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Abstract

In an era of unprecedented data availability and analytic capacity, the protection of individuals’ pri-

vacy in statistical data releases is becoming an increasingly difficult problem. This dissertation contributes

to the theoretical and methodological foundations of statistical data privacy, largely focusing on differ-

ential privacy (DP). We begin with a multifaceted investigation into privacy from legal, economic, social,

and philosophical standpoints, before turning to a formal system of DP specifications built around five

core building blocks found throughout the literature: the domain, multiverse, input premetric, output

premetric, and protection loss budget. This system is applied to statistical disclosure control (SDC)mech-

anisms used in the USDecennial Census, analyzing both the traditional method of data swapping and the

contemporary TopDown Algorithm. Beyond these case studies, this dissertation explores the inferential

limitations posed byDP and Pufferfish privacy in both frequentist and Bayesian settings, establishing gen-

eral bounds undermild assumptions. It further addresses the challenges of applyingDP to complex survey

pipelines, incorporating issues such as sampling, weighting, and imputation. Finally, it contextualizes DP

within broader frameworks of data privacy, namely the Five Safes and contextual integrity, advocating for

a more integrated approach to privacy that respects statistical utility, transparency, and societal norms.

iii



Contents

Title Page i

Copyright ii

Abstract iii

Table of Contents iv

List of Figures vii

List of Tables viii

Acknowledgments x

0 Introduction 1

1 Privacy Viewpoints 6
1.1 The Legal Understanding of Privacy . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 The Economics of Privacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.3 Privacy From the Social Sciences Perspective . . . . . . . . . . . . . . . . . . . . . . . 25
1.4 Privacy Under a Philosophical Lens . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

I Differential Privacy in the US Census 43

2 Five Building Blocks of Differential Privacy 45
2.1 Motivation: Why DoWeNeed To Identify Building Blocks for DP? . . . . . . . . . . 45
2.2 Contributions: Five Building Blocks of DP . . . . . . . . . . . . . . . . . . . . . . . 47
2.3 An Etymological Account of DP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.4 A System of DP Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
2.5 Post-Processing and Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

iv



3 Invariant-PreservingDeployments ofDifferential Privacy for theUS
Decennial Census 94
3.1 Motivations and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
3.2 A DP Analysis of Data Swapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
3.3 A DP Analysis of the TopDown Algorithm . . . . . . . . . . . . . . . . . . . . . . . 113
3.4 Comparisons between the PSA and the 2020 DAS . . . . . . . . . . . . . . . . . . . . 117
3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4 Can Swapping Be Differentially Private? 132
4.1 What Motivated This Stirred-Not-Shaken Trio? . . . . . . . . . . . . . . . . . . . . . 132
4.2 Highlights of Part I: Five Building Blocks of DP . . . . . . . . . . . . . . . . . . . . . 135
4.3 How to Reduce ‘Privacy Loss’ Without AddingMore Noise: A Perverse Guide . . . . . 142
4.4 Highlights of Part II: The US Census’s Evolving Data Protection . . . . . . . . . . . . 147
4.5 What Does It Mean If Swapping Is Differentially Private? . . . . . . . . . . . . . . . . 154
4.6 Invariants, Transparency and Data Utility . . . . . . . . . . . . . . . . . . . . . . . . 159

II Statistical Inference Under Privacy Constraints 168

5 General Inferential Limits Under Differential and Pufferfish Privacy 170
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
5.2 Pure ε-Differential Privacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
5.3 Pure ε-Differential Privacy as an Interval of Measures . . . . . . . . . . . . . . . . . . 179
5.4 Bounds on the Privatised Data Probability . . . . . . . . . . . . . . . . . . . . . . . . 187
5.5 Frequentist Privacy-Protected Inference . . . . . . . . . . . . . . . . . . . . . . . . . 193
5.6 Bayesian Privacy-Protected Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
5.7 Pufferfish Privacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
5.8 An IP View of Pufferfish Privacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
5.9 Optimality of This Paper’s Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
5.10 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

III Differential Privacy in the Survey Context 224

6 Whose Data Is It Anyway? Towards a Formal Treatment of Differen-
tial Privacy for Surveys 226
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
6.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
6.3 DP Flavors for Survey Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
6.4 Utility Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
6.5 Privacy Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
6.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264

7 The Complexities of Differential Privacy for Survey Data 266
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

v



7.2 DP and the Multistage Process of Data Production . . . . . . . . . . . . . . . . . . . 269
7.3 DP with Complex Sampling Designs . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
7.4 DP for SurveyWeighted Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
7.5 DP andWeighting Adjustments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
7.6 DP and Imputation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
7.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284

IV Broader Perspectives on Statistical Data Privacy 286

8 The Five Safes as a Privacy Context 288
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
8.2 The Five Safes and the Information Flows They Govern . . . . . . . . . . . . . . . . . 290
8.3 The Five Safes as a Privacy Context for Statistical Dissemination . . . . . . . . . . . . . 294
8.4 Differential Privacy in the Context of the Five Safes . . . . . . . . . . . . . . . . . . . 296
8.5 Ongoing Inquiries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299

Appendices 301

Appendix A Appendices to Chapter 2 303
A.1 TheMeasure-Theoretic Definition of a Data-Release Mechanism T . . . . . . . . . . . 303
A.2 What CanWe Say About the Budget? . . . . . . . . . . . . . . . . . . . . . . . . . . 306
A.3 Connections Between the Input Premetric dX and the MultiverseD . . . . . . . . . . 307
A.4 Common Choices for the Input Premetric dX . . . . . . . . . . . . . . . . . . . . . . 310
A.5 The Post-Processing and CompositionMechanisms . . . . . . . . . . . . . . . . . . . 316
A.6 Blackwell’s Theorem and Post-Processing . . . . . . . . . . . . . . . . . . . . . . . . 318
A.7 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320

Appendix B Appendices to Chapter 3 328
B.1 Background on Data Swapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328
B.2 Other RelatedWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330
B.3 Proof of Theorem 3.2.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
B.4 Optimality of Theorem 3.2.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341
B.5 Proof and Discussion of Theorem 3.3.1 . . . . . . . . . . . . . . . . . . . . . . . . . 352
B.6 The 2010 US Census Disclosure Avoidance System . . . . . . . . . . . . . . . . . . . 353

Appendix C Appendices to Chapter 5 362
C.1 Definition of supp(x | t, θ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362
C.2 The Density Ratio Metric Is Well-Defined . . . . . . . . . . . . . . . . . . . . . . . . 363
C.3 Metric Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365
C.4 Distorting Functions and DistortionModels . . . . . . . . . . . . . . . . . . . . . . . 370
C.5 Supplementary Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376
C.6 Proofs Omitted From theMain Text . . . . . . . . . . . . . . . . . . . . . . . . . . . 398

vi



Appendix D Appendices to Chapter 6 410
D.1 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410

References 413

vii



List of Figures

3.1 Mean absolute percentage error in the two-way tabulationof dwelling ownershipby county112
3.2 Conversion between the nominal privacy loss budget (ε) and the swap rate (p) for the PSA126

4.1 Schematic of a differential privacy specification . . . . . . . . . . . . . . . . . . . . . 141

5.1 An illustration of the Laplace mechanism . . . . . . . . . . . . . . . . . . . . . . . . 178
5.2 Upper and lower bounds for the density p(t | θ) of the privatised binary sum . . . . . . 192
5.3 Upper and lower density bounds for p(t | θ) under randomised response . . . . . . . . 193
5.4 Density bounds for the posterior p(θ | t) from a privatised single count . . . . . . . . . 203

