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Data Swapping (Dalenius and Reiss 1982; Fienberg and McIntyre 2004)

State Location Number of adults Number of children Age1 Race1 · · ·
MA Cambridge 2 2 45 White · · ·
TX Houston 1 0 28 Hispanic · · ·
WA Tacoma 5 0 67 Asian · · ·
MA Somerville 2 2 50 Black · · ·
...

...
...

...
...

...
. . .

VMatch

VSwap

VHold − VMatch
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Data Swapping (Dalenius and Reiss 1982; Fienberg and McIntyre 2004)

Massachusetts: Location by Race (head of household) Contingency Table

White Hispanic Asian Black . . .

Boston
Cambridge
Brookline
Somerville
Watertown

...

Changes: Interior cells of VHold − VMatch × VSwap.
Invariants:

1. VHold

2. VMatch × VSwap
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The Permutation Algorithm

Input: a dataset X .
Define strata as groups of records which match on the swap key VMatch.

Within each stratum:

1. Select each record independently with probability p (the swap rate).

2. Derange swapping variable VSwap of selected records, uniformly at random.

Output: the swapped dataset Z .

Theorem

The Permutation Algorithm satisfies pure differential privacy with privacy loss budget

ϵ = ln(b + 1)− ln(o), for 0 < p ≤ 0.5,

conditioning on the invariants it induces, where o = p/(1−p) and b is the largest stratum size.
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The Permutation Algorithm

Theorem

The Permutation Algorithm satisfies pure differential privacy with privacy loss budget

ϵ = ln(b + 1)− ln(o), for 0 < p ≤ 0.5,

conditioning on the invariants it induces, where o = p/(1−p) and b is the largest stratum size.

Theorem (formal)

The Permutation Algorithm satisfies (DcSwap , dHamS,Mult) differential privacy with privacy
loss budget

ϵ = ln(b + 1)− ln(o), for 0 < p ≤ 0.5,

where o = p/(1− p) and b is (roughly) the largest stratum size.

5 / 16



The Permutation Algorithm

Theorem

The Permutation Algorithm satisfies pure differential privacy with privacy loss budget

ϵ = ln(b + 1)− ln(o), for 0 < p ≤ 0.5,

conditioning on the invariants it induces, where o = p/(1−p) and b is the largest stratum size.

Theorem (formal)

The Permutation Algorithm satisfies (DcSwap , dHamS,Mult) differential privacy with privacy
loss budget

ϵ = ln(b + 1)− ln(o), for 0 < p ≤ 0.5,

where o = p/(1− p) and b is (roughly) the largest stratum size.

5 / 16



The Three Components of Differential Privacy (D , dX , dT )

Intuition: DP is a bound on the derivative of a data-release mechanism d
dX Pr(T (X ) ∈ ·) at

every dataset X in the data universe D.
Derivatives measure change in output per change in input. How do we measure change?

2. Divergence dX on the data input space X (the set of all theoretically-possible datasets).
3. Divergence dT on the space of (probability distributions over) the output.
1. Allow the data universe D − D(X ∗) to be data-dependent.

Definition

A differential privacy is a tuple (D , dX , dT ).
A data release mechanism T satisfies (D , dX , dT ) with budget ϵ if

dT

(
PX (T (X ) ∈ ·),PX ′(T (X ′) ∈ ·)

)
≤ ϵdX (X ,X ′),

for all data universes D ∈ ImD and all datasets X ,X ′ ∈ D.

We aren’t doing anything new here!
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Examples of D , dX , dT in the Decennial Censuses

dT dX (Unit) Invariants Privacy Loss Budget

TopDown∗ Dnor dp
HamS (person) Population (state) PL & DHC:

Total housing units (block) ρ = 15.29
Occupied group quarters (block) ϵ = 52.83 (δ = 10−10)

Structural zeros

SafeTab∗∗ Dnor dp
HamS (person) None DDHC-A: ρ = 19.776

DDHC-B & S-DHC: TBD.

Swapping Mult dh
HamS (household) Varies but greater ϵ between 9.37-19.38

than TDA

∗ (Abowd et al. 2022)
∗∗ (Tumult Labs 2022)
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Examples of D , dX and dT

1. An invariant-compliant data universe:

Dc(X ) =
{
X ′ ∈ X : c(X ′) = c(X )

}
,

for some invariants c : X → Rl .

