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In ordinary least squares (OLS) regression, we assume the mean µi of the response yi is

linearly related to the covariates: yi = xiβ. In generalised linear models (GLMs), we allow µi

to depend on the linear predictor ηi = xiβ through a known transformation g. Unfortunately,

we often need further flexibility. For example, the effects of time-of-year frequently exhibit

non-linear behaviour with seasonal patterns. Spatial data can also present problems: the

relationship between latitude, longitude and, for example, annual rainfall tends to complex.

In these settings, the effects of xi on g(µi) are non-linear and hence cannot be modelled by

GLMs.

Spatial-temporal data abounds in the real world; as just a few examples, consider in-

fectious disease mapping, stock exchange forecasting, modelling neural activity patterns in

brain imaging data, and assessing ecological biodiversity. If systematic spatio-temporal vari-

ation is not captured by the model, then this variation will be present in the errors ϵ. As

such, ϵ1, . . . , ϵn will not be independent and any model inference will be invalid. One ap-

proach to solving this problem includes quadratic, cubic or higher-order terms in the design

matrix X. However, this approach is ad-hoc and can easily result in overfitting. It is also
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difficult to handle non-linear interactions between variables (such as longitude and latitude

in spatial data).

Another approach is to expand the model class to include non-linear functions. Here we

replace the GLM model specification g(µi) =
∑p

j=1 xijβj with

g(µi) =

p∑
j=1

fj(xij), (1)

where fj are smoothing functions (e.g. piecewise polynomials). While we no longer require

linearity, the covariate effects are still additive; hence equation (1) is called a generalised

additive model (GAM) [Hastie and Tibshirani, 1986, 1987].

As with GLMs, GAMs assume that the responses yi follow a known exponential family,

or that the variance function V (·) is known so that a quasi-likelihood can be determined.

GAMs also assume that µi relates to ηi through a known link g. The key difference is that

ηi can include a large class of smooth – not just linear – functions fj of the covariates xi.

Maximum quasi-likelihood estimation is used to fit the model. Similar to regularisation

techniques (e.g. lasso), deviance is minimised subject to constraining a smoothness penalty

(more on this in a later section).

While GAMs provided much needed flexibility as compared to GLMs, they are not with-

out their disadvantages. GLMs are considerably more interpretable, since effects are linearly

related to g(µi). It is also harder to do inference using GAMs.

This report aims to be a short primer on GAMs, with a specific focus on modelling

spatio-temporal data. I will start by developing some of the theory behind GAMs; while the

second half of the report will be application focused.
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Splines

Before we can fit GAMs, we need to understand what the smoothing functions fj are. In

this section, I will introduce one class of smoothing functions, the natural cubic splines. As

we shall see later, there are other classes of smoothers.

In OLS, we are accustomed to using polynomials to approximate non-linear relation-

ships. This approach is justified by Taylor’s theorem: locally, smooth functions are well-

approximated by polynomials. However, we know from experience that polynomials can

interpolate data yet oscillate widely – and unrealistically – in between data points. Figure

1 gives one example of this behaviour.

This motivates the definition of natural cubic splines: given a set of points {xk : k =

1, . . . ,m} with xk < xk+1, a cubic spline is a twice continuously differentiable function con-

sisting of cubic polynomials on [xk, xk+1]. Further, a cubic spline f is natural if f ′′(x1) =

f ′′(xm) = 0; this constraint discourages extreme oscillation at either end of the data, pro-

hibiting the large swings seen in Figure 1. The points {xk} where two polynomials meet are

called knots. The analogy here is that the knots ‘tie’ the piecewise polynomials together,

since the polynomials are forced to agree at the knots.

Natural cubic splines are the smoothest interpolators*, in the sense that they minimise

the L2 norm of second derivatives, amongst absolutely continuous differentiable interpola-

tors [Green and Silverman, 1994; Schoenberg, 1964]. (Intuitively, the naturality condition

f ′′(x1) = f ′′(xm) = 0 enforces smoothness at the end points, while the cubic condition

enforces smoothness between the knots – in the sense that f ′′′(x) is constant between the

*A function f interpolates a set of points {(xi, yi) : i = 1, . . . ,m} if f(xi) = yi for all i = 1, . . . ,m.
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Figure 1: Standard Normal random noise (black dots, n = 10) with a polynomial (degree

9) interpolator (blue line). The polynomial interpolator is an unrealistic model for the data,

since it is prone to extreme behaviour in between data points.
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knots.) This makes natural cubic splines a clear choice for our smoothing functions fj.

