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Abstract. The Australian Bureau of Statistics (ABS), like other national statistical
offices, is considering the opportunities of differential privacy (DP). This research considers
the Australian Bureau of Statistics (ABS) TableBuilder perturbation methodology in a
DP framework. DP and the ABS perturbation methodology are applying the same idea
– infusing noise to the underlying microdata – to protect aggregate statistical outputs.
This research describes some differences between these approaches. Our findings show
that noise infusion protects against disclosure risks in the aggregate Census Tables. We
highlight areas of future ABS research on this topic.

1 Introduction
The world is witnessing an explosion in the automated collection of personal data;
a reduction in the cost of high-powered computational resources; and the increased
frequency and sophistication of data attacks. It is a regular occurrence for cyber
attacks to make the news. Naturally, this elevates the public concern over privacy
and how personal information is used once collected. Public trust in the Australian
Bureau of Statistics (ABS) to protect the data it collects from providers, is a
cornerstone to the ABS mission. The US Census Bureau (USCB) recently
announced – via its Scientific Advisory Committee – that it would protect the
publications of the 2018 End-to-End Census Test (E2E) using differential privacy
(DP). The E2E test is a dress rehearsal for the 2020 Census’ (Abowd, 2018, p.2).
In light of this announcement, many National Statistical Offices (NSOs), including
the Office for National Statistics and Statistics New Zealand, are investigating DP
approaches to protecting their Census outputs.

The ABS has been exploring the possibility of adopting a DP approach to
improve existing confidentiality methodologies, particularly those that apply to the
ABS TableBuilder. This paper contributes to the current discussion on DP by
providing the current ABS perspective.
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2 The Five Safes and The ABS TableBuilder
The ABS develops and implements perturbation methodologies in a dynamic
tabular environment (via the ABS TabldBuilder) that give a sensible trade-off
between disclosure risk and utility. Fraser and Wooton (2005); Marley and Leaver
(2011); Thompson et al. (2013) provide details on the ABS tabular confidentiality
methodologies adopted in TableBuilder. These methodologies are defensible
against newly developed attacks and claims of vulnerabilities. The credibility (and
internal consistency) of ABS outputs is critical to maintaining relevance and
purpose. The same-cell-same-perturbation principle is implemented to prevent
repeated queries on the same group with independent perturbations, which can be
averaged to reduce the noise and potentially lead to disclosure risks (Rinott et al.,
2018).

The ABS is committed to use the Five Safes governance framework to ensure
microdata can be used appropriately by taking into consideration safe people,
projects, settings, data and output (Australian Bureau of Statistics, 2016). Desai
et al. (2016) propose the Five Safes framework for assessing the privacy risk of
published statistics, from a holistic perspective. There are five dimensions in the
risk assessment:

1. Safe Data: How sensitive is the data? Are there variables in the dataset
which are identifiers or quasi-identifiers? Does the dataset contain confidential
information or is the data public knowledge?

2. Safe Outputs: How risky are the published statistics? Are there outputs
on private topics? Can respondents be identified from the statistics? Can
information about individual respondents be inferred from the statistics, and
how hard would it be to do this?

3. Safe People: Who has access to the data? Who has access to the outputs?
Are they trusted, or is it possible that they may have malicious intent?

4. Safe Projects: Is the use of the data appropriate? What are the project
objectives and methods? Are they safe?

5. Safe Settings: What are the technological and security controls in place to
protect the data and outputs? How is access limited to prevent unauthorised
use?

In implementing TableBuilder, the ABS assessed disclosure risk through the
Five Safes framework. All of the five dimensions were considered when deciding on
the appropriate statistical disclosure methods. Thus, the perturbation protection
was tailored to the risk context of the release environment and the input dataset.
Under this framework, the ABS can use different levels of perturbation protection
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to different cells in the TableBuilder, with higher risk cells given more protection
than low risk cells. The level of protection is dependent on the risk of outputs to
maximise utility while maintaining the required level of privacy.

