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Abstract. Differential privacy (DP) has emerged in the computer science literature as a measure of the impact on an individual’s
privacy resulting from the publication of a statistical output such as a frequency table. This paper provides an introduction to
DP for official statisticians and discuss its relevance, benefits and challenges from a National Statistical Organisation (NSO)
perspective. We motivate our study by examining how privacy is evolving in the era of big data and how this might prompt a
shift from traditional statistical disclosure techniques used in official statistics – which are generally applied on a cell-by-cell or
table-by-table basis – to formal privacy methods, like DP, which are applied from a perspective encompassing the totality of the
outputs generated from a given dataset. We identify an important interplay between DP’s holistic privacy risk measure and the
difficulty for NSOs in implementing DP, showing that DP’s major advantage is also DP’s major challenge. This paper provides
new work addressing two key DP research areas for NSOs: DP’s application to survey data and its incorporation within the Five
Safes framework.
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1. Introduction

The fundamental purpose of National Statistical Or-
ganisations (NSOs) is to release accurate and timely
data to inform decision-making. Yet NSOs are also
mandated to protect the confidentiality of their respon-
dents. There is an inevitable trade-off between these two
obligations [1]: by releasing too much data, individuals’
privacy can be compromised; while on the other hand,
complete protection of individuals’ privacy reduces the
granularity, and hence utility, of the published statistics.

NSOs have been effectively balancing these two com-
peting obligations for decades using a suite of privacy
tools and controls [2]. However, over the last twenty
years, there has been an increasing awareness in the
computer science literature of sophisticated attacks on
statistical outputs [3].

Differential privacy (DP) has gained popularity
amongst computer scientists as an effective way of pro-
tecting against such attacks. Despite this, there has been
comparatively little research in both i) understanding
the risks posed to NSOs by these sophisticated attacks

and ii) applying DP in scenarios typical of official statis-
tics. The exception is the US Census Bureau’s recon-
struction attack on their 2010 decennial Census and
their subsequent adoption of DP to protect their 2020
Census [4].

There are a number of possible causes for this lack
of research. A typical NSO publication is complex, so
applying sophisticated statistical attacks on these publi-
cations is very difficult. Further, publication complex-
ity, combined with the mathematical and computational
complexities inherent in DP, obstructs NSOs’ ability
to implement DP. Finally, given the cross-disciplinary
nature of this work, teams of official statisticians and
computer scientists are required to progress this re-
search agenda. Both computer scientists and statisti-
cians lack key knowledge: computer scientists generally
do not understand the priorities and complexities facing
NSOs; while statisticians are generally unaware of the
subtleties of DP.

In this paper, we aim to partially redress both these
two deficiencies by providing an accessible yet techni-
cally rigorous introduction to DP and by highlighting
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some important, but overlooked, NSO-specific chal-
lenges.

In the next section, we explore the impact of the big
data revolution on NSOs and explain how this moti-
vates our study of differential privacy. In Section 3, we
outline the fundamentals of DP and its advantages over
traditional statistical disclosure controls (SDCs). Sec-
tion 4 describes several key considerations for NSOs
applying DP. Finally, Section 5 concludes the paper by
suggesting directions for future discussion.

2. The challenge of the big data era

In the current information era, society is experiencing
a paradigm shift in how data is generated, collected and
used. As the statistical landscape changes, NSOs are
cementing their importance by transforming how they
produce and disseminate statistics [5]. Among these
changes, NSOs are increasing the utility of their data as-
sets through more comprehensive publications, at finer
geographies; microdata releases; novel data visualisa-
tion tools; and dynamic products – such as ABS Table-
Builder [6] – where clients can construct their own cus-
tomised statistical outputs, specific to their needs. In
short, NSOs are beginning to embrace (parts of) the big
data revolution.