6.1 The total privacy loss over two mechanisms T′
1 and T′

2 which share the same sampling step261

7.1 Schematic of the survey data pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
7.2 Examples of where to start the data-release mechanism in the survey pipeline and which

of the previous stages to take as invariant . . . . . . . . . . . . . . . . . . . . . . . . . 272

viii



List of Tables

2.1 Notation related to DP flavors and specifications . . . . . . . . . . . . . . . . . . . . . 63
2.2 Notation related to data-release mechanisms . . . . . . . . . . . . . . . . . . . . . . . 64
2.3 Notation related to the five building blocks of a DP specification . . . . . . . . . . . . 65

3.1 A comparison of two-way tabulations of dwelling ownership by county . . . . . . . . . 110
3.2 Conversion of (expected) swap rate p to privacy loss ε . . . . . . . . . . . . . . . . . . 111
3.3 The privacy loss budget of the 2020 TDA . . . . . . . . . . . . . . . . . . . . . . . . 115
3.4 DP specifications for the 2020 US Census . . . . . . . . . . . . . . . . . . . . . . . . 118
3.5 The total nominal privacy loss ε for the PSA applied to the 2020 Decennial Census . . . 121

6.1 Overview of the possible settings of DP in the survey pipeline . . . . . . . . . . . . . . 246
6.2 Overview of invariance’s implications on survey design weights . . . . . . . . . . . . . 251
6.3 Overview of different DP setting’s implications on privacy amplification . . . . . . . . 252

8.1 The five contextual integrity parameters and their meanings in statistical dissemination,
with reference to the Five Safes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295

ix



Acknowledgments

If it takes a village to raise a child, the same must also be true of raising a PhD thesis. In fact, unless
a single village can span (at least) five continents, multiple must have raised the present thesis. Since any
census is bound to have errors, be they in enumeration or for privacy protection, I will not attempt one
for these villages – especially as an undercount in this situation is both permanent and costly.

Nevertheless, some general words of thanks are in order. Lest the previous paragraph be taken to imply
the contrary, I want to start by emphasizing my heartfelt gratitude to the many, many individuals who
helpedme along this journey. I hope that, even though it does not enumerate them, the following will still
justly honor all these individuals and their invaluable contributions.

Thank you to the staff at the Fulbright Program, the Institute of International Education and Fulbright
Australia – and to my fellow Fulbright cohort – for your support, particularly in the early days of the pro-
gram as we navigated COVID-19, lockdowns, remote study, travel and visas. I am also grateful to the
Australian-American Fulbright Commission and the Kinghorn Foundation for their generous financial
support throughout my PhD. Before the seeds of my PhD were even sown, my intelligent and kind col-
leagues in the Graduate Program and the Methodology Division of the Australian Bureau of Statistics
(ABS) initiated my training as a survey statistician, helped me write my first academic papers and intro-
ducedme to the problem explored in this thesis. For this – andmany other reasons – I am greatly indebted
to them. After departing the ABS, the Australian National University’s Mathematical Sciences Institute
generously hosted me and provided office space in the first year of my PhD while I was studying remotely
and attending classes on Zoom in the middle of the night. A big thanks to the staff, faculty and students
there, particularly my officemates who provided much needed support and companionship in those un-
certain days.

The staff, faculty, postdocs, undergraduates and fellow PhD students at the Harvard University’s De-
partment of Statistics have been equally supportive. I will cherish the years working, teaching and learning
alongside all of you. Thank you for welcoming me to a new country; for helping me navigate a new place
and a new chapter in my life; and – most of all – for the precious friendships we have formed and which
have sustained me through the PhD. The same sentiments also apply to my housemates and dormmates,
both inAustralia and theUSA, with whom I have been lucky to sharemany of life’s moments with during
my PhD. I have also been fortunate to go on various research (and non-research) trips across Europe, Aus-

x



tralia, Asia and the Americas. My heartfelt thanks to all those who hosted (or accompanied) me on these
trips, a number of whom generously welcomed me into their homes.

During these travels, as well as at the many conferences I have been able to attend, numerous colleagues
have dispensed stimulating insights and feedback. It is no understatement to say that this thesis has greatly
improved as a result of those conversations. Although any direct evidence is absent from this dissertation,
my PhD experience has also been enriched by active and ongoing collaboration with colleagues in the AI
and Global Development Lab. Furthermore, I have been lucky enough to have many other mentors and
collaborators during my PhD, from whom I have learned so much. Indeed, while there is still so much
more for me to know about how to be a productive academic, they have collectively taught me (among
many other things) how to go from a vague hunch or spark of an idea into a concrete research direction,
and then how to nurture and grow that research direction into a publishable paper. More generally, my
teachers, of all shapes and sizes, both during and beforemyPhD– frommymumquizzingme onmy times
tables as she drove me to primary school, to the professors of my grad school classes – they have made this
dissertation possible. Thank you.

Many thanks are also owed to my committee members, Salil Vadhan, Adam Smith and Kosuke Imai,
for their service. I am appreciative of the time and energy you have spent reading my dissertation, engag-
ing with my work, participating in my defense and asking questions – all with the genuine intention of
improving my research. These remarks also apply to my advisor, Xiao-Li Meng, although they do not
nearly capture your contributions to my PhD journey: From the time I started at Harvard, you have been
boundlessly creative and steadfastly supportive of my research. Your optimism has encouraged me in the
face of difficulty, disillusionment and futility. I am grateful and honored to have been advised by you.

To my family and friends, it is a truism, yet it cannot go without saying: I would not be who I am
without you. Inmanyways, a PhD can be a solitary experience, but you havemade it not so. Despite being
spread across the world –with the inherent difficulties that entails – your encouragement, companionship
and love have shown you always have my back and will always be there for me. The fun (whether type I, II
or III) we have had together over the years has carried me through this PhD.

Finally, I want to acknowledge that ‘pale blue dot’ – our miraculous, fragile, singular home – whose
beauty and awe inspires a deep sense of peace, contentment and humility; whose life-giving force sustains
us all; and whose preservation needs our care and respect nowmore than ever.

xi



This page intentionally left blank.

xii



0
Introduction

In the current information era, society is experiencing a paradigm shift in how data is generated,

collected and used. The world today is witnessing an explosive growth of large-scale datasets containing

personal information. Demographic and economic surveys, biomedical studies andmassive online service

platforms facilitate understanding of human biological functions and socio-behavioral environments.

At the same time, the ability to attack statistical outputs to reveal confidential information has never

been higher. Today’s attackers have at their fingertips an unprecedented level of computational power and

access to data. Furthermore, with the proliferation of personal data available online, the mosaic effect –

which describes the potential for privacy breaches by integrating many small pieces of innocuous data – is

increasing the privacy risk of data publications.

This dissertation contributes to the burgeoning literature at the intersection of privacy and statistics.

We focus on statistical perspectives of privacy, data privacy and differential privacy (DP). These topics

have received extensive treatment across a range of fields. In particular, DP and associated concepts in the
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formal privacy literature originated from– and have been extensively developed by – the computer science

community. Our overall contribution is thus to build a statistical understanding of DP.Whereas the exist-

ing DP literature has focused on protecting individual data points, the statistical perspective is concerned

with the underlying distributions for which the data contain sufficient variations to reveal partially.

In the first chapter, we survey the diverse understandings of privacy from the perspectives of law, eco-

nomics, the social sciences and philosophy. We trace the legal notion of privacy through the 20th century

back to the 1890 Harvard Law Review article “The Right to Privacy”, separating the two strands of de-

cisional privacy and data privacy (also termed informational privacy). While technological advancements

served as the catalyst, the notion of privacy arose naturally and inevitably during the 19th century fol-

lowing the social upheaval of the industrial revolution, during which Western nations shifted away from

agrarian economies into societies with large, economically independent bourgeoisies. Herbert Simon’s

characterization of today’s information economy as the consumption of attention is contrasted with an

alternative interpretation of information as the consumption of privacy. Finally, we outline the philo-

sophical contradictions of privacy: privacy as simultaneously a virtue and a vice; as a fundamental right

versus as a derivative of more basic rights; and as a set of interrelated concepts, which can only be properly

understood and constructed in context.