The methodology behind TableBuilder was developed specifically for a dynamic
query environment and provides protections for statistical disclosure risks which
are unique to this environment. The TableBuilder algorithm has now been used in
the ABS dissemination environment for almost a decade, publishing large, complex
statistical releases from big datasets (such as the Australian Censuses).

3 What is Differential Privacy?
Differential Privacy is a framework for protecting privacy by adding random noise to
released data, such that the level of noise is attuned to a particular choice of privacy
budget. As with any perturbation method, the more noise that is added, the greater
the privacy protection but the lower the data-utility. The major advantage of DP, is
that it limits the total privacy risk from all the aggregate statistics associated with
a given dataset. The limit on total privacy risk is known as the privacy budget.
The level of noise added is inversely proportional to the privacy budget. In this way,
DP considers the privacy risk arising from all publications from a given dataset,
considered in totality. In its risk assessment, it makes no assumptions about an
adversary’s capability and intent, nor the accuracy and availability of external data.
Thus, DP provides protections within the ‘Safe Outputs’ dimension of the Five Safes
framework.

Dwork and Roth (2014) define a publishing method M as (ϵ, δ)-differential
privacy if for two neighbouring datasets D and D′

Pr(M(D) ∈ S) ≤ exp(ϵ)× Pr(M(D′) ∈ S) + δ, (1)

for all sets of outputs S ⊆ Range(M). Datasets D and D′ are said to be neighbours, if
they differ in at most one record. Specifying δ = 0 above gives the definition of strict
differential privacy. The value of δ measures the failure rate of strict (ϵ, 0)-differential
privacy; higher δ means less privacy protection. Generally, the publishing method
M adds noise sampled from some distribution. Researchers often use the Laplace
distribution with parameters (µ = 0, b) since it is (b−1, 0)-differentially private.

DP thus provides a measurable, theoretical limit to the resulting loss of privacy
(known in the literature as the ‘privacy guarantee’) from any data release and uses
the parameter, ϵ, to parameterise the perturbation distribution(s) applied to a
dataset. The value of ϵ – known as the privacy budget – is a limit on the total
‘privacy-leakage’ of a dataset (as measured under the DP framework) allowed by
the NSOs. It restricts the total number and overall accuracy of allowable queries,
with the aim of ensuring that private information is not revealed through multiple
statistical outputs.
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However, there is little guidance in the literature on the real life meaning of ϵ.
There are unresolved questions surrounding the process for choosing ϵ. Dataset
and variable sensitivity and the query space are just two considerations in choosing
a privacy budget ϵ. The level of trust in the users, is another important
consideration. In fact, all aspects of the data release environment – as described in
the Five Safes framework – must be considered. Hence, the authors propose
further research examining how DP may be integrated into holistic frameworks
such as Five Safes.

In its original formulation, there is no differentiation of outputs between trusted
and untrusted users under DP. Since knowing multiple different perturbed values
of the same query gives more information, trusted users must receive the same
perturbed outputs as untrusted users, to maintain the prescribed level of privacy.

For NSOs, the privacy budget must reflect public opinion on both privacy and
utility of the data in question. The translation from public opinion to a particular
value of ϵ, will likely be a difficult problem, central to any implementation of DP.
With changes in public opinion through time, this cannot be a ’set-and-forget’
process. In recent years, a number of theoretical approaches for choosing ϵ have
been proposed. For example, Hsu et al. (2014) choose ϵ from a private good
perspective and Abowd and Schmutte (2019) choose ϵ from a public good
perspective. However, we need more practical examples in real-world statistical
publications, where privacy budgets have been set using rigorous methodologies. In
any case, for every publication, the assignment of the privacy budget will remain a
challenging social problem.

There is also a need for more real-world examples examining the impact of DP
on utility, particularly in a dynamic query environment. However, these examples
may prove to be difficult, since there are currently no established methodologies
for maintaining an optimal risk-privacy tradeoff in a typical NSO publication. The
application of DP to large datasets and complex publications can be both
computationally and theoretically difficult. Using a dynamic query environment
adds another layer of difficulty.