2. Data divergence dX induced by a “neighbour” relation:

dX (X ,X ′) =


0 if X = X ′,

1 if X and X ′ are “neighbours”,

∞ otherwise.
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Examples of D , dX and dT
3. Divergence dT on (the probability distributions over) the output space

▶ Pure ϵ-DP (Dwork et al. 2006b): dT is the multiplicative distance

Mult(P,Q) = sup

{∣∣∣∣ln P(S)

Q(S)

∣∣∣∣ : event S}.
▶ Approximate (ϵ, δ)-DP (Dwork et al. 2006a):

Multδ(P,Q) = sup
event S

{
ln

[P(S)− δ]+

Q(S)
, ln

[Q(S)− δ]+

P(S)
, 0

}
,

▶ Zero Concentrated DP (Bun and Steinke 2016):

Dnor(P,Q) = sup
α>1

1√
α
max

[√
Dα(P||Q),

√
Dα(Q||P)

]
,

where Dα is the Rényi divergence of order α:

Dα(P||Q) =
1

α− 1
ln

∫ [
dP

dQ

]α
dQ,
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Swapping Satisfies Differential Privacy, Conditioning on its Invariants

Theorem

The Permutation Algorithm satisfies (DcSwap , d
u
HamS,Mult) differential privacy with privacy

loss budget
ϵ = ln(b + 1)− ln(o), for 0 < p ≤ 0.5,

with o = p/(1− p) and b is the largest stratum size.

For all X ,X ′ which share the same invariants – cSwap(X ) = cSwap(X ′) – and all possible
output datasets Z ,

Pr(T (X ) = Z ) ≤ exp(du
HamS(X ,X ′)ϵ) Pr(T (X ′) = Z ),

where T is the Permutation Algorithm.
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Swap Rate to Privacy Loss Budget (Nominal) Conversion

Conversion between the swap rate (p) and the nominal PLB (ϵ) at different levels of b: size of
the largest stratum delineated by VMatch. Note that:

1. For each b, there’s a smallest attainable ϵb > 0;
2. For each b, every ϵ > ϵb is satisfied by two different swap rates;
3. (counterintuitive) For the same swap rate, the larger the b, the larger the ϵ!
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The TopDown Algorithm (Abowd et al. 2022)

Two-step procedure:

1. Add noise to cells independently:

T (X ) = q(X ) + W ,

where W ∼ NZ(0,Σ), so that T satisfies (X , dp
HamS,Dnor)-differential privacy with

budget ρTDA.

2. “Post-process”: find dataset Z with q(Z ) close to T (X ) such that cTDA(Z ) = cTDA(X ).

TDA satisfies (DcTDA , d
p
HamS,Dnor)-differential privacy with budget ρTDA.
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Comparisons with 2020 Census

dT dX (Unit) Invariants Privacy Loss Budget

TopDown∗ Dnor dp
HamS (person) Population (state) PL & DHC:

Total housing units (block) ρ = 15.29
Occupied group quarters (block) ϵ = 52.83 (δ = 10−10)

Structural zeros

SafeTab∗∗ Dnor dp
HamS (person) None DDHC-A: ρ = 19.776

DDHC-B & S-DHC: TBD.

Swapping Mult dh
HamS (household) Varies but greater ϵ between 9.37-19.38

than TDA

∗ (Abowd et al. 2022)
∗∗ (Tumult Labs 2022)
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What if the 2020 Census Used Swapping?

The total nominal ϵ achievable by applying swapping to the 2020 Decennial Census for a
variety of VMatch, VSwap, and swap rate choices.