However, how can we model splines based on noisy data?

Modelling splines and fitting GAMs – basis functions and penalised regression

The polynomials of order d form a d-dimensional vector space, with basis {1, x, x2, . . . , xd}.

Similarly, the natural cubic splines on the knots {xk}mk=1 form a m-dimensional vector space,

with basis functions b1, . . . , bm. (Due to space reasons, we will omit the complicated definition

of bk, see [Wood, 2017, section 5.3.1] for details.) This means we can write any natural cubic

spline as f(x) =
∑m

k=1 bk(x)βk.

We have now effectively turned a non-parametric model consisting of unknown functions

fj into a parametric model with unknown constants βk. Moreover, we can write our smooth-

ness penalty
∫ xm

x1
f ′′(x)2dx as a quadratic form βTSβ (see Lancaster and Šalkauskas [1986]

for a proof), where S is a fixed and known “wiggliness penalty coefficient” matrix.

Now we are set up to describe the model fitting process as penalised regression. For

now, suppose there is a single covariate xi with smoother f(x) =
∑m

k=1 bk(x)βk. Defining

xik = bk(xi) gives a GLM:

g(µi) = xiβ,

which is estimated by maximising the penalised quasi-likelihood:

lp(β) = l(β)− λβTSβ.

The degree of wiggliness βTSβ penalises overfitting in the model and the smoothing param-

eter λ controls the tradeoff between model goodness-of-fit and model smoothness�.

�An astute reader may worry that the questions of the number of knots m and their values x1, . . . , xm has
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When there is more than one covariate, write fj =
∑m

k=1 bkj(x)βkj; define xi as the (row)

vector of the bkj(xi)’s and let β be the (column) vector of the βkj’s. As before, we obtain

a GLM g(µi) = xiβ, yet now our smoothness penality is the sum
∑

j λjβ
TSjβ of each fj’s

wiggliness. We would also often like to include linear terms (such as an intercept) in our

model matrix X. Model identifiability issues (always) arise here due to over-specification;

this can be resolved by adding constraints
∑

i fj(xij) = 0 and reparametrising; see [Wood,

2017, section 5.4.1] for details.

As in regularisation, the penalty parameters λj are usually unknown and must be esti-

mated, using cross validation for example. In practice, more advanced techniques – gener-

alised cross validation (GCV) or restricted maximum likelihood (REML) – are used. Again

see [Wood, 2017, section 6.2] for details.

Warming Up: Historical Australian Annual Temperature

The historical Australian annual mean temperature [Australian Bureau of Meterology, 2020]

is plotted in Figure 2. The trend is roughly flat until 1960, at which point the annual

temperature steadily increases. While a quadratic or cubic OLS model may fit the data, a

GAM will prove to be a more useful approach. Using the mgcv package in R, we fit a GAM

with a natural cubic spline and knots spread evenly across the range of covariate values. The

fitted model is shown in Figure 3. Model diagnostic plots are given in Figure 4; these can

not been addressed. How are these parameters chosen and do they affect the model analysis? Fortunately,

as long as m is sufficiently large, the effects are minimal [Clark, 2019]. Knots are typically spaced evenly

across the range – or the quantiles – of the data. Other classes of smoothers which we will see later do not

use knots and so avoid this issue entirely.
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Figure 2: The annual Australian temperature anomaly. (An anomaly is the difference be-

tween the temperature at a given point in time and the average temperature across a reference

period, in this case 1961-1990.)
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Figure 3: The cubic spline GAM fitted to the Australian temperature anomaly data. (The

y-axis is the temperature anomaly in °C and the x-axis is the year.) The black line is the

fitted values µ; the grey area is a 95% confidence interval for µ; and the blue dots are the

observed responses y.

be interpreted in a similar way to the OLS diagnostic plots and suggest a good model fit.

Since we are modelling a time series, it is also important to check for residual autocorrelation

(Figure 5).