At the same time, the ability to attack statistical out-
puts to reveal confidential information has never been
higher. Today’s attackers have at their fingertips an un-
precedented level of computational power and access to
data. Furthermore, new methods of attack are constantly
being developed (e.g. [7–10]). With the proliferation of
personal data available online, the mosaic effect [11] –
which describes the potential for privacy breaches by
integrating many small pieces of innocuous data – is
increasing the privacy risk of NSOs’ publications. It is
clear that it is harder now than ever for NSOs to ensure
the confidentiality of their respondents.

Therefore, NSOs are facing pressure from both sides:
they need to maximise the utility of their data to re-
main competitive; and they need to protect respondents’
privacy against emerging and future statistical attacks.
As the database reconstruction theorem [3] has shown,
if NSOs continue to increase the utility of their data
assets, at some point they will start revealing private
information. It is therefore imperative that NSOs have
a clear understanding of both the utility and the privacy
risk inherent in their data releases; and that they use
this knowledge to walk the tightrope between wasting
the data (i.e. non-optimal utility) and disclosing private
information (i.e. non-optimal privacy).

Fig. 1. Privacy mechanisms are functions which transform data into
statistical outputs. DP quantifies the privacy leakage of a privacy
mechanism.

To this end, this paper attempts to answer the ques-
tion: With both more data releases and privacy risks
than ever, can differential privacy help NSOs ensure the
confidentiality of their respondents is maintained?

3. What is differential privacy?

Fundamentally, DP is a measure of the privacy leak-
age inherent in the publication of statistics. More specif-
ically, DP is concerned with the algorithm that trans-
forms raw data into published outputs. Usually these
outputs are aggregated frequency tables but they could
also be synthetic microdata, linear regression model
parameters, or a time series. In DP terminology, this
process – from raw data to the end product – is called a
privacy mechanism (Fig. 1). These mechanisms are the
main object of study in differential privacy.

A common misconception is that DP prescribes par-
ticular mechanisms for confidentialising data. However,
this is not the case; DP simply measures the level of
confidentiality provided to an individual by this mecha-
nism. That is, DP is a property of mechanisms – not a
type of mechanism.

Under DP, the level of privacy is measured by how
the output changes when any single record is changed
in the dataset. To satisfy the property of DP, the output
from the mechanism cannot change drastically if one in-
dividual changes their response. In this way, proponents
argue that DP can provide guarantees to individuals
that – in probability – their response is not revealed by
the output and as such, no attacker can infer individual
responses with certainty.

Throughout this paper, we will provide a running
example: The fictitious country of Spudlandia is inter-
ested in learning about the potato consumption of their
citizens. They decide to run a survey and will use DP
to ensure the privacy of respondents is maintained.
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3.1. Privacy mechanisms

Fix a database schema Σ (describing the variables
in the dataset, and the possible values allowed for
each of the variables). Let RΣ represent the universe
of records which are possible under this schema. A
dataset D is defined as a multiset of records drawn
from RΣ. Let DΣ denote the universe of all datasets
under the fixed database schema and let S denote the
universe of all possible outputs. A privacy mechanism
M : DΣ → S is a function that takes as input a dataset
D ∈ DΣ with schema Σ and provides a sanitised output
M (D) = s ∈ S. This function usually contains some
random component so that different outputs can be ob-
tained from the same input dataset. That is, a privacy
mechanism transforms a dataset with a pre-specified
database schema into a set of randomly-perturbed sta-
tistical outputs.

In our running example, the Spudlandia survey asks
for respondents’ age, gender, state, whether they like
potatoes and how frequently they eat potatoes. Table 1
specifies the database schema for this survey.

As an example of a privacy mechanism,M might
add a random integer R to the Horvitz-Thompson esti-
mate [12] of the number of potato lovers:

M (D) =
∑
i∈D

π−1
i pi +R,

whereR is drawn from, for example, the uniform distri-
bution on {−10,−9, . . . , 10}. More generally, the uni-
form distribution could be replaced with any perturba-
tion distribution. Further, the privacy mechanism could
equally be a synthetic data generation process [13] or
a machine learning algorithm. While the definition of
a privacy mechanism is a key innovation of DP – as
it formalises privacy as the study of data release pro-
cedures – it captures all these examples, regardless of
whether they satisfy DP or not. As such, the concept of
the privacy mechanism can and should be incorporated
into other privacy methods.