Since the details of any differentially-private mechanism can be published without
reducing the privacy protections, DP does enable the transparent measurement of
the privacy loss for perturbed outputs. Additionally, DP provides a way to measure
the accumulating privacy loss across multiple queries. Cumulative queries can then
be costed and used to determine a total level of privacy risk across all the performed
queries (Dwork et al., 2011).

4 TableBuilder Perturbation in the Lens of a DP Framework
This section describes ABS TableBuilder perturbation methodology through the
lens of DP. Since DP is a property of a publishing mechanism (such as
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TableBuilder), it does not require using a particular perturbation distribution. In
fact, at its core, DP is a way of measuring and bounding the privacy risk
associated with any stochastic publishing mechanism (which includes all
mechanisms that sample from a perturbation distribution). In this sense, the ABS
TableBuilder perturbation methodology can be viewed through the lens of DP,
even though the noise infusion mechanisms typically used in DP are significantly
different to TableBuilder.

There are two significant differences between typical DP mechanisms and the
ABS perturbation method. Firstly, TableBuilder uses the ‘same contributors, same
perturbation’ principle: the noise added to a query is a function of the rows that
contribute to that query. Secondly, TableBuilder protects against specific attacks
arising under a dynamic query environment (such as drill-down attacks (Chipperfield
et al., 2016)), by perturbing all small counts to zero.

A key attribute of DP is that it limits the total privacy-leakage across all table
outputs by setting a universal privacy budget. On the other hand, ABS perturbation
methodology introduces different privacy budgets for different table outputs. This
is because the ABS perturbation methodology considers different output tables as
having different disclosure risks; for example, tables with small cells are riskier than
tables with larger cells.

Under a DP implementation, the parameters ϵ, δ are chosen and then the
mechanism M is determined to satisfy these parameters. In contrast, this paper
aims to assess the privacy protection (as measured through the lens of DP)
provided by the existing TableBuilder mechanism. The ϵ, δ parameters of the
TableBuilder mechanism were not chosen explicitly, but they were set implicitly
when the mechanism was implemented. In a sense, the aim of this work is to make
explicit what these implicit ϵ, δ values are.

To simplify the analysis, this research restricts the analysis to a single
TableBuilder counting query, from a census dataset (i.e. every record in the
dataset has a weight of 1). ABS research to explore a DP mechanism in a dynamic
table environment, is still on-going. Additionally, applying DP to survey datasets,
with weighted records, requires further research (Shlomo et al., 2019; Drechsler,
2019).

Under these restrictions, (ϵ,δ)-differential privacy is equivalent to requiring:

Pr(M(n) ∈ S) ≤ exp(ϵ)× Pr(M(n− 1) ∈ S) + δ, and (2)
Pr(M(n) ∈ S) ≤ exp(ϵ)× Pr(M(n+ 1) ∈ S) + δ, (3)

for all n ∈ {0, 1, 2, 3, ...} and all subsets of possible outputs S. (Here n represents the
true answer to the counting query and M(n) the perturbed answer, published by the
mechanism M .) It is useful to note that firstly, δ ≥ 1 is not very informative because
any mechanism M satisfies (0, δ)-DP for δ ≥ 1. Secondly, if Pr(M(n) ∈ S) ≤ δ the
above definition will always be satisfied for that particular n and S, regardless of
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the value of ϵ. Hence in meaningfully calculating ϵ, we can restrict our consideration
to pairs (n, S) which satisfy n : Pr(M(n) ∈ S) > δ. Thirdly, S is a subset of all
possible outputs (usually non-negative integers), rather than a single count because
δ must act as slack variable across the set of all outputs.

When assessing (ϵ,δ)-DP of the TableBuilder mechanism M , we can calculate
the failure rate δ by:

δ = max {δn−1, δn+1 : n = 0, 1, 2, ...} , where (4)
δn−1 = Pr(M(n)) < Pr(M(n− 1)) + Pr(M(n)) > Pr(M(n− 1)), and
δn+1 = Pr(M(n)) < Pr(M(n+ 1)) + Pr(M(n)) > Pr(M(n+ 1)).