Let’s compare this to a OLS approach. Here linear model residuals exhibit quadratic

variation (Figure 6) but the quadratic model Temperature ∼ Year + Year2 appears to fit

well (Figure 7). Figure 8 shows that the OLS model fit is almost identical to the GAM!

So have we gained anything by using a GAM? Here are two reasons why a GAM might be

better:

1. The GAM and OLS model begin to differ at either ends of the time series. If the data

extended back further in time with the same flat trend as seen in the first 50 years, a
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Figure 4: Diagnostic plots for the GAM fitted to the Australian temperature anomaly data.

Figure 5: ACF plots for the Australian temperature anomaly time series (left) and the GAM

residuals (right).
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Figure 6: Diagnostic plots for an OLS model Temperature ∼ Year.
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Figure 7: Diagnostic plots for an OLS model Temperature ∼ Year + Year2.
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Figure 8: The Australian temperature anomaly data with the GAM fitted values (in blue)

and OLS fitted values (in orange).

quadratic model would no longer provide a good fit.

2. We are interested in understanding if there has been significant warming (or cooling)

within a given time period. That is, we are interested in whether the derivative of

the fitted model equation is significantly different from zero. In the (quadratic) OLS

model, changes in the first derivative are linear across time and so will likely not reflect

the posited underlying non-linear pattern (flat then increasing). On the other hand,

a GAM is piecewise polynomial, so first derivatives can change non-linearly. Thus,

GAMs are a more appropriate tool here. Figure 9 plots the first derivative of the

GAM fitted trend, showing that there has been a sustained, significant increase in

Australia-wide temperatures since the 1940s.
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Figure 9: The first derivative of the GAM fitted trend. The grey area is a 95% simultaneous

confidence interval and the thicker line denotes a significantly non-zero derivative.

Modelling bird migrations through time and space

Let’s move on to a spatial example, taken from Pedersen et al. [2019]. In this simulated

data, the response yi are the counts of 100 tagged individuals of six bird species at different

latitudes and times during their annual migration. See Figure 10 for a plot of the observed

locations of (species A) birds across time.

Two points are apparent from this plot:

1. There are interaction effects between latitude and time. So we need a smoother which

can take multiple covariates as arguments.

2. There are a number of symmetries in the observed data. Firstly, our data is cyclic:

we would expect similar counts at week 1 as at week 52. Secondly, we would want the

fitted values µ̂i to remain constant under any rotation or reflection of the covariates.
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Figure 10

To make meaningful and realistic inference, our model should satisfy (at least some of)

these symmetries. This calls for new smoothers!

For point 1., thin plate regression splines (TPRS) are smoothers which allow for multiple

covariates. As with natural cubic splines, TPRS use polynomials as basis functions and the

smoothness penality is typically proportional to the squared second derivatives:
∫ ∫ (

∂2f
∂x2

1

)2

+(
∂2f

∂x1∂x2

)2

+
(

∂2f
∂x2

2

)2

dx1dx2 (when there are two covariates). Moreover, there are in some sense

optimal smoothers [Wood, 2017, section 5.5.1].

For point 2., smoothers f which agree on boundaries – f(x1) = f(xm) – are called cyclic.

We can modify the basis functions of the natural cubic splines to be cyclic (see [Wood,

2017, section 5.3.1] for details). This produces the class of (unsurprisingly named) cyclic

cubic splines. We will use cyclic cubic splines to model the effect of time-of-year on the bird

counts.

Smoothers which are invariant to rotation or reflection are called isotropic. TPRS are
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isoptropic and they also have the nice property of doing away with the problem of knot

locations (since TPRS uses polynomials, not piecewise polynomials). As such, we will use

TPRS to model the effect of latitude on bird counts. While TPRS allow for multiple covari-

ates, the covariates are assumed to have the same degree of smoothness. (More exactly, each

covariate included in the TPRS is assumed to have the same marginal smoothness penalty.)

This assumption does not hold if the covariates are measured on different scales, as it would

equate for example a one degree change in latitude with a one unit increase in time. As

such, TPRS is not appropriate for modelling the interaction of latitude and time.

Instead, tensor product smooths are built up from univariate smoothers, so that they

allow different marginal degrees of smoothness: Given two� univariate smooths f1(x) =∑K
k=1 ak(x)αk and f2(z) =

∑L
l=1 bl(z)βl, the tensor product smoother is given by

f(x, z) =
K∑
k=1

L∑
l=1

γklak(x)bl(z).