VMatch VSwap b total ϵ total ϵ Largest stratum
p = 5% p = 50%

state county 13680081 19.38 16.43 California
state × household size county 3653802 18.06 15.11 California, 3-household
county tract 3445076 18.00 15.05 LA County
county × household size tract 853003 16.60 13.66 LA County, 3-household
block group block 21535 12.92 9.98 a FL block group
block group × household size block 11691 12.31 9.37 a FL block group, 3-household

Note. For a fixed (VMatch, VSwap, p) setting, the nominal ϵ would be the total PLB for all
data products derived from the swapped dataset, including P.L. 94-171, DHC, Detailed DHC
for both persons and household product types.
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A Perverse Guide to Reducing the Privacy Loss ϵ
(without adding more noise)

1. Add more invariants (decrease the size of the data universes D)

2. Increase the granularity of the privacy units (inflate dX )
▶ Persons instead of households
▶ One day’s worth of data, instead of all of an individual’s data over time

3. Artificially shrink the output divergence dT
▶ Use (ϵ, δ)-DP instead of ϵ-DP.
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Contributions

▶ We supply a framework (D , dX , dT ) for capturing and comparing different types of
differential privacy which highlights often overlooked components of DP.

▶ We prove that swapping satisfies DP, when conditioning on its invariants, putting its
privacy guarantees on the same footing as the TopDown algorithm.

▶ Our framework may help data custodians to systematically understand how traditional
SDC methods can afford formal privacy protection.

Implications:

▶ What is the performance of reconstruction attacks on other formally-private mechanisms?

▶ Algorithmic and probabilistic transparency of swapping methods (for better data utility)

Extensions:

▶ Incorporating disclosure risk: Variable swap rate.

▶ Allowing flexible invariants: Probabilistic matching & Pre-swap noise infusion (Hawes and

Rodriguez 2021).
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▶ Algorithmic and probabilistic transparency of swapping methods (for better data utility)

Extensions:

▶ Incorporating disclosure risk: Variable swap rate.

▶ Allowing flexible invariants: Probabilistic matching & Pre-swap noise infusion (Hawes and

Rodriguez 2021).
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The Permutation Algorithm

19 / 16



The TopDown Algorithm (Abowd et al. 2022)
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Theorem: Swapping Satisfies DP, Conditioning on its Invariants

Let
b = max{0, nj | there are at least two different records in stratum j}.

Then the Permutation Algorithm is (cSwap, du
HamS, ϵD)-DP where du

HamS is the symmetric
Hamming distance

du
HamS(X ,X ′) =

1

2

∣∣X ⊖ X ′∣∣,
and ϵD = 0 if b = 0, otherwise

ϵD =

{
ln(b + 1)− ln o if 0 < p ≤ 0.5

max
{
ln o, ln(b + 1)− ln o

}
if 0.5 < p < 1,

with o = p/(1− p). On the other hand, for p ∈ {0, 1} and for some D with b > 0, the
Permutation Algorithm does not satisfy (cSwap, du

HamS, ϵD)-DP for any finite ϵD.
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Proof Intuition

1. We need to show that, for fixed datasets X ,X ′,Z in the same data universe D,

Pr(σ(X ) = Z ) ≤ exp(du
HamS(X ,X ′)ϵ) Pr(σ′(X ′) = Z ),

2. We can show that there exists a derangement ρ of m records such that X = ρ(X ′).

3. There is a bijection between the possible σ and σ′ given by σ′ = σ ◦ ρ.
4. Hence, if mσ is the number of records deranged by σ, we have

mσ −m ≤ mσ′ ≤ mσ +m.

5. This gives a bound on Pr(σ)/Pr(σ′) in terms of omσ−mσ′ and the ratio between the
number of derangements of mσ′ and of mσ.

6. For o ≤ 1, this can be bounded by o−m(b + 1)m using the above inequality. The result
for 0 < p ≤ 0.5 then follows with some algebraic simplification.
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Theorem: TDA satisfies DP, Conditioning on its Invariants

Let cTDA be the invariants of TDA and let DcTDA be the induced data universe function.
Then TDA satisfies the differential privacy definition (DcTDA , d

p
HamS,Dnor) with privacy budget

ρTDA = 2.63 (for the Census Redistricting Summary File) and ρTDA = 15.29 (for the DHC).
In the opposite direction, let c ′ be any proper subset of TDA’s invariants. Then TDA does not
satisfy (Dc ′ , dX ,Dnor) with any finite budget ρ.

