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To directly address the title’s query, an answer must necessarily presuppose a precise specification of differential
privacy (DP) [8]. Indeed, as there are many different formulations of DP [6] — which range, both qualitatively and
quantitatively, from being practically and theoretically vacuous to providing gold-standard privacy protection [7] —
a “yes/no” answer to the question, “is X differentially private?” is not particularly informative and is likely to lead
to confusion or even dispute, especially when the presupposed DP specification is not clearly spelt out and fully
comprehended.

A true answer to the title’s query must therefore be predicated upon an understanding of how formulations of DP
differ, which is best explored, as is often the case, by starting with their unifying commonality. DP specifications
are, in essence, Lipschitz conditions on the data-release mechanism. The core philosophy of DP is thus to manage
relative privacy loss by limiting the rate of change of the variations in the noise-injected output statistics when
the confidential input data are (counterfactually) altered. Hence, DP conceives of privacy protection specifically as
control over the Lipschitz constant — i.e. over this rate of change; and different DP specifications correspond to
different choices of how to measure input alterations and output variations, in addition to the choice of how much
to control this rate of variations-to-alterations. Following this line of thinking through existing literature [9, 3, 11,
5, 4, 17, 10, 12] leads to five necessary building blocks for a DP specification. They are, in order of mathematical
prerequisite, the protection domain, the scope of protection, the protection unit, the standard of protection, and the
intensity of protection. In simple terms, these are respectively the “who”, “where”, “what”, “how”, and “how much”
questions of DP.

Under this framework, we consider DP’s applicability in scenarios like the US Census where the disclosure of certain
aggregates is mandated by the US Constitution [1]. We design and analyze a data swapping method, called the
Permutation Swapping Algorithm (PSA), which is reminiscent of the statistical disclosure control (SDC) procedures
employed in several US Decennial Censuses before 2020 [13]. For comparative purposes, we are also interested in the
principal SDC method of the 2020 Census, the TopDown algorithm (TDA) [1], which melds the DP specification of
[3] (zero-concentrated DP) with Census policy and constitutional mandates.

We analyze the DP properties of both data swapping and the TDA. Both [3]’s specification and the original e-DP
specification of [8] demand that no data summary is disclosed without noise — which is impossible for swapping
methods as they inherently preserve, and hence disclose, some margins; and is also impossible for the TDA since it
too keeps some counts invariant. Therefore, for the same reasons that the TDA cannot satisfy the DP specification
of [3], data swapping cannot satisfy the original e-DP specification of [8]. On the other hand, we establish that the
PSA is e-DP, subject to the invariants it necessarily induces and we show how the privacy-loss budget € is determined
by the swapping rate and the maximal size of the swapping strata. We also prove a DP specification for the TDA,
by subjecting [3]’s specification to the TDA’s invariants. Drawing a parallel, we assess the privacy budget for the
PSA in the hypothetical situation where it was adopted for the 2020 Census.

Our overarching ambition is three-fold: firstly, to leverage the merits of DP, including its mathematical assurances
and algorithmic transparency, without sidelining the advantages of classical SDC [18]; secondly, to unveil the nuances
and potential pitfalls in employing DP as a theoretical yardstick for SDC procedures; and thirdly, to build connections
between social and technical conceptualizations of privacy [16, 14, 19, 15, 2] by outlining real-world considerations
behind the five building blocks. By spotlighting data swapping, we aspire to stimulate rigorous evaluations of other
SDC techniques, and demonstrate that the privacy-loss budget € is merely one of five components of DP.
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