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1 Introduction

Algebraic topology is the study of geometric shapes, called spaces, using tools from abstract algebra.
The ultimate goal of topology is to categorise spaces in the following way(Gowers, 2008, pp. 383):
Topologists say that two spaces are the same, or homeomorphic, when one space can be continuously
deformed into the other. (The technical definition of a homeomorphism is a continuous function
with a continuous inverse.) Categorising spaces in this way has turned out to be a very hard
problem. Algebraic topology’s contribution to this problem is to provide a number of algebraic
invariants that homeomorphic spaces share. Examples of such invariants are homotopy groups,
homology and cohomology.

In this report, we develop a special type of homotopy groups, called stable homotopy groups.
The ground work of stable homotopy theory was laid in (Freudenthal, 1937) and further developed
by Adams (see Adams (1974)). We then develop a number of types of spectra and discuss this
topic in a categorical setting. Much of this work was also done by Adams, but has been improved
upon by others in the last few decades. Finally, we conclude by presenting Brown’s representability
theorem, a surprising result connecting comohology with homotopy.

Knowledge of undergraduate level point-set topology and group theory is assumed. In addition,
section 6 requires some basic category theory and section 7 requires knowledge of general cohomology
theories. Chapter 0 of (Hatcher, 2002) would help with ease of comprehension but is not strictly
necessary. Unless otherwise explicitly stated, all maps are continuous. X,Y denote topological
spaces. We write (X,x0) and (Y, y0) for space with base points x0 and y0 respectively. f : (X,x0)→
(Y, y0) is a base point preserving map. Sometimes we leave the base points implicit, when it is
obvious by the context.

I would like to acknowledge Vigleik Angeltveit for his supervision of this project and the Aus-
tralian Mathematical Sciences Institute for their support through their vacation research scholars
program. I would also like to acknowledge the Australian National University and the Mathematical
Sciences Institute at ANU.

2 Homotopy

An important concept in the process of building algebraic tools from topological spaces is the idea
of homotopy.

Definition 2.1. A homotopy between basepoint preserving maps f, g : (X,x0)→ (Y, y0) is a family
of maps Ft : (X,x0)→ (Y, y0) for t ∈ [0, 1] such that

• Ft(x) is continuous in both t and x,

• F0 = f , and

• F1 = g.

f and g are said to be homotopic if there is a homotopy between them and we write f ' g in
this case. Fixing basepoints, it is easy to verify that the property of two maps being homotopic is
transitive, symmetric and reflexive. Thus, base point preseving homotopic maps (X,x0)→ (Y, y0)
form equivalence classes, called homotopy classes. Write [f ] for the homotopy class of f .

We can now consider a type of equivalence on spaces, weaker than homeomorphism.
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Definition 2.2. A homotopy equivalence between spaces X and Y is a map f : X → Y such that
there exists an ‘inverse’ g : Y → X in the sense that the compositions f ◦ g and g ◦ f are homotopic
to the identity:

f ◦ g ' idY and g ◦ f ' idX .

A homeomorphism is trivially a homtopy equivalence. If there is a homotopy equivalence be-
tween X and Y , then the spaces are said to be homotopy equivalent or to have the same homotopy
type. Similar to above, we write X ' Y in this case. Most of the time, we classify spaces up
to homotopy equivalence, since usually it is quite hard to find homeomorphisms. In particular,
homotopy (groups), homology and cohomology are all equal for spaces of the same homotopy type.

Before we are able to define homotopy groups, we need to make a few technical definitions. The
n-dimensional sphere Sn ⊂ Rn+1 is the set of points with norm 1 in Euclidean space:

Sn = {x ∈ Rn+1 : ||x|| = 1}.

The wedge sum of two pointed spaces (X,x0) and (Y, y0) is the quotient space of the disjoint
union of X and Y under the identification x0 = y0:

X ∨ Y =
(
X q Y

)/(
x0 = y0

)
.