The privacy budget, ϵ, is given by:

ϵ = max {ϵs,n−1, ϵs,n+1 : n = 0, 1, 2, ..., s = 0, 1, 2, ...} , where (5)

ϵs,n−1 =

{
log Pr(M(n)=s)

Pr(M(n−1)=s)
, if Pr(M(n) = s) > δ and Pr(M(n− 1) = s) ̸= 0

0, otherwise,

ϵs,n+1 =

{
log Pr(M(n)=s)

Pr(M(n+1)=s)
, if Pr(M(n) = s) > δ and Pr(M(n+ 1) = s) ̸= 0

0, otherwise,

Figure 1 shows that δ represents the cumulative probability across the non-
overlapping regions for neighbouring perturbation distributions. Graphically, δn−1

is the area (coloured with dotted blue lines) under the n perturbation distribution
which does not overlap with the n − 1 perturbation distribution. Similarly, δn+1 is
the analogous non-overlapping area (coloured with solid light green lines) between
the n and n+1 perturbation distributions. We call these areas ‘failure zones’, since
strict (ϵ, 0)-differential privacy fails in these regions. We calculate δ as the maximum
of these two areas, δn−1 and δn+1, across all possible true counts n.
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Pr(M(n − 1)) Pr(M(n)) Pr(M(n + 1))

Figure 1: δ for a single query in ABS perturbation methodology

Figure 2 shows that ϵ is calculated as the maximum of ϵs,n−1 and ϵs,n+1 across
all possible true counts n and all possible outputs s. These values ϵs,n−1, ϵs,n+1 are
the log-ratio of probabilities outside the failure zone.

δ

S

Pr(M(n) = S)

Pr(M(n − 1) = S) Pr(M(n + 1) = S)

Pr(M(n − 1)) Pr(M(n)) Pr(M(n + 1))

Figure 2: ϵ for single query in ABS perturbation methodology

Table 1 shows the DP parameters for the current TableBuilder perturbation
distribution calculated using equations 4 and 5. The value of δ can be interpreted
as the probability that the criteria for strict (ϵ, 0)-differential privacy will not be
satisfied. However, the δ value of 0.53 for cells less than 7, does not mean that
there is a 53% chance that identification will occur. The distinction between

7



attribute disclosure and identity disclosure is a mitigating factor, together with the
protections applied at data input and protections within the TableBuilder access
system. In addition, TableBuilder obfuscates between real and perturbed zeros.
These additional protections are not explicitly taken into account in the DP
framework but nevertheless are substantial mitigations against identification risk.
In addition, the ABS has determined that these protections do not significantly
decrease utility.

Cell Counts < 7 Cell Counts ≥ 7
ϵ 1.253 0.693
δ 0.53 0.04

Table 1: The DP parameters for the current TableBuilder perturbation distribution.

This work does not show that the current ABS method can be regarded as fully
compliant with a DP framework. However, it does help identify the aspects that do
or do not accord with a DP framework. To be compliant with DP, the privacy budget
ϵ and failure rate δ parameters should be decided upon in advance and from this
basis, the perturbation distributions are then determined. There is current research
underway at the ABS on how ϵ and δ values can be incorporated in the generation
of our perturbation distributions.

Under the ‘single query on an unweighted dataset’ scenario, we conclude that
the TableBuilder perturbation methodology adheres to DP framework. In a
dynamic query environment, the current TableBuilder perturbation is
(ϵ, δ)-differentially private, only when δ ≥ 1 (Rinott et al., 2018). Practically, this
means it is not DP. Implementing a dynamic DP mechanism which maintains
acceptable levels of both utility and privacy is a challenging methodological
problem (Dinur and Nissim, 2003). Additionally, there are challenges to calculate
the optimum values of the privacy budget ϵ and the failure rate δ, when users can
run a large number of dynamic queries.