The above privacy mechanismM releases a single
statistic. Under DP, if Spudlandia wanted to release
additional information from the same dataset – such
as how frequently citizens in each state eat potatoes –
then these new statistics must be considered together
with the original statistic (either combined as a single
privacy mechanism, or as a composition of multiple
mechanisms [14]) when assessing the level of privacy.

3.2. The definition of DP

Two datasets D,D′ are neighbours if they differ on
only a single record. That is, D = D0 ∪ {u} and D′ =
D0 ∪ {v} for some dataset D0 and records u, v ∈ R.
(Some texts define D,D′ as neighbours if D′ = D ∪
{u} or D = D′ ∪ {u} for some record u ∈ R.)

A privacy mechanism M : DΣ → S satisfies ε-
differential privacy if, for any two neighbouring datasets
D,D′ ∈ DΣ,

P (M(D) = s) 6 eεP (M(D′) = s)

for all outputs s ∈ S [15]. (Using the alternative defi-
nition of neighbouring datasets, the definition of DP is
the same, but ε differs by a factor of two.)

3.3. Interpreting DP

Returning to the example above, suppose Spudlan-
dia decides to set the privacy parameter ε = ln 2. One
citizen, Taro, does not like potatoes and is worried that
her potato-loving neighbour may discover this from the
survey outputs. To avoid the potentially nasty conse-
quences of this privacy breach, Taro might consider
providing a false record v in place of her true answer
u. DP ensures that the mechanismM will behave sim-
ilarly regardless of Taro’s choice of u or v. So Taro’s
neighbour – upon seeing an output s – will not be able
to conclusively determine whether Taro chose to answer
u or v since the ratio of probabilities:

P (M (D0 ∪ {u}) = s)

P (M (D0 ∪ {v}) = s)

must be bounded by eε = 2. Using Bayes rule, we find
that the neighbour would (at best) be able to double their
confidence that Taro doesn’t like potatoes. In practise,
this means that an attacker cannot reverse engineer the
privacy mechanism M to determine the underlying
dataset as D0 ∪ {u} or D0 ∪ {v} (Fig. 2). Taro might
decide that this is sufficient protection of her privacy
and so would be happy to provide the true answer u.

3.4. Advantages of DP

As we saw in the example above, DP has the advan-
tage that the privacy leakage (i.e. the impact on an in-
dividual’s privacy) of any statistical release is bounded
by eε. The number ε, called the privacy budget, can be
released publicly without any reduction in privacy pro-
tection. Additionally, the complete details of the privacy
mechanism (excluding the particular random numbers
used) can be published without compromising privacy.
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Table 1
An example database schema

Age
(in years)

Gender State of Spudlandia pi (whether they
like potatoes)

fi (how frequently they eat potatoes)

Possible
values

1, 2, 3,. . . ,79,
80, >80

Male, Female,
Non-binary

Coliban, Desiree, Exton 1 (yes), 0 (no) Less than once a day, daily, more than
once a day

Fig. 2. Consider the scenario where an attacker is attempting to
determine the private record of a respondent by using the published
statistical outputs. The objective of DP is to ensure that the privacy
mechanism cannot be reverse engineered to calculate the private
record’s values. More specifically, DP’s aim is to ensure any two
possible values u and v for the private record are (approximately)
equally likely from the perspective of the attacker, who only observes
the published statistical outputs.

For example, NSOs could release the distribution used
for perturbation. From a security perspective, this is an
advantage since there is less classified information that
needs to be protected by an NSO. However, it is unclear
what impact this transparency will have on public trust:
it could reassure the public of NSOs’ safety or, by pub-
lishing how ‘at risk’ a respondent’s information is, it
could scare certain subpopulations [16].