Intuitively, the wedge sum of X and Y is the union of X and Y , joined at a single point. For
example Sn ∨ Sn is two copies of Sn touching at a single point.

The wedge sum of two basepoint preserving maps f : (X,x0) → (Y, y0) and g : (X ′, x′0) →
(Y ′, y′0) is the map f ∨ g : (X,x0) ∨ (X ′, x′0)→ (Y, y0) ∨ (Y ′, y′0) defined by

f ∨ g(x) =

{
f(x) if x ∈ X,

g(x) if x ∈ X ′.

That is, f ∨ g maps X to Y by f and X ′ to Y ′ by g.
Let (Sn, s0) be Sn with base point s0. Fix an equator Sn−1 (a great circle passing through s0).

Identify all the points on the equator. (That is, pinch the equator to a point.) Then this quotient
space is homeomorphic to Sn ∨ Sn:

Sn /Sn−1 ∼= Sn ∨ Sn.

Define c : Sn → Sn ∨ Sn to be the map that identifies all the points on the equator.
Now we are ready to define homotopy groups.

Definition 2.3. Let πn(X,x0) be the set of homotopy classes of base point maps f : (Sn, s0) →
(X,x0), where n ∈ N0. For n ≥ 1, define a group operation on πn(X,x0) by

[f ] + [g] is the (homotopy class) of the composition Sn
c−→ Sn ∨ Sn f∨g−−→ X.

Then πn(X,x0) is the n-th homotopy group of X at base point x0.

To make this definition valid, there are a number of things to verify:

1. [f ]+ [g] is well defined (i.e. it doesn’t depend on the choice of representation of the homotopy
classes),

2



2. [f ] + [g] is associative, unital and has inverses.

These are all simple exercises.
In the case n = 1, the homotopy group π1(X,x0) is called the fundamental group. It consists

of homotopy classes of loops in X starting and finishing at x0. The sum of two such (homotopy
classes of) loops is simply the (homotopy class of the) loop which travels both loops, in the sense:

(f + g)(x) =

{
f(2x) if x ∈ [0, 1

2 ],

g(2x− 1) if x ∈ [ 1
2 , 1].

(We have ignored homotopy classes in the above equation to simplify notation.)
π1(Rn, x0) = 0 for all n and x0, since all loops in Rn are homotopic to the constant loop. On

the other hand, π1(R2 − {0}, x0) ∼= Z for all n and x0. Informally, we can justify this as follows:
consider the loops ωn that travel around S1 n times. Then every loop is homotopic to some ωn and
ωn ' ωm for n 6= m. Also, [ω1] generates all [ωn]. In this sense, the fundamental group measures
the number of holes in the space. Higher homotopy groups ‘measure higher dimensional holes’.

Theorem 2.1. If x0 and x′0 are path connected, then πn(X,x0) ∼= πn(X,x′0).

Proof. Let γ : [0, 1] → X be a path from x0 = γ(0) to x′0 = γ(1). Given a map f : (Dn, Sn−1) →
(X,x0), we can construct a new map γf : (Dn, Sn−1) → (X,x′0) by shrinking the domain of f
to a smaller concentric disk and then inserting γ on each radial line from the smaller disk to the
boundary Sn−1.

Define a change of base point transformation βγ : πn(X,x0)→ πn(X,x′0) by βγ([f ]) = [γf ]. We
will show that βγ is an isomorphism.

Firstly, we need to show that βγ is a homomorphism: γ(f+g) ' γf+γg. We define a homotopy
from γf + γg to γ(f + g) as follows: first deform γf and γg so they are constant on the right and
left halves of Dn respectively. Then γf + γg contain a middle constant slab. We can shrink this
slab down to nothing, resulting in γ(f + g).

It is obvious that (γη)f ' γ(ηf) and 1f ' f , where 1 is the constant path. These two facts
imply that βγ is an isomorphism.

For path connected X, we can write πn(X) without reference to a particular base point. We
are justified in doing this by the above theorem.