To recap, our model will use a cyclic cubic spline for marginal time-of-year effects, a

TPRS for marginal latitude effects, and a tensor product smoother for joint effects§. We

will assume that the counts yi are Poisson distributed and use the canonical link function

g(µ) = log µ.

The fitted model is presented as a density plot in Figure 11. The plot gives a clear picture

that the tagged migratory bird species spend winter in the tropics before migrating north

over summer and then returning down towards the equator before the end of the year.

�For illustration, we will describe the process for two smoothers, but this can easily be generalised to an

arbitrary number of smoothers. Moreover, the component smoothers need not actually be univariate, but

may have vector arguments.
§This model is largely taken from Pedersen et al. [2019].
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Figure 11: The GAMmodel fit for the bird migration data, using cyclic cubic splines for time-

of-year marginal effects, TPRS for latitude marginal effects and tensor product smooths for

joint effects. Red regions indicate latitudes and time-of-year where birds are more frequently

observed. The use of cyclic splines is evident by the symmetry of fitted values at the start

and end of the year.
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Figure 12: Diagnostic plots for the GAM in Figure 11.

Model diagnostics are given in Figure 12. Unfortunately, the residual plot indicates

heteroskedasticity and the QQ plot suggests some model misspecification. This is possibly

caused by omitting the species indicator for the model, since the six different species have

systematically different migratory patterns. A possible solution using mixed models is briefly

sketch in the following section.

Further Explorations

It should be obvious that much has been omitted from this short primer on GAMs for spatio-

temporal data. I have avoided large portions of the theory behind GAMs, especially relating

to model testing, inference, effective degrees of freedom and GAMs close relationship to

mixed models [Pedersen et al., 2019]. There are also many other smoothers beyond natural

cubic splines and TPRS, which can prove useful in spatial modelling, particularly soap film

smoothing for modelling boundary effects. Generalised additive mixed models (GAMMs) –
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which add random effect terms to GAMs – are also extremely useful for partial pooling of

spatially-correlated data. (For example, we could add species as a random effect in the bird

migration data; thereby pooling data across species while still accounting for within-species

variation, to get a better model fit for the effects of time and location.) All of this – along

with further spatio-temporal modelling examples (sections 7.4-7.6) – can be found in Wood

[2017].

Beyond GAMs, there are many other methods that address spatio-temporal modelling

– e.g. kriging, hierarchical models and state-space models (and more specifically dynamic

spatio-temporal models) [Cressie and Wikle, 2011; Wikle et al., 2019] – yet these are mostly

Bayesian in flavour. I focused on GAMs for no good reason other than they are not Bayesian

and they are closely related to the Stat244 material. A proper treatment of geospatial mod-

elling should describe other methods, which allow for more complex dependence structures

as well as explicit modelling of clustering. Nevertheless, we have seen that due to their

flexibility GAMs can do a good job with some types of spatio-temporal data.
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Code

The code to reproduce all my analyses can be found on my Github page. I used the following

packages in R:

1. tidyverse [Wickham et al., 2019]: for data wrangling;

2. mgcv [Wood, 2017]: for fitting GAMs;
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3. gratia [Simpson, 2020]: for easy ggplot2 GAM visualisations.

4. lindia [Lee and Ventura, 2017]: for easy ggplot2 linear model diagnostic plots.

R code for Figure 1

library("tidyverse")

n <- 10

set.seed(1000)

data <- tibble(y=rnorm(n),x=1:n)

f <- y ~ poly(x,n-1,raw=TRUE)

interpolate <- lm(f, data)

ggplot(data, aes(x,y)) +

geom_point() +

geom_smooth(method="lm", formula = f, se = FALSE) +

labs(y="Gaussian␣noise", title="Interpolating␣Gaussian␣noise",

x = "Index") +

theme_minimal()

ggsave("Interpolating.png")

R code for the Australian temperature anomaly data

library("tidyverse")
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library("mgcv")

library("gratia")

library("lindia")

library("forecast")