In the second chapter, we present a framework of DP specifications. Mathematically speaking, a DP

specification is a Lipschitz condition on data-release mechanisms – functions that transform confidential

input data into noise-injected output statistics. Thus, the core philosophy of DP is to manage disclosure

risk by limiting the rate of change of variations in the output statistics as the input data are (counterfac-

tually) altered. DP conceives of privacy protection specifically as control over the Lipschitz constant – i.e.

2



over this rate of change – and different DP specifications correspond to different choices of where and

how tomeasure input alterations and output variations, in addition to the choice of howmuch to control

this rate of variations-to-alterations. Following this line of thinking through existing literature leads to the

five necessary building blocks of a DP specification. They are, in order of mathematical prerequisite, the

protection domain, the scope of protection, the protection unit, the standard of protection, and the inten-

sity of protection. In simple terms, these are respectively the “who,” “where,” “what,” “how” and “how

much” questions of DP. This framework unveils the nuances and pitfalls in employing DP as a theoreti-

cal yardstick for statistical disclosure control (SDC), and provides the requisite mathematical language to

faithfully extend the essence of DP to SDC procedures which were derived without consideration of DP.

Through the lens of the system developed in the previous chapter, the third and fourth chapters ex-

amine two SDCmethods for the United States Decennial Census: the Permutation Swapping Algorithm

(PSA), which is similar to the 2010 Census’s disclosure avoidance system (DAS), and the TopDownAlgo-

rithm (TDA), which was used in the 2020 DAS. To varying degrees, both methods leave unaltered some

statistics of the confidential data – which are called the method’s invariants – and hence neither can be

readily reconciled with DP, at least as it was originally conceived. Nevertheless, we establish that the PSA

satisfies ε-DP subject to the invariants it necessarily induces, thereby showing that this traditional SDC

method can in fact be understood within our more-general system of DP specifications. By a similar mod-

ification to ρ-zero concentrated DP, we also provide a DP specification for the TDA. Finally, as a point

of comparison, we consider the counterfactual scenario in which the PSA was adopted for the 2020 Cen-

sus, resulting in a reduction in the nominal privacy loss, but at the cost of releasing many more invariants.

Therefore, while our results explicate themathematical guarantees of SDCprovided by the PSA, the TDA

3



and the 2020 DAS in general, care must be taken in their translation to actual privacy protection – just as

is the case for any DP deployment.

Chapter Five concerns two important flavors ofDP that are related yet conceptually distinct: pure ε-DP

and Pufferfish privacy. We restate these flavors in terms of an object from the imprecise probability litera-

ture: the interval of measures. We use this reformulations to derive limits on key quantities in frequentist

hypothesis testing and in Bayesian inference using data that are sanitised according to either of these two

privacy standards. Under very mild conditions, the results in this work are valid for arbitrary parameters,

priors and data generatingmodels. These bounds are weaker than those attainable when analysing specific

data generating models or data-release mechanisms. However, they provide generally applicable limits on

the ability to learn from differentially private data – even when the analyst’s knowledge of the model or

mechanism is limited. They also shed light on the semantic interpretations of the two DP flavors under

examination, a subject of contention in the current literature.

Chapters Six and Seven turn to the question of implementing DP in the context of a statistical survey.

Statistical agencies are increasingly considering DP to help manage the disclosure risk associated with sur-

vey data releases. Yet standardDP theory does not address howdisclosure riskmay be impacted by data col-

lection and preprocessing procedures, which for survey data include sampling, non-response, weighting,

imputation and the use of auxiliary data. To rectify this limitation and pave the way for its effective imple-

mentation, Chapter Six provides a formal treatment of DP in the context of the survey data pipeline. By

reasoning about how DP should interact with survey data collection and preprocessing, this theory sheds

new light on existingdiscussions– such as privacy amplificationby sampling and the sensitivity ofweighted

estimators – and identifies new challenges – such as DP’s underestimation of disclosure risk under some

4



traditional statistical disclosure control attackermodels. Chapter Seven takes a broader view, exploring the

possibilities and limitations of DP for survey data. Specifically, we identify five aspects that need to be con-

sidered when adopting DP in the survey context: the multi-staged nature of data production; the limited

privacy amplification from complex sampling designs; the implications of survey-weighted estimates; the

weighting adjustments for nonresponse and other data deficiencies, and the imputation of missing values.

We summarize key findings from the literature with respect to each of these aspects and also discuss some

of the challenges that still need to be addressed before DP could become the new data protection standard

at statistical agencies.

In the final chapter, we close with a broader perspective, examining the relationship between the Five

Safes and contextual integrity as framing devices for DP. The Five Safes is a system used by national sta-

tistical offices (NSO) for assessing and managing the disclosure risk of data sharing. This chapter makes

two main points: Firstly, the Five Safes can be understood as a specialization of the broader concept of

contextual integrity, adapted to the situation of statistical dissemination by anNSO.We demonstrate this

by mapping the five parameters of contextual integrity onto the five dimensions of the Five Safes. Sec-

ondly, the Five Safes contextualizes narrow, technical notions of privacy within a holistic risk assessment.

We demonstrate this with the example of differential privacy (DP). This contextualization allowsNSOs to

place DP within their Five Safes toolkit while also guiding the design of DP implementations within the

broader privacy context, as delineated by both their regulation and the relevant social norms.
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1
Privacy Viewpoints

1.1 The Legal Understanding of Privacy

Although privacy concerns had appeared earlier in English and American common law, the

1890 Harvard Law Review article “The Right to Privacy” (Warren and Brandeis, 1890) is generally at-

tributed as initiating the legal study of privacy. Warren and Brandeis were largely motivated by contempo-

rary technological developments – particularly the invention of the Kodak film camera and the increased

circulation of sensationalist newspapers –which they viewed as invaders of “the sacred precincts of private

and domestic life”. While they acknowledged that other legal claims had already been used in English and

American courts to defend privacy, they argued for a new right-to-privacy law, “a right to be left alone”.

And yet – despite being the “most influential law review article ever” (Kalven, 1966; Shapiro and Pearse,

2012) – many of the problemsWarren and Brandeis raised remain unresolved today.
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Informational privacy1 – the strandof privacy law focussing on control over one’s personal information

– has continued to evolve since 1890 by and large as a reactionary endeavour. Novel technologies through-

out the twentieth century and into thepresentdayhave enabled increased surveillance, information-gathering,

electronic storage and computing power. Modernising both common and statutory law has, and contin-

ues to be, necessary to protect against these privacy-invasive technologies. As two examples, wiretapping

was criminalised by the US Congress in 1934 after significant criticism of its abuse (Solove and Schwartz,

2021, p.247, p.294)2 and the EU adopted two broad-reaching privacy regulations in the last 30 years – the

1995 Data Protection Directive and the 2016 General Data Protection Regulation (GDPR).

A second strand of privacy law, decisional privacy, concerns an individual’s autonomy in making per-

sonal decisions, particularly regarding their body or actions within their home. This strand is deeply con-

nected with rights of liberty; in fact, there is disagreement as to whether decisional privacy is a genuine

issue of privacy, rather than solely a question of freedom (DeCew, 2018). In the United States, this strand

is also known as the “constitutional right to privacy”,3 established by the Supreme Court in Griswold v.