Since homotopies of maps (S0, s0)→ (X,x0) are equivalent to paths inX, we have that π0(X,x0)
is the set of path connected components of X. In particular, π0(X,x0) = 0 implies that X is path
connected. We can extend this idea to obtain a concept of ‘higher dimensional connectedness’ in
the following way.

Definition 2.4. A space X is n connected if πm(X) = 0 for all m ≤ n.

Important building blocks of homotopy theory are Eilenberg-MacLane spaces, which have only
one non-zero homotopy group.

Definition 2.5. Given an abelian group G and n ≥ 1, an Eilenberg-MacLane space of type K(G,n)
is characterised by:

πm(X) ∼=

{
G if n = m,

0 otherwise.
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In particular, Eilenberg-MacLane spaces are (path) connected. It is shown that Eilenberg-
MacLane spaces are unique, up to a particular technical invariant, in (Hatcher, 2002). Therefore,
we talk about the Eilenberg-MacLane space of G and n, and denote it by K(G,n).

Definition 2.6. Given a map f : (X,x0)→ (Y, y0), the induced map f∗ : πn(X,x0)→ πn(Y, y0) is
defined by:

[g : (Sn, s0)→ (X,x0)] 7→ [f ◦ g : (Sn, s0)→ (Y, y0)].

It is straightforward to check that the induced map is indeed well defined.

3 Long Exact Sequences of Homotopy Groups

Important constructions in calculations of homotopy groups are long exact sequences. They are
analogous to the long exact sequence in homology and cohomology. First, we need the notion of
relative homotopy groups, generalising the ideas in the previous section.

Definition 3.1. A homotopy ft : X → Y whose restriction to some set A is independent of t is
called a homotopy relative to A.

Basepoint preserving homotopies are always homotopies relative to the base point x0. Write
maps X → Y that send A ⊂ X and A′ ⊂ A to B ⊂ Y and B′ ⊂ C respectively by (X,A,A′) →
(Y,B,B′). Note this is a generalisation of base point preserving maps (X,x0) → (Y, y0) where we
preserve two sets rather than single points.

Definition 3.2. For x0 ∈ A ⊂ X, define the relative homotopy group πn(X,A, x0) to be the
homotopy classes of maps (Dn, Sn−1, s0)→ (X,A, x0), where n > 0.

Note that Sn−1 is the boundary of Dn. If A = {x0}, then maps (Dn, Sn−1, s0) → (X,A, x0)
factor through maps

Sn
∼=−→ Dn

/Sn−1 → X,

preserving base points, so absolute homotopy groups are a special case of relative homotopy groups.
Similar to the absolute case, we define the group operation on relative homotopy groups via the

map c : Dn → Dn ∨Dn collapsing Dn−1 ⊂ Dn to a point.
Relative homotopy groups form long exact sequences in the following sense.

Definition 3.3. A sequence of groups Gn and homomorphisms αn : Gn → Gn−1

...→ Gn
αn−−→ Gn−1

αn−1−−−→ Gn−2 → ...→ G1
α1−→ G0,

is exact if Im αn+1 ⊂ kerαn for all n.

Theorem 3.1. There is a long exact sequence of relative homotopy groups

...→ πn(A, x0)
i∗−→ πn(X,x0)

j∗−→ πn(X,A, x0)
∂−→ πn−1(A, x0)→ ...→ π0(X,x0)

where i and j are the inclusions (A, x0) ↪→ (X,x0) and (X,x0, x0) ↪→ (X,A, x0) respectively.

See (Hatcher, 2002, pp. 344) for a proof. The map ∂, called the boundary map is constructed
explicitly in the proof. It is a homomorphism only when n > 1 but exactness still makes sense if we
take the kernel of a map to be those elements mapping ot the homotopy class of the constant map.

4



4 Suspension

Before we are able to define the stable homotopy groups of a space, we need one more geometrical
construction, the suspension of a space.