Full transparency about the privacy protections does
allows sophisticated users to incorporate the resulting
uncertainty into their analysis. Analysts can determine
how much extra variance is added by the privacy mech-
anism and design their estimators to minimise the im-
pact of the privacy protection. In this way, the utility
of the published statistics is increased without any re-
duction in privacy. However, this type of analysis of
variance is likely too difficult for the typical users of
NSO publications.

The main advantage of DP is that it considers all the
outputs from a dataset in their entirety and assesses the
total privacy risk arising from the set of all outputs. Tra-
ditional SDCs are applied on a cell-by-cell basis or, less
frequently, on a table-by-table basis [2,17]. However,
typical NSO publications consist of multiple tables with
hundreds of cells each and sophisticated statistical at-
tacks exploit the complex dependencies between these

cells. It follows that any effective protection method
must address these complex dependencies.

3.5. Assessing privacy risk across all outputs – a
double-edged sword

DP assesses the risk for an individual’s privacy from
the entirety of the released statistics. This means that
all the outputs (or, more accurately, all of the privacy
mechanisms used to produce these outputs) must be
assessed together when determining the level of privacy
protection. While this is the major advantage of DP,
it also means that implementing DP is computation-
ally and mathematically complex, especially for typical
official statistics publications.

As an example, Spudlandia might want to release
the number of people that like potatoes, split by gender
and state. In this case, the privacy mechanismM will
output a nine-dimensional vector:

M (D) =



number of males in Coliban
that like potatoes

number of females in Coliban
that like potatoes

...
number of nonbinary persons in

Exton that like potatoes


Suppose Spudlandia releases this table via a (ln 2)-

DP mechanismM. If they want to release an additional
statistical table (for example, a table of how frequently
people eat potatoes in each state) using the same dataset,
then the DP protection must necessarily decrease: Since
the privacy budget of ε = ln 2 was used in releasing
the first table, the release of second table must increase
the total privacy budget above ln 2.

Ideally, all statistics should be known in advance and
released together by a single mechanism. This is the
best way to ensure that the combined release of all tables
upholds the desired privacy budget, while optimising
the statistical utility of the release under the constraint
of the privacy budget.

However, it is possible to sequentially release tables
and calculate the overall privacy budget across the mul-
tiple releases. There are two possible scenarios where
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this is useful: when NSOs don’t know all the statistics
they’d like to release from a given dataset and when
users can choose their tables in an interactive setting
(such as in ABS TableBuilder [6]). However, with sub-
sequent releases, three complications arise: the privacy
budget necessarily increases; the computation required
to determine the budget becomes more difficult; and the
overall statistical utility may suffer in comparison to
mechanisms which release all of the tables at the same
time [18].

These three complications arise from the fact that,
under DP, each statistical output cannot be considered
in isolation; it must be considered in the context of all
the other outputs from the same dataset. This necessity
makes sense from a privacy perspective. We can’t ac-
curately measure the privacy loss if we only consider
each statistic in isolation; we need to look at the whole
picture of releases.

Therefore, DP has the major advantage of consider-
ing the privacy risk across all outputs, but this advan-
tage is a double-edged sword. On one hand, with its
holistic risk assessment, DP addresses many of the chal-
lenges associated with statistical disclosure limitation
in the information era, including: how to understand
privacy risk as NSOs release more – and more com-
plex – data products; how to protect against emerging
statistical attacks which exploit complex dependencies
between tables; and the mosaic effect [11]. But on the
other hand, DP is exceedingly difficult to implement –
from mathematical, computational and practical per-
spectives – since it must simultaneously consider all of
the published statistical tables, which can often consist
of billions of cells [9], as well as the entire statistical
production pipeline from raw unit-level data to publi-
cations. For some NSO publications (such as the US
decennial Census), with a small number of variables
and a single release, DP is currently a feasible option.
However, for the majority of NSO publications, further
research is needed before DP could be used, particularly
when not all outputs are known from the start.