Connecticut (381 U.S. 479) and most famously applied in Roe v. Wade (410 U.S. 113).

Taken together, informational and decisional privacy cover the major subject matters of privacy law,

although there are others.4 The remainder of this article will concentrate on informational privacy law.

1In the EU and much of the rest of the world, the term data protection is used instead of informational privacy.
2While this law prohibited the use of wiretapping as evidence in court, it did not limit government wiretapping,

which became more pervasive throughWorldWar II and the ColdWar until 1968 when new legal restrictions were
passed by the U.S. Congress (Solove and Schwartz, 2021, p.296).

3While the constitution does not mention the right of privacy, the Supreme Court in Griswold v. Connecticut
(381 U.S. 479) conclude that a number of amendments, taken together, created the right to autonomy on certain
decisions relating to an individual’s body and private life.

4See (Allen and Rotenberg, 2016, p.5) (which in turn is summarising (Allen, 2007)) for other legal senses of
privacy: physical privacy (the right to solitude and seclusion in one’s own home or property; freedom from peeping
Toms, search and seizures, surveillance in one’s home and trespass), proprietary privacy (the right to control the use
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Issues in this subfield can be classified into three broad categories: information collection; storage and

processing; and dissemination (Solove, 2008).

Privacy issues arising from information collection can be further understood in terms of surveillance

– the covert or overt observation of an individual; and interrogation – the probing or questioning for in-

formation. Information storage and processing pose their own privacy pitfalls, particularly relating to the

physical security and proper deletion of data; integration with other data; identification of individuals in

the data; additional use of data beyond the originally stated intentions; and consent from the data subjects

to store and process their data. Finally, there are privacy torts relating to information dissemination: the

disclosure of confidential information, or simply the increased accessibility of such information; identity

theft; defamation; and blackmail – the threat of potential information dissemination.

There has been limited legal study on the dissemination of potentially sensitive informationwhendirect

identifiers such as names, addresses and social security numbers, have been removed. In the commercial

setting, this is a relatively new concern; only with the recent advent of the ‘information age’ have corpo-

rations been able to collect, store and process large amounts of data. And only with the new trend of

machine learning in business has it become apparent that such information can still be valuable without

direct identifiers.

In contrast, national statistical organisations (NSOs) – andmore generally, government agencies – have

collected personal information and published de-identified statistics for over a century; and for almost as

of one’s name, likeness, voice or other personal identifiers, called the right to publicity; protection from identity
theft or appropriation), associational privacy (freedom of association and (private) assembly), intellectual privacy
(‘the right to be let alone’ in own’s thoughts; freedom of thought; the protection of mental repose). Given their
multitude and their creeping boundaries, torts of privacy have not escaped criticism, particularly when they overlap
with other established legal claims such as defamation, trespass, and infliction of emotional distress (Prosser, 1960;
Allen, 2010).
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long, legal theory has recognised the privacy risks of such endeavours. Rather than attempting to legislate

the nebulous concept of privacy, modern law governing NSOs in the West focuses on identity or identifi-

cation.5 TheUS, UK, EU and Australia legislate against the dissemination of statistics when – possibly in

combination with other information – either A) individuals’ identities can be deduced from the statistics,

or B) individuals can be identified in the statistics. (See the third section of this article for a more detailed

discussion of official statistics legislation.)

Due in part to a lack of court opinions testing these legislations,6 the legal meanings of ‘identity’ and

‘identify’ in this context are unclear (Finck andPallas, 2020); it is even unclearwhetherA) andB) are legally

equivalent.7 While the legal studyofde-identified informationdissemination isminimal, it is a topical issue

and we can expect to see more attention from legal scholars in the coming years – in the meantime we will

have to rely on other fields for guidance.

Legal scholars have, in contrast, long understood that studying the limitations of the right to privacy

5I assume the justification for this approach is based on the proposition that someone’s privacy cannot be com-
promised if they cannot first be identified in the data. Is this proposition valid? Certainly many computer scientists
would think not.

6It is not surprising that NSOs take a conservative approach to privacy and are unwilling to test their legislation.
AnNSO’s social licence is critical to its functioning and thus any bad press, including court proceedings, will weaken
its operations (Brick andWilliams, 2013).

7By comparison, in the computer science literature, to identify an individual X means to determine some of
X’s attributes and show that X is the only unit in the data with these attributes (Sweeney, 2000; Narayanan and
Shmatikov, 2008). Given this definition, isX’s identity determined by these attributes? Certainly, the person on the
street would not consider a potpourri of putative incidentals – even when they are unique – to define their identity.
But then, what does defines X’s identity?

While the legal study of identity and identification as it pertains to official statistics is limited, one can look more
broadly in the law for guidance. For example, the Video Privacy ProtectionAct, 18U.S.C §2710 prohibits the disclo-
sure of “personally identifiable information”without written consent. This law has been tested in court (e.g. Harris
V Blockbuster, covered in (Allen and Rotenberg, 2016, p.992), and In re Netflix Privacy Litigation (N.D. Cal. Mar.
18, 2013), covered in (Allen and Rotenberg, 2016, p.996)). In (Culnane et al., 2019), section 1.1 provides examples
of purported re-identification of published de-identified data and section 6.3 lists cases where re-identificationmight
be possible in non-open shared data; I should examine whether these cases were litigated.
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is essential to a coherent theory.8 It is not sufficient to only know when a person is entitled to privacy;

the question of when they are not entitled to privacy is equally important. In many circumstances, the

right to privacy is outweighed by other rights; in other circumstances, privacy is simply too impractical to

guarantee. For example, ‘the test of newsworthiness’ is used by many courts to determine whether some

publication of private information was acceptable.9 Further, it is generally accepted that persons in the

public sphere, such as politicians and celebrities, are entitled to less privacy. Finally, laws enabling the state,

in certain circumstances, to arrest a citizen, listen in on their communications or search their property

and body, are essentially limitations on privacy. Defining these limitations raises the important tradeoff

between privacy on the one hand and security, criminal justice and public interest on the other.

Following the September 11 terrorist attacks, the legal give-and-take swung towards security, with new

laws increasing surveillance (the USAPATRIOTAct) and privacy intrusions at airports (the Aviation and

Transport Security Act). In recent years, a series of scandals – Snowden’s leaks of NSA surveillance, Cam-

bridge Analytica political use of Facebook data and numerous commercial data breaches – have pushed

the focus back towards privacy and promoted new types of legal protections. In particular, the GDPR

established in EU the ‘right to be forgotten’, which allows consumers to request a company delete their

personal data. The GDPR also requires data protection ‘by default’ – the strictest privacy settings must

be the default – and ‘by design’ – privacy must be built-in to any operation from the start.10

8In fact, Warren and Brandeis in their original 1890 article (Warren and Brandeis, 1890) suggested six broad lim-
itations: matters which are “of public or general interest” can be published; the right to privacy does not prohibit
“privileged communications”; the invasion of privacy by oral communication should generally not be afforded re-
dress; the right to privacy is forfeited when a person consents to publication of his personal information; and “the
truth of the matter” or “the absence of ‘malice’ does not afford a defence”.