ρ ϵ (with δ = 10−10)

PL Household 0.07 2.70
Person 2.56 17.90

DHC Household 7.70 34.33
Person 4.96 26.34

Total 15.29 52.83

Source: (US Census Bureau 2023).
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Numerical demonstration: 1940 Census full count data

▶ VSwap: household’s county;

▶ VMatch (swap key): the number of persons per household × household’s state;

▶ VHold − VMatch: dwelling ownership.

The invariants cSwap are

1. Total number of owned vs rented dwellings at each household size at the state level;

2. Total number of dwellings at each household size at the county level.

swap rate 0.01 0.05 0.10 0.50
ϵ 17.08 15.43 14.68 12.48

Table 1: Conversion of swap rate to ϵ (PLB). Under this swapping scheme, the largest stratum size is b = 264, 331, the
number of all two-person households of Massachusetts.
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Numerical Demonstration: 1940 Census Full Count Data

Table 2: Two-way tabulations of dwelling ownership by county based on the 1940 Census full count for Massachusetts
(left) and one instantiation of the Permutation Algorithm at p = 50% (right). Total dwellings per county, as well as total
owned versus rented units per state, are invariant. All invariants induced by the Algorithm are not shown.

county owned rented total owned rented total
(swapped) (swapped) (swapped)

Barnstable 7461 3825 11286 5907 5379 11286
Berkshire 14736 18417 33153 13770 19383 33153
Bristol 33747 63931 97678 35537 62141 97678
Dukes 1207 534 1741 946 795 1741
Essex 53936 81300 135236 52631 82605 135236
Franklin 7433 6442 13875 6337 7538 13875
Hampden 30597 58166 88763 32267 56496 88763
Hampshire 9427 8630 18057 8145 9912 18057
Middlesex 104144 147687 251831 100372 151459 251831
Nantucket 593 432 1025 471 554 1025
Norfolk 44885 40285 85170 38566 46604 85170
Plymouth 24857 23882 48739 21549 27190 48739
Suffolk 49656 176553 226209 67357 158852 226209
Worcester 53126 78535 131661 51950 79711 131661

total 435805 708619 1144424 435805 708619 1144424
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Numerical Demonstration: 1940 Census Full Count Data
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Swap key: persons per household; Invariant geography: state

Accuracy: 1940 Decennial Census, Massachusetts, Dwelling Ownership

Mean absolute percentage error (MAPE) in the two-way tabulation of dwelling ownership by county induced by the
Permutation Algorithm applied to the 1940 Census full count data of Massachusetts, at different swap rates from 1% to
50%. Each boxplot reflects 20 independent runs of the Algorithm at that swap rate.
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Extending “Neighbour” Divergences to Metrics on X
A divergence defined by neighbours:

dX (X ,X ′) =


0 if X = X ′,

1 if X and X ′ are “neighbours”,

∞ otherwise,

can always be sharpened to a metric d∗
X (X ,X ′) defined as the length of a shortest path

between X and X ′ in the graph on X with edges given by r . For example the extension of the
bounded-neighbours is the Hamming distance on unordered datasets:

du
HamS(X ,X ′) =

{
1
2 |X ⊖ X ′| if |X | = |X |,
∞ otherwise

and the extension of unbounded-neighbours is the symmetric difference distance:

du
SymDiff(X ,X ′) =

∣∣X ⊖ X ′∣∣.
The superscript u emphasizes that these distances are defined with respect to a choice of the
privacy unit u.
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Sufficiency and Necessity of Restricting the Data Universe D

1. For any dX and dT , the mechanism T (X ) = c(X ) that releases the invariants exactly
satisfies (Dc , dX , dT ) with privacy budget ϵD = 0.

2. Now suppose dT (P,Q) = ∞ if dTV(P,Q) = 1. Let D be a data universe function such
that there exists datasets X1,X2 in some data universe D0 ∈ ImD with dX (X1,X2) < ∞ and
c(X1) ̸= c(X2). Then T does not satisfy (D , dX , dT ) for any ϵD0 < ∞.
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Sufficiency and Necessity of Restricting the Data Universe D

3. Suppose that a mechanism T varies within some universe D0 ∈ ImDc in the sense that
there exists X ,X ′ ∈ D0 with dX (X ,X ′) < ∞ but PX ̸= PX ′ .
When dT is a metric, T satisfies (Dc , dX , dT ) only if ϵD0 > 0.
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