3.6. DP relaxations and terminology

The term ‘differential privacy’ has been abused
to cover a number of definitions, causing confusion
amongst statisticians new to the field. The definition
introduced above, called strict DP, is the simplest but
there are many popular variations, the most common
being (ε, δ)-differential privacy. In this definition, ε-DP
is allowed to fail with probability at most δ [19]. On
close examination, this definition of privacy is nonsen-
sical since the following two mechanisms are obviously
disclosive, yet satisfy (ε, δ)-DP:

1. The mechanism that publishes δn records ran-
domly chosen from the input dataset D of n
records.

2. The mechanism that publishes the input dataset
D in full with probability δ, and otherwise runs
an ε-DP mechanism.

There are many other variations of DP, which are
promising for NSOs (e.g. [20,21]). More research on
these variations is required by NSOs since it is funda-
mentally important that the chosen definition measures
the true privacy risk within the specific publishing en-
vironment (and ε-DP does not necessarily excel in this
regard as we will demonstrate below).

The central principle underlying all these variations
is that the privacy risk across all outputs is quantified.
The general term for the idea is ‘formal privacy’. Since
all formal privacy definitions attempt to quantify the
total risk from all releases, they are all double-edged
swords as outlined in the previous section. However,
some definitions do better than others at measuring
the true privacy risk associated with a mechanism, as
evidenced by the above discussion on (ε, δ)-DP. In the
next section, we will introduce a new variation of DP
that provides a better measure of privacy risk when
releasing survey data.

4. Implementing DP in NSOs

In this section, we discuss some of the considerations
particular to NSOs when designing a DP mechanism.
In the first half of the section, we highlight some dif-
ficulties with DP and survey data, and propose a solu-
tion. In the second half, we discuss why DP should be
incorporated under the Five Safes framework [22] and
how to choose a privacy budget.

4.1. DP and survey data

For simplicity, we will now focus on releasing a sin-
gle statistic, mindful however, that any implementation
of DP must consider all the published outputs generated
from the dataset.

We continue with the example of Spudlandia’s sur-
vey. As typical of an NSO, they estimate the number of
potato lovers by

P̂D =
∑
i∈D

wipi

where wi are survey weights and pi = 1, if respondent
i likes potatoes, and pi = 0 otherwise. They want to
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Table 2
Two examples of perturbed outputM (D), the first without invariants
and the second with the sample size n = 1500 as an invariant

P̂D M (D) 90% CI of P̂D

Without invariants 750 000 272 288 [−2 030297, 2 574 873]
I = {n = 1500} 750 000 749 516 [747 981, 751 051]

protect this estimate using DP. One way (but not the
only way) is to add some random noise:

M (D) = P̂D +R

where R is randomly drawn from some distribution
(commonly the Laplace distribution [15], since it makes
the mathematics of DP conveniently simple).

The variance of the noise R depends on two quan-
tities: the privacy budget ε and the maximum differ-
ence between the statistic P̂ when calculated from two
neighbouring datasets. This last quantity is called the
global sensitivity of the statistic and is denoted by ∆P̂ .
In our case, the formal definition is:

∆P̂ = max
D,D′

P̂D − P̂D′

where D and D′ are neighbouring datasets.
Intuitively, as the privacy budget increases, less pri-

vacy protection is given and so there should be a corre-
sponding decrease in Var (R). Similarly, if the statistic
can change substantially when only one record changes
(i.e. if ∆P̂ is large), then the noise R required to mask
the impact of an individual respondent must also be
substantial.

Under simple random sampling (SRS), wi = π−1
i =

N
n , where N is the size of the population and n the
size of the survey dataset. For neighbouring datasets
D = {pi = 1} and D′ = {pi = 0} of size n = 1, we
have P̂D = N and P̂D′ = 0. Hence, ∆P̂ = N , which
means that, regardless of the size n of the dataset, DP
requires the noise R must be proportional to the pop-
ulation! (More precisely, the L1 error E (|R|) = N

ε is
proportional to the population, under a Laplace mecha-
nism.) This makes for very poor utility since with this
amount of noise, an analyst would have no confidence
whether everyone in Spudlandia likes potatoes or no
one does.