9See, for example, Sipple V Chronicle Publishing (Cal. Ct. App. 1984) in (Allen and Rotenberg, 2016, p. 153).
10In comparison, the right to be forgotten has not been legislated in the US although it has limited recognition

in the common law – see Melvin v. Reid (1931), Sidis v. FR Publishing Corp. (1940) and other cases in (Allen and
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1.1.1 Summary ofNational StatisticalOrganisations’ (NSO’s) PrivacyRegula-
tions

1. The United States of America: Responses to censuses and surveys administered by the US Census
Bureau (USCB) are protected under Section 9, Title 13 of the US Code (USC). 11 Responses
can only be used for statistical purposes and any publication cannot release identifying informa-
tion.12 A good summary of this law and a history of privacy at the USCB is given in https:
//www.census.gov/history/www/reference/privacy_confidentiality/.13 Other fed-
eral statistical agencies14 are regulated by the Confidential Information Protection and Statistical
Efficiency Act of 2002 (CIPSEA) (National Academies of Sciences, Engineering, and Medicine,

Rotenberg, 2016, section 1.E.2).
In general, the EU has a history of stronger privacy protection in business and commercial settings, while the US

has concentrated more on protection from government intrusion. As one explanation for this, many in the U.S. see
privacy protection as inefficient for market activity (Allen and Rotenberg, 2016, p. 11), while those in the EU value
privacy as a requirement for individuals to engage in online commerce (DeCew, 2018). As such the EU has adopted
an omnibus approach to data protection where a single, comprehensive privacy regulation applies across industry,
government and business sectors (Allen and Rotenberg, 2016, p. 758). Under the US’s predominately laissez faire
approach, legislators have only acted on specific issues, resulting in a patchwork of sectorial regulations – for example
the Video Privacy Protection Act (1988), the Employee Polygraph Protection Act (1988) and the Driver’s Privacy
Protection Act (1994).

11http://uscode.house.gov/browse/&edition=prelim
12More specifically, “[the Department of Commerce may not:] (1) use the information [collected by a census

or survey] for any purpose other than the statistical purposes for which it is supplied; or (2) make any publication
whereby the data furnished by any particular establishment or individual ... can be identified; or (3) permit anyone
other than the [officers of the Department] to examine the individual [records].”

Furthermore, the federal government are prohibited from obtaining copies of individual records (except in con-
ducting a census or survey) and these records are inadmissible in court.

Under Section 2104, Title 44, USC, individual responses to the decennial Population Census are released to the
public by the National Archives after 72 years (https://www.census.gov/history/www/genealogy/decen
nial_census_records/the_72_year_rule_1.html). (Section 2104, Title 44 supersedes Section 9, Title 13.)

13Title 13 also requires that the US Census Bureau release some statistics exactly (i.e. without any privacy pro-
tections applied). The computer science literature understands that any release of statistics results in some loss of
privacy (Kifer and Machanavajjhala, 2011; Dinur and Nissim, 2003). Does this imply that Title 13’s requirements
for anonymity and exact statistics are contradictory? Perhaps, but not necessarily – anonymity is not the same as
the ‘man-on-the-street’s definition of privacy; and the ‘man-on-the-street’s privacy is not the same as the computer
scientist’s definition of privacy.

14There are approximately 125 federal agencies in charge of statistical activities, thirteen of whom – the Bureau
of Economic Analysis; Bureau of Justice Statistics; Bureau of Labor Statistics; Bureau of Transportation Statistics;
Census Bureau; Economic Research Service; Energy Information Administration; National Agricultural Statistics
Service; National Center for Education Statistics; National Center for Health Statistics; National Center for Sci-
ence and Engineering Statistics; Office of Research, Evaluation and Statistics in the Social Security Administration;
and Statistics of Income Division in the Internal Revenue Service – have a primarily statistical function (National
Academies of Sciences, Engineering, andMedicine, 2017a).
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2017b). A summary of their legislative framework is found in (National Academies of Sciences,
Engineering, andMedicine, 2017b, section 3). See also (National Academies of Sciences, Engineer-
ing, andMedicine, 2021).

2. The European Union: NSOs are bound by EU official statistics regulation15 as well as the General
Data Protection Regulation (GDPR).16 In most cases, NSOs are also governed by their country’s
statistics act.17 Under EU regulations, any data which “allow statistical units to be identified [and]
thereby disclos[e] individual information” cannot be disseminated except with approval of the Eu-
ropean Parliament or consent of the respondent.18 The GDPR makes provisions for control of
one’s own personal data (and other rights of the ‘data subject’); it restricts how data must be stored
and processed; but it does not create obligations with regard to the dissemination of official statis-
tics.

3. The United Kingdom:TheGDPR remains British law as implemented by theData ProtectionAct
2018, although this may change (Lillington, 2021). The confidentiality of personal information
collected by the Office of National Statistics (ONS) is also protected by Section 39 of the Statistics
and Registration Service Act (SRSA) 2007.19 Personal information cannot be released by an agent

15The EU regulation for NSOs is ‘Regulation No 223/2009 of the European Parliament and of the Council on
European statistics’ (https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32009R0223)

16https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:02016R0679-20160504. See in
particular, Article 4(1) and Recital 26 for GDPR’s definition of personal data as that which is reasonably likely to
be linked to an identified natural person.

17For example, Statistics Norway is governed by ‘the Act relating to official statistics and Statistics Nor-
way’ https://www.ssb.no/en/omssb/lover-og-prinsipper/lover-og-prinsipper/_attachment/
402255?_ts=176ad6e1f20 and associated regulations https://www.ssb.no/en/omssb/lover-og-pri
nsipper/lover-og-prinsipper/_attachment/448738?_ts=17834d9bc20; INSEE (France) is governed
by Act no. 51-711 of 7 June 1951 (https://www.insee.fr/en/information/2398930); and INE (Spain)
is governed by Act no. 12/1989 of 9 May (https://www.ine.es/dyngs/AYU/index.htm?cid=130 and
https://www.boe.es/boe/dias/1989/05/11/pdfs/A14026-14035.pdf).

18Confidentiality is protected under Chapter V of Regulation No 223/2009.
This regulation defines ‘confidential data’ to mean “data which allow [a person, household or corporation] to be

identified, either directly [from their names or addresses] or indirectly [by any relevant means that might reasonably
be used by a third party], thereby disclosing individual information” (emphasis added). Confidential data cannot be
lawfully disclosed except with approval of the European Parliament or consent of the respondent.

“The use of confidential data [collected by a National Statistical Institute (NSI)] for purposes that are not exclu-
sively statistical, such as administrative, legal or tax purposes, or for the verification against the statistical units [is]
strictly prohibited”.

“Access to confidential data which only allow for indirect identification of the statistical units may be granted to
researchers carrying out statistical analyses for scientific purposes by the Commission (Eurostat) or by the NSIs or
other national authorities, within their respective spheres of competence.”

19https://www.legislation.gov.uk/ukpga/2007/18/section/39
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of theONS except as necessary for theONS’s functions or to a researcher for statistical purposes.20

A summary of the legislation governing the ONS is given in https://www.ons.gov.uk/about
us/transparencyandgovernance/datastrategy/relevantlegislation.

4. Australia: Statistical information collected by the Australian Bureau of Statistics (ABS) “shall not
be published or disseminated in a manner that is likely to enable the identification of a particular
person or organization” (Subsection 12(2), Census and Statistics Act 1905).21

5. Canada: The Statistics Act states that “no personwho has been sworn under section 6 shall disclose
or knowingly cause to be disclosed, by anymeans, any information obtained under this Act in such
amanner that it is possible from thedisclosure to relate the particulars obtained fromany individual
return to any identifiable individual person, business or organization.”22

20Personal, identifying information is information that relates to a particular person and the identity of that per-
son can be deduced from the information taken together with any other published information.

Before receiving access to personal information, a researcher must be approved by the ONS according to criteria
which must be published by the ONS from time-to-time. Any approved researcher is also bound by section 39 of
the SRSA.

An individual who makes an unauthorised disclosure is guilty of a criminal offence under the SRSA, unless that
individual reasonably believed the information was not identifiable.