Definition 4.1. The suspension SX of a space X is the quotient space:

SX =
(
[0, 1]×X

)/(
(0, x) = (0, x′), (1, x) = (1, x′) for all x ∈ X

)
.

The suspension Sf of a map f : X → Y is:

Sf : SX → SY
(i, x) 7→ (i, f(x))

The suspension of a space X can be thought of as follows: consider the cylinder space X× [0, 1],
then pinch the top and the bottom of the cylinder to a point. The result is two cones, one of which
is inverted, connected at their bases. An example is the suspension of the unit disk D2 = {x ∈ R2 :
||x|| ≤ 1}. SD2 is homeomorphic to D3. In fact, this holds more generally: SDn ∼= Dn+1. Also,
SSn ∼= Sn+1. The suspension map Sf : SX → SY simply sends each slice of X in the cylinder
X × [0, 1] to f(X) in the corresponding slice of Y in Y × [0, 1].

In the language of categories, the suspension is a functor from the category of topological spaces
to itself. This will become important in section 6.

Unfortunately, we run into problems with this definition when we consider pointed spaces. The
suspension takes a basepoint x0 ∈ X to {x0} × [0, 1] in SX. Any of the points on this line are
possible candidates for the base point of SX. It turns out that none of these choices are compatible.
Instead, we define a new construction, the reduced suspensions:

Definition 4.2. The reduced suspension ΣX of a pointed space (X,x0) is the quotient space of
SX where we identify all the points in {x0} × [0, 1]:

ΣX = SX
/(
{x0} × [0, 1]

)
.

ΣX has the obvious basepoint: the equivalence class [(0, x0)] of the quotient.

ΣX is homotopy equivalent to SX (Hatcher, 2002, pp. 12). (Collapsing {x0} × [0, 1] actually
gives this homotopy equivalence.) Analogously to above, we can define the reduced suspension of
maps and thus construct a functor from the category of pointed spaces to itself.

Definition 4.3. The suspension map πn(X)→ πn+1(ΣX) is given by:

[f : (Sn, s0)→ (X,x0)]→ [Sf : (Sn+1, s0)→ (SX, (0, x0)).

5 Freudenthal’s Suspension Theorem and Stable Homotopy

We are now ready to present the theorem that underpins stable homotopy theory. It states that
under mild conditions, the suspension map πn+i(S

iX) → πn+i+1(Si+1X) is an isomorphism for
i >> 0.
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Theorem 5.1 (Freudenthal’s Suspension Theorem). The suspension map πi(S
n)→ πi+1(Sn+1) is

an isomorphism for i < 2n− 1 and a surjection for i = 2n− 1, whenever X is an (n− 1)-connected
CW complex.

Remark 5.1. A CW complex is geometric construction used throughout algebraic topology. It
has been proven useful over time due to its generality (almost all spaces you can think of can be
constructed as CW complexes and all spaces are ‘nearly’ CW complexes, in a sense that can be
made precise) and nice behaviour (it avoids the pathological analysis examples). See (Lundell and
Weingram, 1970).

of theorem 5.1. Consider SX as the union of two cones C−X and C+X, with C−X ∩ C+X = X.
The suspension map is equal to

πi(X) ∼= πi+1(C+X,X)→ πI+1(SX,C−X) ∼= πi+1(SX).

The two isomorphisms are given by long exact sequences of pairs. The middle map is induced by
inclusion.

We need the following technical result given in (Hatcher, 2002, pp. 360): Let X be a CW
complex decomposed as the union of subcomplexes A and B with nonempty connected intersection
C = A ∩ B. If (A,C) is m-connected and (B,C) is n-connected, where m,n ≥ 0, then the map
πi(A,C) → πi(X,B) induced by inclusion is an isomorphism for i < m + n and a surjection for
i = m+ n.

Using long exact sequences of pairs, we see that (CX,X) is n-connected if X is (n−1)-connected,
which gives us our result.