This motivates the following modification of DP:
Let I be a set of properties about a dataset. For exam-
ple, I might include the property that the size of the
dataset n = 1500. These properties are called the in-
variants [23] and typically they should be public in-
formation or known requirements of the survey (e.g. a
minimal sample size), which do not reveal confidential
information. Let DI ⊆ D be the subset of datasets that
satisfy the invariants. A privacy mechanismM satisfies

εI -differential privacy if for all neighbouring datasets
D,D′ ∈ DI ,

P (M (D) = s) 6 eεP (M (D′) = s) .

In this way, we only ensure indistinguishability of
neighbouring datasets which satisfy I .

As an example, suppose Spudlandia surveyed n =
1500 citizens. Adding n = 1500 as an invariant, then
the global sensitivity ∆P̂ would decrease to N

1500 . To
illustrate the improvement in utility gained by using
this invariant, Table 2 shows published valuesM (D)
under a Laplace mechanism, with and without the in-
variant, as well as a 90% confidence interval (CI) of P̂D

based on the published values, where the population
size N = 1 000 000 and privacy budget ε = 1. Without
the invariant, the released statisticM (D) is essentially
useless, but with the invariant,M (D) is informative.

Kifer and Machanavajjhala showed in [20] that DP
assumes that the probability of inclusion πi is inde-
pendent to the record values xi and that πi and xi are
independent of other πj , xj . This assumption can have
a negative impact on both utility (as shown above) and
privacy (see [24]). While we have shown how to modify
DP under SRS, more research is required before DP
can be used with more complex sampling designs. In
particular, it is unclear how to implement DP when πi
is endogenous, such as in stratified sampling.

4.2. Choosing the privacy budget ε and the Five Safes
framework

The Five Safes is a framework for assessing the pri-
vacy risk of published statistics from a holistic perspec-
tive [22]. It considers five dimensions (data, outputs,
people, projects and settings) under which privacy risk
can be controlled. DP is a method to assess the privacy
risk of the outputs by quantifying this risk in terms of a
privacy budget ε. Thus, DP falls within the Safe Outputs
dimension. However, when an NSO sets ε, there are
many questions to consider. For example, how sensitive
is the data? Innocuous data do not need a high level of
protection, so ε can be large. But private data, such as
medical records, would necessitate a small ε. The level
of trust in the users is another important consideration.
In fact, all aspects of the data release environment –
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as described in the Five Safes framework – must be
considered. Hence, DP must be integrated into holistic
frameworks such as Five Safes or the Anonymisation
Decision-Making Framework [25].

Additionally, as NSOs are public institutions, the
chosen privacy budget must reflect public opinion on
both the privacy and the utility of the data in question.
The translation from public opinion to a particular value
of ε, will be a challenging social problem, but it will
also be central to any implementation of DP. With pub-
lic opinion constantly in flux, this cannot be a ‘set-and-
forget’ process. A number of theoretical approaches for
choosing ε have been proposed (e.g. [26,27]), however,
we need more practical examples in real-world statis-
tical publications where privacy budgets have been set
using rigorous methodologies.

5. Conclusions

In the era of big data, NSOs must remain relevant
by maximising the value of their data assets. They also
need to protect against the increasing risk of sophis-
ticated statistical attacks revealing confidential infor-
mation. Hence, NSOs must walk the tightrope of the
utility-privacy trade-off; simultaneously maximising
utility whilst ensuring privacy.

In this paper, we have shown that differential privacy
provides a useful principle in this tightrope walk, since
it quantifies the privacy risk when considering the set of
outputs in their entirety. However, we have also shown
significant challenges in DP’s applicability to NSOs.
We identify four areas for future research:

1. Formal privacy under complex sampling methods;
2. Computation tools to efficiently implement DP at

the scale of a typical NSO publication;
3. Exploring new definitions of formal privacy

(e.g. [20,21]) that more accurately describe pri-
vacy risk;

4. Practical examples of DP implementation for
NSO publications, where the privacy budget is
chosen with consideration of the Five Safes
framework.
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