In addition to exceptions for theONS’s functions or statistical research, disclosure of personal information is also
permitted if required by any other law; if ordered by a court; to facilitate a criminal investigation; if consented by the
person to who the information relates; or if the information is already lawfully public.

Note: The body regulated by the SRSA is theUK Statistics Authority – referred to as ‘the Board’ by the Act. The
ONS is the executive office of the Authority.

21The ABS is governed under the Australian Bureau of Statistics Act 1975, the Census and Statistics Act 1905
and their legislative instruments (e.g. the Census and Statistics Determination 2018). It is also bound by the Privacy
Act 1988.

The Australian Bureau of Statistics Act 1975 establishes the ABS and sets forth its functions which primarily are
“to collect, compile, analyse and disseminate statistics and related information.”

The Census and Statistics Act 1905 states that information may be disclosed by the ABS if it is not “in a manner
that is likely to enable the identification of a particular person or organization” (subsection 12(2)). If the information
is “not of a personal or domestic nature relating to a person”, Part 3 of theCensus and StatisticsDetermination 2018
provides a limited set of exceptions to this rule. For example, information may be disclosed if it is already available
publicly (by an official body or the organisation of which the information relates); if the information is certain trade,
agricultural or construction statistics, unless a respondent shows that their identification in the statistics is likely (this
is called passive confidentiality); if the respondent gives consent; or if the information is disclosed to researchers for
statistical purposes (under certain provisions given in Section 15 of the Determination).

Information collected by the ABS must not be divulged in a court or to any public service agency, other than in
accordance with the provisions above. Breaching these laws is a criminal offence.

A summary of the ABS’s legislative framework is https://www.abs.gov.au/websitedbs/
d3310114.nsf/home/abs+legislative+framework. The ABS Privacy Policy can be accessed at
https://www.abs.gov.au/about/legislation-and-policy/privacy/privacy-abs/abs-privacy
-policy-statistical-information.

22Source: https://laws-lois.justice.gc.ca/eng/acts/S-19/page-2.html.
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6. Comparative Analysis: US, EU and Australian law concern whether individuals can be identified
while the UK legislates against statistics where individuals’ identities can be deduced. In order to
breach the regulations, the EU and the UK also require that personal information is inferred from
the released statistics. In contrast, Australian and US law require simply the possibility of identifi-
cation.

US regulation is the strictest amongst those studied in the sense that there is no qualifications on
how re-identification is achieved; no exceptions allowing access for outside researchers; and the
toughest, explicit restrictions on the use of the collected data. UK law provides the defence of
“reasonable belief” – it is not an offence if the ONS reasonably believed it was not possible for
an individual’s identity to be deduced. Similarly, identification has to be ‘reasonably likely’ or ‘by
reasonable means’ in Australia and the EU respectively. On the other hand, Title 13 of the US
Code doesn’t provide any such defence.

Finally, it is crucial to understand that legislation is not the only factor governingNSOs. As public
bodies, NSOs need also be cognisant of the privacy norms of the society in which they operate.
Their existence is predicated on a social contract and their continued functioning depends critically
upon their social licence to induce sufficient response rates (Brick andWilliams, 2013).

1.2 The Economics of Privacy

In 1969, the economist and Nobel laureate Herbert Simon said:

In an information-richworld, thewealth of informationmeans a dearth of something else: a
scarcity of whatever it is that information consumes. What information consumes is rather
obvious: it consumes the attention of its recipients.(Simon, 1971)

With this statement, Simon explained the business model of Facebook, Twitter and YouTube more

than 30 years before these companies were even conceived. Attention economics – the field which sprung

up from Simon’s revelation – reveals why these companies (or their parent corporations) have enormous

market capitalisations: every day the scarce resource of attention is given to them, willingly and at nomon-

etary cost, by billions of users. And yet, Simon’s statement presents only half the picture; yes, information

Microdata releases are permitted by Statistics Canada policy when “(a) the release substantially enhances the ana-
lytical value of the data collected; and (b) the Agency is satisfied all reasonable steps have been taken to prevent the
identification of particular survey units” (Benschop andWelch, 2024).
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consumes the attention of its recipients but – just as importantly – it also consumes the privacy of its sub-

jects.

If todaywe are living in the information economy, then onewould suspect that the economics of private

information play an important role. We are thus well-motivated to investigate three central questions: 1)

what is private information? 2) How is it valuated? And 3) how do its buyers and sellers behave in the

marketplace?

1.2.1 An economic construction of privacy and how it is valuated

Economists generally avoid the first question, taking the definition of informational privacy23 as given,

but the following is a simple, economic answer: Information – or data – is private if its subject would

want compensation to reveal it. Further, the larger the amount of compensation required, the more the

information should be considered private. In essence, privacy is the price of divulging information. This

definition casts a deliberately wide net. It also assumes that the data subject remains the owner (or, at least,

the controller) of their data; this model is not currently realistic, although we are moving towards it, as

exhibited in the EU’s new General Data Protection Regulations (GDPR).

To illustrate the utility of this construction of privacy, consider the following examples: a patient may

reveal private information to his doctor – on the condition of confidentiality – so that he may be compen-

sated with an expert diagnosis. On the other hand, if there was no condition of patient-doctor confiden-

tiality, then an expert diagnosis may not be sufficient compensation. As another example, the patient may

23There are many other types of privacy (see the legal and philosophical summaries) whose kernels require the
tools of economics (in conjunction with other fields) to crack. As just one brief example, if a celebrity is harassed
by paparazzi – a breach of their right to seclusion and solitude (itself a form of privacy) – how should they be com-
pensated? While these types of issues are no doubt important, we will focus on the privacy considerations that arise
when sharing data between parties.
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decide not divulge his medical information to a family member since they – not being a doctor – cannot

provide the same compensation.

Thisworking definition illuminates a number of dimensions of privacy (Nissenbaum, 2010) as it relates

to the different aspects of information sharing: a) the data subject; b) the sender; c) the receiver; d) the

type and sensitivity of the shared information; and e) what will be done with the information (including

who it may reasonably be passed on to). It also acknowledges that privacy is not a black-and-white, all-or-

nothing concept; privacy lives on a scale of many greys, which we may quantify through its price. (As we

shall see, the privacy scale depends not only on the five aspects above but also – in statistical situations –

on the resolution level of the private inference.) Finally, our construction of privacy indicates that it can,

and should, be readily traded-off for other goods – broadly any form of compensation but specifically, the

social utility of the data (Abowd and Schmutte, 2019), financial transparency (Flood et al., 2013), access to

services such as Facebook ormedical treatments (e.g. by participating in amedical trial), lowered insurance

premiums (‘customised insurance’), etc.

However, for this definition of privacy to be workable, it must be possible to assign rational prices to

the multitude of information sharing scenarios. At best, any pricing would be extremely context-specific

and subjective – which would limit the usefulness of the resulting economicmodel; at worst, it is outright

impossible. Unfortunately, there is wide agreement amongst economists on the difficulties of pricing pri-

vacy in today’s economy (Acquisti et al., 2016; Lindgreen, 2018). Many of today’s data sharing scenarios

exhibit asymmetries of information, power and resources between the buyer and seller. In particular, the

seller is often unaware of what data they are sharing, the data’s power and value in the hands of the buyer,

how the data will be used and shared beyond the buyer, and what the consequences may be if the data
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ends up in the hands of a malicious actor. In short, it is near impossible to make informed decisions in to-

day’s information marketplace (Lindgreen, 2018). Further, the individual employs a variety of heuristics

and cognitive biases (see the social science summary) which frustrates the idea that the rational pricing of

privacy is realistic or even relevant.