5 Conclusions and priorities for future directions
This paper considers how the current TableBuilder perturbation method stacks up
against a DP framework. There has been initial exploratory work into a way to
augment ABS’ current methodologies, to give a way of quantifying the level of
differential privacy we currently apply. There are two remaining pieces of work in
this research:

• undertaking the reconstruction attack on 2016 Census tabular outputs to identify
the risk exposure and the amount of effort required to undertake the attack. Our
preliminary results shows the probability of success is low because the ABS only
publishes perturbed outputs (See Appendix A); and
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• looking further into methodological options for adapting ABS’ perturbation
distribution into one that is more differentially private.

Beyond these two areas, as outlined in the problem specification, there are other
areas of focus to be explored:

• How would we manage the privacy budget in a dynamic query environment?
• How would we address and manage users concerns surrounding differential privacy?
• How would we determine optimum ϵ and δ values in light of the five risk dimensions

in the Five Safes framework, in order to optimally balance the trade-off between
utility and protection?

As a necessity for effectively progressing this work, the ABS is continuing to
build methodological capability in the area of DP. We are working with experts in
academia and other organisations (including other NSOs) to build this capability.

A Reconstruction Attacks
The USCB conducted internal research that confirmed that the statistical disclosure
limitation systems used for the 2000 and 2010 Censuses had serious vulnerabilities
to reconstruction attacks. In these Censuses, a large number of fine level tables
were publicly released with no perturbation applied to cell counts. In conducting
the internal reconstruction attack they found that 46% of Census records could be
reconstructed exactly (on age, sex, race, Hispanic ethnicity and geographic block),
and a large number of records could be matched to commercially available databases
(Leclerc, 2019). These results - along with the requirement to maintain the same level
of publication detail - have motivated the USCB to explore output noise injection
as a method of defending against a reconstruction attack. The USBC has given a
public undertaking that it is adopting DP for its 2020 Census tabular output releases
(Abowd, 2018).

In light of the USCB experience, the ABS has been investigating the risk of
a reconstruction attack. The ABS perturbs Census outputs, which means that
the same attack algorithm does not work in the Australian context. In light of
this, we have investigated modified reconstruction algorithms. Our findings support
the US decision to protect its Census outputs by infusing noise. The ABS applies
perturbation to its Census outputs and preliminary investigations suggest that a
successful attack in the Australian context is low. There are a number of defenses
against a attack. In addition to the high level of mathematical and computational
expertise required to run such an attack, the attacker would require knowledge of
the maximum perturbation bound, which is not publicly available. Since ABS tables
are perturbed and true zeroes are obfuscated with perturbed zeros, a large portion
of the variable space cannot easily be eliminated (as in the USCB case). This further
increases the already significant computational task of the attack.
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A.1 Description of ABS Reconstruction Attacks
In a standard reconstruction attack (as conducted by the USCB), the attacker
constructs a dataset which is feasible with the published, unperturbed statistics.
By feasible, we mean that the attacker’s dataset would generate the same
published statistics, as were generated by the true dataset. Given that
perturbation is applied to Australian Census data before publication, there is an
additional layer of complexity to the reconstruction in the ABS context. Instead of
taking the published counts as true values, the attacker must assume a bound on
the amount of perturbation added and then look for feasible datasets that could be
perturbed to produce the published counts (Enderle et al., 2018). For example,
given published counts of Male = 3, Female = 5 and Total = 10, along with a
maximum perturbation of ±1, the feasible inputs (or plausible true counts) are a)
Male = 4, Female = 5; b) Male = 3, Female = 6; or c) Male = 4, Female = 6.
Similarly, with published counts of Male = 4, Female = 3, and Total = 5, the
feasible inputs are a) Male = 3, Female = 3; b) Male = 4, Female = 2; or c) Male
= 3, Female = 2.

As mentioned above, the attacker must assume a bound on the maximum possible
perturbation in order to conduct the attack. If the attacker’s assumption is incorrect,
then the results from the attack will also be incorrect. Hence, for a successful attack,
the attacker must know the perturbation bound with certainty. Since this bound is
not made publicly available by the ABS, the attacker must obtain it through other
means. While it is theoretically possible for an attacker to determine this bound
(Asghar and Kaafar, 2019), this is very difficult in a dynamic query environment and
even more difficult using only static outputs. This adds another layer of complexity
to the attack.