A basic, yet fundamental result of Freudenthal’s suspension theorem is that πn(Sn) ∼= Z for all
n ≥ 1. Using the theorem, πn(Sn) → πn+1(Sn+1) is an isomorphism for n ≥ 2. Using the Hopf
bundle S1 → S3 → S2, one finds π1(S1) ∼= π2(S2) (Hatcher, 2002, pp. 377). Basic theory on the
fundamental groups tells us that π1(S1) ∼= Z, which implies πn(Sn) ∼= Z.

Consider taking iterated suspensions of an n-connected CW complex X and consider the result-
ing sequence oh homotopy groups:

πi(X)→ πi+1(SX)→ πi+2(S2X)→ ...

Theorem 5.1 tells us that πi(X) → πi+1(SX) is an isomorphism for i ≤ n. So SX is (n + 1)-
connected. Repeating this process, we see that in the sequence above, the maps are eventually all
isomorphisms. (Note that this happens after a finite number of steps!) We say that the suspension
map stabilises and these isomorphic groups are given a special name.

Definition 5.1. The ith stable homotopy group pisi (X) is the above result of iterated suspensions.
In other words,

πsi (X) = colim
n

πi+n(SnX),

where colim is the colimit of the above sequence of iterated suspensions.

Remark 5.2. The colimit is a generalised notion of a limit in category theory. See (Leinster, 2014)
for more information. In the category of abelain groups, the definition simplifies to the following:
the colimit colim

n
Gn of a sequence of homomorphisms of abelian groups G1

α1−→ G2
α2−→ G3 → ...

is the direct sum ⊕nGn mod the subgroup consisting of elements of the form (g1, g2 − α1(g1), g3 −
α2(g2), ...).
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A special case of stable homotopy groups are the stable i-stem πsi (S
0). It is easy to see, using

Freudenthal’s suspension theorem, that πsi (S
0) ∼= πi+n(Sn) for n > i+ 1. It is proved in (Hatcher,

2004) that πsi (S
0) is finite for all i > 0. Given the fundamental nature of the stable i-stems, it is

perhaps surprising that we do not know πsi (S
0) for i greater than approximately 60 (Hatcher, 2002,

pp. 384). Below is a table of the stable i-stems for i ≤ 12 (Toda, 1962):

i πsi (S
0)

0 Z
1 Z2

2 Z2

3 Z24

4 0
5 0
6 Z2

7 Z240

8 Z2 × Z2

9 Z2 × Z2 × Z2

10 Z6

11 Z504

12 0

6 Spectra

A spectrum is a sequence of spaces Xn with maps connecting Xn and Xn+1. It turns out that
spectrum are similar to spaces, but better behaved. They are useful tools to study stable homotopy
theory. We will define two flavours of spectrum and then discuss how all spectrum are ‘roughly’
equivalent.

Definition 6.1. The Σ-spectrum consists of pointed spaces Xn, n ≥ 0, with base point preserving
maps ΣXn → Xn+1.

There are two important examples of Σ-spectrum. The obvious one is the suspension spectrum
where Xn = ΣnX for some pointed space X with ΣXn → Xn+1 the identity map. The second
example is Eilenberg-MacLane spectrum for abelian groups G, which we will come back to in section
7.

Before we can define the second type of spectrum, we need to develop some theory.

Definition 6.2. The loopspace ΩX of a pointed space X is the space of loops f : (S1, s0)→ (X,x0)
at x0. The basepoint of ΩX is taken to be the constant loop. The topology on ΩX is given by
considering ΩX as a subspace of the space of all maps I → X with the compact-open topology.

Definition 6.3. The map f : X → Y is a weak homotopy equivalence if it induces isomorphisms
between homotopy groups:

f∗ : πn(X,x0)
∼=−→ πn(Y, f(x0)) for all n ≥ 0 and all x0 ∈ X.