There is one school of thoughtpushingback against this trend. A lineof research– startingwith (Ghosh

and Roth, 2015) and with important contributions (Hsu et al., 2014; Abowd and Schmutte, 2019) –

asserts that privacy loss to data subjects can be appropriately quantified using differential privacy (DP).

However, we will argue that not only does this approach inherit all of the difficulties outlined above, it

also makes a type error by confusing ε – the privacy loss of the publishingmechanism – with the privacy

loss of the respondents.

Under (Ghosh and Roth, 2015), the price of individual i’s privacy is c(vi, ε),24 where c is some known

function (e.g. c(vi, ε) = viε) and vi is i’s “privacy value”. While there is little explicationof vi in (Ghosh and

Roth, 2015), I interpret it as reflecting the five aspects a)-e) of information sharing (Nissenbaum, 2010)

outlined above, while ε reflects the sixth aspect: the resolution level of any private inference. On face

value it appears that estimating vi is just as difficult as estimating the price of privacy since it requires a

consideration of a)-e); and so this approach has not solved any of the difficulties outlined above.

However, (Ghosh andRoth, 2015) does provides a utility-theoretic approach to understanding c(vi, ε).

For any non-negative utility function ui, differential privacy guarantees that

Ex∼M(D)[ui(x)] ≤ eεEx∼M(D′)[ui(x)], (1.1)

24Technically, (Ghosh and Roth, 2015) allows ε to vary with i so that the mechanism can use i’s data more or less
accurately, at a greater or lesser price c(vi, εi). However this intricacy will not affect any of our discussion.
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where the left expectation is over the outputs x from the mechanism M, computed on the dataset D

which includes i; and the right expectation is computed on the dataset D′ which excludes i. As such,

the expected loss of utility from i divulging their information is bounded by (eε − 1)Ex∼M(D′)[ui(x)] ≈

εEx∼M(D′)[ui(x)]. (The approximation holds for small ε only.) (Ghosh and Roth, 2015) thus suggests

cost functions of the form c(vi, ε) = (eε − 1)vi or c(vi, ε) = εvi where vi = Ex∼M(D′)[ui(x)].

The question at hand is thus whether it is possible to estimate the privacy valueEx∼M(D′)[ui(x)]. One

of the primary arguments in favour ofDP is thatwe cannot knowwhat statistical disclosure attacksmay be

possible in the future. If we accept this argument, wemust also admit thatwe cannot knowhow the shared

datamay be used in the future. Data that is innocuous todaymay be privacy-breaching tomorrow. As one

example, thirty years ago few people could imagine that your shopping history at a single department store

chain (not a pharmacy!) could predict your pregnancy status, even during the first trimester. I suspect that

even today this would be surprising to many people and yet, it was possible ten years ago (Duhigg, 2012).

What may be possible thirty years from now? All this is to say, predicting the future utility E[ui(x)] from

sharing some data today is at least as hard as – if not harder than – predicting what the next statistical

disclosure attack will be. The paradox of differential privacy is that as soon as you accept its necessity as

a future-proof protection method, you consign it to the dustbin of the unimplementable, for setting an

appropriate ε becomes a challenge at least as hard as the problemDP solves.

Further, (Ghosh and Roth, 2015) and subsequent papers in this line of research commit a type error:

they conflate the privacy loss ε of the sharing mechanismMwith the privacy loss experienced by the indi-

viduals who share their data. As we will illustrate, ε cannot be associated with individuals but only with

populations. Under (Ghosh and Roth, 2015)’s model, if an individual, say Adam, chooses not to share
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his data, then he experiences no privacy loss from the sharing mechanismM. However, imagine that his

identical twin did decide to share her data. It would be nonsensical to assert that Adam experiences no

privacy loss, particularly in the case of genetic data. Now suppose it wasn’t his twin, but his cousin, shar-

ing their data; Adam would still experience some privacy loss – perhaps not as much as before, but still

a non-zero amount. Or maybe it is his work colleagues, divulging their salaries; this would naturally leak

some information about Adam’s salary too! Adam experiences privacy loss, even when he chooses not to

share his data.25 The point here is that – when we begin working from a statistical perspective, as DP does

– a sharing mechanism M impinges on the privacy of populations – not individuals – regardless of the

choices of each individual to share their data or not.26 The economic model of (Ghosh and Roth, 2015)

which restricts privacy loss to individuals and not populations is thus fundamentally flawed.

We end this sectionwith aword of terminological caution. Aswe havementioned, the “privacy budget”

ε appears to capture a notion of the resolution level of a private inference; as such it plays an important

role in evaluating the privacy of a data sharing event. However when interpreting values of ε, one must

be cognisant of its scale. The term ‘budget’ suggests that ε is a linear measure, like money. If you doubled

yourmoney, you could buy twice asmany apples; in the sameway, if the budget doubles, youwould expect

the cost of privacy to also double. This is not the case – εmeasures privacy loss on a logarithmic scale, as

evidenced by the cost function c(vi, ε) = (eε − 1)vi from (Ghosh and Roth, 2015). For small ε < 1,

25It may be easier to understand the contrapositive statement: An individual that chooses not to share their data
is still protected by DP.

26However, if all the individuals chose not to share their data, then the output ofMwould be vacuous and there
could not possibly be any privacy loss. That is to say, the privacy loss for an individual depends on his own actions
(obviously he suffers more privacy loss from sharing his data than not, all other things being equal) as well as the
collective action of his peer group.

For a comprehensive picture, one would need to model the relationships between Adam’s data and that of his
peer group – as in the Pufferfish framework (Kifer and Machanavajjhala, 2014) – so that we could understand the
effects to Adam’s privacy from his peer group sharing their data.
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this contention makes little difference, but increasing ε from 12 to 19 (as the US Census Bureau did) in

fact results in an increase from 162,000 to 178,000,000 on a linear scale. We know that the public do

not understand logarithmic graphs (Romano et al., 2020); yet reporting ε values is like using logarithmic

graphs, while also using the wrong axis labels 1, 2, 3, . . . instead of 10, 100, 1000, . . ..

Usage of ε may be justified by its convenient properties (e.g. composition). In this case, we have two

recommendations. Firstly, a change in terminology: ε ismore accurately described as the log-budget, rather

than the budget. Secondly, the choice of base makes a practical difference. Since we want the likelihood

ratio Pr(M(D)∈S)
Pr(M(D′)∈S) to remain small unless ε is exceptionally large, using the bound 1.1ε or 1.01ε in place of

eε will lead to more interpretable results: an ε of 19 could then be more accurately expressed as 199 (with

base 1.1) or 1909 (with base 1.01).

1.2.2 Economic tradeoffs: The behaviour of privacy buyers, sellers and state
actors in the marketplace

We have discussed an economic construction of privacy under a data-sharing regime and the various com-

plications in its valuation. This is only one facet of the decision-making for economic agents in the infor-

mationmarketplace. There are many other considerations relevant to the tradeoffsmade by buyers, sellers

and state actors. Here we consider state actors to be agents working for the greater social good – such as

regulators, government statistical offices, police and other law enforcement, or central banks – who par-

ticipate in the marketplace by weighing up the social costs and benefits of privacy in an (ideally) optimal

manner. We summarises these facets (largely taken from (Lindgreen, 2018)):

1. Costs of greater privacy to individuals (data sellers): increased search costs, opportunity costs27

27By not providing their personal data to companies, consumers cannot benefit from product recommendations
and instead must spend resources searching. Similarly, without product recommendations, a consumer may be un-
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2. Benefits of greater privacy to individuals: improved negotiation ability, decreased respondent bur-
den, greater well-being, reduced vulnerability, increased independence28

3. Costs of greater privacy to commercial organisations (data buyers): opportunity costs, increased
red-tape and other control costs in storing and maintain private data29

4. Benefits of greater privacy to commerical organisations: protection of reputation, prevention of
fines, increased consumer market participation30

5. Costs of greater privacy to society: increased regulation and enforcement costs, decreased social util-
ity of public data, decreased transparency (e.g. of financial markets) leading to illegal or inefficient
market and social behaviour, oppression of vulnerable groups (see feminists critique of privacy in
the philosophy summary), stagnation and straggling of innovation, increase in surveillance costs

6. Benefits of greater privacy to society: protection of human rights, decrease in surveillance costs31

Wehave no doubt that this is only a small sample of themany costs and benefits associated with privacy.