To remove the applied perturbation and determine without doubt what the true
count is, the attacker must ascertain that there is only one feasible input that can
produce the published count. This can only happen when the perturbation is applied
in a particular way (which – as we will show below in Table 2 – happens with a low
probability). As a hypothetical example, given true counts of Male = 4, Female
= 6, and Total = 10 and a maximum perturbation of ±1, the attacker would be
able to remove the perturbation only if the published counts were a) Male = 3,
Female = 5 and Total = 11; or b) Male = 5, Female = 7, and Total = 9. Note that
perturbation is applied to each cell independently. If other perturbed counts were
published, then there would be multiple feasible datasets. So the attacker would be
able to reconstruct the true counts (Male = 4, Female = 6, and Total = 10) only if
the published counts were a) Male = 3, Female = 5 and Total = 11 or b) Male = 5,
Female = 7, and Total = 9.

As the maximum possible perturbation increases, the likelihood of removing the
perturbation decreases. In the previous example, assuming a uniform perturbation
distribution, the probability of removing the perturbation is 2

27
, since there are 27
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possible sets of perturbed counts, but only two sets – a) and b) above – which allow
the attack to reconstruct the true counts. Please note that this example does not
reflect the perturbation distributions used by the ABS.

We have extended this probability analysis more generally. Table 2 below shows
approximate probabilities of an attacker removing the perturbation applied (using
the current ABS TableBuilder perturbation distribution) to a single cell with a true
count of 1. These success probabilities depend on the complexity of the table used in
the attack. Specifically, the probabilities are estimated for tables with m variables
and c categories per variable. In calculating these success probabilities, the ABS
first ran a reconstruction attack on a number of tables, determining upper and
lower bounds on the perturbation applied to each cell. The success probabilities
were then derived by extending the results of these preliminary attacks. Apart from
the simplifying assumption of constant number of categories per variable, a number
of assumptions involving independence between the computed perturbation bounds
were made. These assumptions were shown to be approximately valid and unlikely
to have a great impact on the success probabilities.

The single cell success probabilities shown in Table 2 increase with the number
of variables m used in the tabular request because each new variable adds additional
constraints to the perturbation bounds. The probabilities decrease with the number
of categories c per variable because more categories increase the degrees of freedom
in the constraint equations. For a successful attack on a single cell, the perturbation
applied to neighbouring cells must achieve maximal permissible values (contingent on
the set of constraint equations) in opposite directions. The chances of this occurring
are especially low when category c is large, since the number of neighbouring cells
increase with c. The maximum success probability is 3.97797 × 10−3 which occurs
in the case of 6 variables with 2 categories per variable.

m 2 3 4 5 6
c
2 1.327752× 10−3 1.990967× 10−3 2.653741× 10−3 3.316076× 10−3 3.977970× 10−3

3 3.422734× 10−5 5.134057× 10−5 6.845351× 10−5 8.556616× 10−5 1.026785× 10−4

4 8.820484× 10−7 1.323072× 10−6 1.764096× 10−6 2.205120× 10−6 2.646143× 10−6

5 2.273046× 10−8 3.409568× 10−8 4.546091× 10−8 5.682614× 10−8 6.819137× 10−8

6 5.857655× 10−10 8.786482× 10−10 1.171531× 10−9 1.464414× 10−9 1.757296× 10−9

7 1.509522× 10−11 2.264283× 10−11 3.019044× 10−11 3.773805× 10−11 4.528566× 10−11

8 3.890049× 10−13 5.835073× 10−13 7.780097× 10−13 9.725122× 10−13 1.167015× 10−12

9 1.002468× 10−14 1.503703× 10−14 2.004937× 10−14 2.506171× 10−14 3.007405× 10−14

10 2.583368× 10−16 3.875052× 10−16 5.166736× 10−16 6.458420× 10−16 7.750104× 10−16

Table 2: Probability of the attacker determining a single cell with a true count of
one, where the number of variables m ranges from two to six, and the number of
categories c in each variable ranges from two to ten.
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