AusTemp <- read_delim("http://www.bom.gov.au/web01/ncc/www/cli_chg/

↪→ timeseries/tmean/0112/aus/latest.txt",

delim="␣",

col_names = c("Year", "Temp"),

col_types = "cd",

trim_ws = TRUE) %>%

mutate(Year = substr(Year, 0, 4)) %>%

mutate(Year = as.numeric(Year)) %>%

filter(Year < 2020) #for backwards compatibility, remove years

↪→ after 2019

ggplot(AusTemp, aes(Year,Temp)) +

geom_hline(yintercept = 0, colour="grey") +

geom_line() +

labs(y="C", title="Annual␣Australian␣temperature␣anomaly",

subtitle = "Reference␣period:␣1961-1990") +
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theme_minimal() +

theme(axis.title.y = element_text(angle = 0, vjust=0.5))

ggsave("TempLine.png")

TempGAM <- gam(Temp ~ s(Year, bs="cr"), data=AusTemp)

summary(TempGAM)

draw(TempGAM, residuals = TRUE)

ggsave("TempGAMFit.png")

g <- appraise(TempGAM)

ggsave("TempGAMDiag.png", g, width = 5.59*2, height = 3.64*2)

plot_grid(ggAcf(AusTemp$Temp), ggAcf(TempGAM$residuals))

ggsave("TempGAMACF.png", width = 5.59*2, height = 3.64)

AusTemp$YearSq <- AusTemp$Year**2

TempLM <- lm(Temp ~ Year, data=AusTemp)

g <- gg_diagnose(TempLM, theme = theme_minimal())

ggsave("TempLMDiag.png", g, width = 5.59*2, height = 3.64*4)

TempLM2 <- lm(Temp ~ Year + YearSq, data=AusTemp)

g <- gg_diagnose(TempLM2, theme = theme_minimal())

23



ggsave("TempLM2Diag.png", g, width = 5.59*2, height = 3.64*4)

ggplot(AusTemp, aes(Year,Temp)) +

geom_hline(yintercept = 0, colour="grey") +

geom_line() +

labs(y="C", title="Annual␣Australian␣temperature␣anomaly",

subtitle = "Reference␣period:␣1961-1990") +

theme_minimal() +

theme(axis.title.y = element_text(angle = 0, vjust=0.5)) +

stat_smooth(method = "lm", formula = y ~ poly(x, 2), se = FALSE,

↪→ colour="orange") +

stat_smooth(method = "gam", formula = y ~ s(x, bs = "cr"), se =

↪→ FALSE)

ggsave("TempGAMvsLM.png")

deriv <- derivatives(TempGAM)

deriv$sigIncreasing <- (deriv$lower > 0)

deriv$sigIncreasing <- ifelse(deriv$sigIncreasing, deriv$derivative,

↪→ NA)

deriv$sigDecreasing <- (deriv$upper < 0)

deriv$sigDecreasing <- ifelse(deriv$sigDecreasing, deriv$derivative,

↪→ NA)
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deriv$Year <- deriv$data

ggplot(deriv, aes(x = Year, y = derivative)) +

geom_ribbon(aes(ymax = upper, ymin = lower), alpha = 0.3, fill = "

↪→ grey") +

geom_line() +

geom_line(aes(y = sigIncreasing), size = 1.5) +

#geom_line(aes(y = sigDecreasing), size = 1.5) +

ylab(expression(italic(hat(f) * "’") * (Year))) +

xlab("Year") +

theme_minimal()

ggsave("TempGAMDeriv.png")

R code for the bird migration data

library("tidyverse")

library("mgcv")

library("gratia")

df <- bird_move %>% filter(species == "sp1")

df <- df[rep(row.names(df), df$count), 1:2]

ggplot(df, aes(x=week, y=latitude)) +

geom_jitter() +
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theme_minimal() +

labs(title="Observations␣of␣tagged␣birds␣(species␣A)␣by␣time␣and␣

↪→ location")

ggsave("species1.png")

birdGAM <- gam(count ~ te(week, latitude, bs=c("cc", "tp"), k=c(10,

↪→ 10)),

data=bird_move, method="REML", family="poisson")

draw(birdGAM)

ggsave("birdGAM.png")

g <- appraise(birdGAM)

ggsave("birdGAMDiag.png", g, width = 5.59*2, height = 3.64*2)
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