Definition 6.4. An Ω-spectrum is a sequence of CW complexes Xn with weak homotopy equiva-
lences Xn → ΩXn+1.
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There are a number of other definitions of spectra. See (Malkiewich, 2014) for examples. Recall
that we are interested in spectra to help us understand stable homotopy category. The important
properties are that each flavour of spectra form a category and these categories in turn each define a
stable homotopy category. While the categories of spectra are not all equivalent, the corresponding
stable homotopy categories are almost always equivalent (Malkiewich, 2014).

We will spend the rest of this section describing these two categories. Let Top∗ be the category
of pointed topological spaces and CW∗ be the category of pointed CW complexes, both with base
point preserving maps. (Technically the morphisms between X and Y in Top∗ are maps between X
and Y ’s CW approximations.) Define the homotopy category of pointed topological spaces HoTop∗
to have the same objects as Top∗ but the morphisms are now homotopy classes of maps.

(Malkiewich, 2014) constructs two types of categories Spectra and HoSpectra all with the
following properties:

• There are functors Σ∞ : CW∗ → Spectra and Σ∞ : HoTop∗ → HoSpectra.

• There is a suspension functor Σ : HoSpectra→ HoSpectra, which agrees with the reduced
suspension functor Σ of CW∗, in the sense that the following diagram commutes:

CW∗ CW∗

HoSpectra HoSpectra

Σ

Σ∞ Σ∞

Σ

The nice thing in this case is that Σ is an equivalence of categories from HoSpectra to itself.
This means that every object is isomorphic to the suspension of another object, behaviour
which we do not have in CW∗.

• Finally, it is possible to construct stable homotopy groups πn(X) in HoSpectra, which is
what we cared about to start with. The good thing is that they live in a much more nicely
behaved category than CW∗ or Top∗.

7 Brown’s Representability Theorem

Let 〈X,Y 〉 be the set of base point preserving homotopy classes of maps from X to Y . Given some
special structure on X or Y , we can define a group operation on 〈X,Y 〉. For example, if X = Sn

then we have 〈Sn, Y 〉 = πn(Y ). More generally, replace Sn with the reduced suspension ΣX of any
space X. The sum of maps f, g in this case is defined as the composition

ΣX
c−→ ΣX ∨ ΣX

f∨g−−→ Y.

Inverses are given by reflecting the I co-ordinate in the suspension:

−f(x, i) = f(x, 1− i).

It is easy to verify that this does indeed give a group structure on 〈SX, Y 〉. This construction
hints at how a group operation on spectrum is defined.
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We can also give a group operation to 〈X,Y 〉 if Y has a special structure, using the adjoint
relation:

〈ΣX,Y 〉 = 〈X,ΩY 〉.

This says that base point preserving maps ΣX → Y are exactly the same as base point preserving
maps X → ΩY . The correspondence between the two types of maps is given by(

f : ΣX → Y
)
7→
(
x 7→ f({x} × [0, 1]) ∈ ΩY

)
.

That is, associate f with the family of loops f({x} × [0, 1]).
Using the adjoint relation, we can see the close connection between Σ- and Ω− spectra. More-

over, we are qualified to define the Eilenberg MacLane spectrum for an abelian group G. This
spectrum has Eilenberg MacLane spaces K(G,n) and maps ΣK(G,n)→ K(G,n+ 1) given as the
adjoint of a special map, called ‘the CW approximation’ K(G,n)→ ΩK(G,n+ 1).

We have the following theorem (Hatcher, 2002, pp. 397):

Theorem 7.1. If {Kn} is an Ω-spectrum, then the functors X 7→ hn(X) = 〈X,Kn〉 for n ∈ Z,
define a reduced cohomology theory on the category of pointed CW complexes and base point
preserving maps.

The converse of this statement is Brown’s representability theorem (Brown, 1962):

Theorem 7.2. Every reduced cohomology theory on the category of pointed CW complexes and
base point preserving maps has the form hn(X) = 〈X,Kn〉 for some Ω-spectrum {Kn}.

This is quite amazing. It says that we can completely describe cohomology theories in terms
Ω-spectrum and homotopy classes of maps.
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