

Stable Homotopy Theory

James Bailie Supervised by Dr. Vigleik Angelveit Australian National University

Sponsors

Australian Government

Department of Education and Training

AMSI AUSTRALIAN MATHEMATICAL SCIENCES

February 8, 2017

Homotopy

Definition

A homotopy between $f : X \to Y$ and $g : X \to Y$ is a family of functions $F_t : X \to Y$ for $t \in [0, 1]$ such that

1. $F_0 = f$,

2.
$$F_1 = g$$
,

3. $F_t(x)$ is continuous in both t and x.

f and g are said to be *homotopic* if there is a homotopy between them. This property partitions maps $X \rightarrow Y$ into equivalence classes, called *homotopy classes*.

Homotopy Groups $\pi_n(X)$

Definition

 $\pi_n(X)$ is the set of homotopy classes of maps $f: S^n \to X$. For $n \ge 1$, define a group operation on $\pi_n(X)$ by

$$f + g$$
 is the composition $S^n \xrightarrow{c} S^n \vee S^n \xrightarrow{f \vee g} X$

 $\pi_1(X)$ is called the *fundamental group*.

Suspensions Definition The *suspension* of X is

$$SX = (X \times [0,1])/(X \times \{0\} \cup X \times \{1\}).$$

The suspension of $f: X \to Y$ is a map $Sf: SX \to SY$ defined by

$$Sf([x,t]) = [f(x),t].$$

Example

The suspension of S^n is S^{n+1} .

Definition

The suspension map $\pi_n(X) \to \pi_{n+1}(SX)$ is given by

$$[f:S^n\to X]\to [Sf:S^{n+1}\to SX].$$

Freudenthal Suspension Theorem and Stable Homotopy Groups

Theorem

Under mild conditions, the suspension map $\pi_{n+i}(S^iX) \rightarrow \pi_{n+i+1}(S^{i+1}X)$ is an isomorphism for i >> 0.

Definition

The *nth stable homotopy group* of X is

$$\pi_n^s(X) = \operatorname{colim}_i \pi_{n+i}(S^i X).$$

Thank you. Questions?