn for large enough n; and
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the fourth follows since the integral on the third line is the variance of a Gaussian

(up to the normalising constant).

Now, ε can be made arbitrarily small as n→∞. Hence we must have I2
p?-prob.−−−−→

0.

22.2 Conditions for the BvM theorem

We collect the assumptions used in the proof of the BvM theorem:

1. θ 7→ l?(θ) =
∫
Y log pθ(y)p?(dy) is uniquely maximised at θ?.

2. The MLE θ̂n converges p?-a.s. to θ?. (This can be weakened to p?-probability

convergence without changing the proof.)

3. There exists a neighbourhood U of θ? such that pθ(y) > 0, y 7→ pθ(y) is mea-

surable and θ 7→ pθ(y) is twice continuously differentiable, for all y ∈ Y and

θ ∈ U .

4. hn = − 1
n
∇2
θ log pθ̂n(Yi)

p?-prob.−−−−→ V ?−1 > 0.

5. The prior π is continuous and positive in a neighbourhood of θ?.

6. For any δ > 0,∃η > 0 such that

P?

[
sup
|u|>δ

1

n
ln(θ̂n + u) <

1

n
ln(θ̂n)− η

]
n→∞−−−→ 1.

7. Finally, for any ε > 0∃δ > 0, such that

sup
θ:|θ−θ̂n|≤δ

∣∣∣∣∣∇2
θln(θ)−∇2

θln(θ̂n)

n

∣∣∣∣∣ ≤ ε,

with p?-probability going to 1.
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22.3 Bayesian point estimation

Theorem 22.1 (Theorem 4.4 of [GR]). Under the BvM conditions above, along with

the assumption
∫
|θ|π(θ)dθ <∞, the posterior mean E [Θ|Y1, . . . , Yn] satisfies

√
n
(
θ̂n − E [Θ|Y1, . . . , Yn]

)
p?-prob.−−−−→ 0.

Why is this interesting? The theorem implies that the distribution of the posterior

mean is approximately equal to the distribution of the MLE. This means that the

asymptotic variance of the posterior mean is given by the sandwich formula for the

MLE in misspecified models. This is in spite of the fact that V ? in BvM – which is

kind of like the asymptotic variance of the posterior – isn’t given by the sandwich

formula (as we showed earlier).
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