Many of the difficulties in trading off these costs and benefits are well-known in the literature:

1. Any tradeoff is highly context specific and inevitably subjective (Lindgreen, 2018).32

aware of what they are missing out on – they may miss a concert from their favourite bank for example. Greater
privacy can help scammers or other malicious agents in situations where greater transparency could reveal their mal-
practice. These are opportunity costs.

28By sharing less information on their desires, consumers have more leverage in the negotiating process. Greater
privacy means that the consumer must provide less information reducing the respondent burden to surveys. Un-
scrupulous agents are not able to target vulnerable consumers if the information about their vulnerability is kept
confidential. Greater privacy means that an individual will be influenced less by outside forces, e.g. personalised
advertisement.

29With less informationon their potential customers, companiesmiss opportunities tomarket and sell their goods
and services.

30A company that values their consumers’ privacy will maintain a better reputation and face less regulatory penal-
ties. Greater privacymaymean that individuals are happier toparticipate in themarket– this is an economic rationale
behind the EU’s data protection regulations.

31The societal cost of surveillance is included as a benefit and a cost of greater privacy, since it is unclear whether
greater privacy will decrease surveillance costs since the state will collect less information, or increase costs since the
state will be hampered by red-tape in their information collection.

32In addition to the question of context and subjectivity of the tradeoff, there is a question of the correct resolution
of the privacy cost-benefit tradeoff: For example, should an individual calculate a new tradeoff for each transaction
they make in the marketplace? Or should the individual calculate the tradeoff in deciding whether to sign up to a
service – such as Facebook – with which they may interact multiple times in the future? Or should the individual
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2. Should the individual be modelled as a rational economic agent or should their utility function
be based on an empirical understanding of human’s flawed and biased cognition? (See the social
sciences summary formore details on these flaws and biases; see (Adjerid et al., 2016) for an analysis
of their effects in the privacy tradeoff.)

3. A related but currently unexplored (as far as I am aware) question is how biases in organisational
psychology influence the privacy tradeoffs made by companies. Perhaps, like individuals, it is not
realistic to model organisations as rational agents in their privacy tradeoffs.

4. The costs and benefits for society of privacy have not been quantified and a societal trade-off has
not been attempted (Lindgreen, 2018, p.201).

There are also aspects of the privacy tradeoffs which are neglected in the current literature. In the case

of national statistical organisations, the tradeoff for the survey respondent is usually framed as a balance

between the individual’s privacy and their data’s utility to society. This misses a key aspect of the equation:

respondent burden – the cost in time and effort for an individual to answer a survey (Yan et al., 2020).33

An individual can reduce his costs – respondent burden and privacy – by not answering or lying on

the survey form. On the other hand, DP deliberately ensures that the impact of such behaviours on social

utility is small. In fact, analogous to DP’s privacy utility guarantee (equation 1.1), the expected impact

to social utility from an individual not responding, is bounded below by a multiplicative factor of e−ε.

DP therefore appears to provide a strong disincentive for responding to surveys. (See (Drechsler, 2023;

calculate the tradeoff in decidingwhether to interact with a particularmarket segment (such as socialmedia), or even
with the privacy marketplace as a whole? At the lowest level, each transaction – such as uploading a photo to social
media, orwriting a tweet –may appear to havenegligible privacy cost; and yet the sumof these costs canbe significant.
If the tradeoff is done at the company level, the individualmust know all theways inwhich theywill interact with the
company in the future, andwhat the costs andbenefits of these future interactions are. This kind of prediction seems
to be difficult in a landscape which is constantly changing (corporations rising and falling, individual and societal
behaviours evolving, etc.); and so an informed tradeoff at the company-level is correspondingly difficult. Similar
issues arise when making the tradeoff at the market segment level.

33Another aspect to the tradeoff is an individual’s sense of civic or scientific duty, whichmay compel an individual
to answer the survey even when the social utility of their response is small. We will not consider this factor in our
analysis, whichwe suspect isminimal in contemporaryWestern societies, relative to privacy, data utility and response
burden.
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Kreuter, 2019; Oberski and Kreuter, 2020) for similar arguments.) This may be particularly problematic

in an era of declining response rates (Brick andWilliams, 2013) and general apathy to surveys and censuses

(United States Census Bureau, 2019).

UnderDP, the expected impact to social utility froman individual’s non-response is small. On the other

hand, there are significant privacy costs – or at least, many people perceive there to be significant privacy

costs (Mayer, 2002; Office of the Australian Information Commissioner and Lonergan Research, 2020;

Stanford, 2020; United States Census Bureau, 2019). Additionally, respondent burden is recognised as

a serious concern by national statistical organisations (NSOs) (Holzberg et al., 2021; Data Quality Hub,

2020). Thus, it is likely that the decrease in social utility is outweighed by the reduction in respondent

burden and privacy costs. In this case, the optimal action for the individual is to not respond (or to lie).

This is the prisoner’s dilemma of differential privacy: the optimal action for every individual is to not

respond, even though this will result in poorer outcomes for all the individuals.

As an example, suppose that the survey has a utility of $100 for each individual if everyone responds and,

following the requirements of DP, decreases by a multiplicative factor of e−ε = 99/100 for each person

that does not respond; except that if no-one responds then the social utility is obviously $0. Assume that

the privacy and response burden costs are $50 for each individual. The relative payoff for not responding

compared to responding is at least $50−$100× e−ε = $49 > 0; hence not responding is the dominating

strategy for all individuals, regardless of the behaviour of other individuals. However if all individuals

respond, they receive a payoff of $100 − $50 = $50; whereas if no one responds, they all receive $0.34

34One may argue that – following the principles of DP – an individual’s privacy utility only decreases by a factor
of e−ε if she does respond. As such, the relative payoff for not responding compared to responding should be ($50−
$100)e−ε = −$0.5 < 0 and individuals should respond! Moreover, in any survey worth conducting, the baseline
utilityU0 (in this case $100) should be greater the baseline privacy cost P0 (in this case $50); so the relative payoff for
not responding will always be negative – that is, the prisoner’s dilemma can never hold in any realistic setting.
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Thus, DP suffers from the prisoners dilemma: it encourages behaviour that will leave everyone worse off.

It is quite possible that other statistical disclosure controls (SDCs) are also susceptible to the prisoner’s

dilemma; the tragedy of the commons is an unfortunately common phenomenon. However, it is difficult

to evaluate other SDCs since they lack the clean mathematical properties that DP enjoys.

1.2.3 A brief history of privacy economics

The study of the economics of privacy began in earnest in the late 1970s with the Chicago School of eco-

nomic reasoning (Lindgreen, 2018). This initial line of research (Posner, 1981; Stigler, 1980) focused on

privacy as a driver of market inefficiencies: since privacy allows dishonourable individuals to hide their

true nature, it drives up costs in staff recruitment for example.

In the 1990s and early 2000s, concurrent with the growing concern in the legal and philosophical fields,

economists such as (Varian, 1997) began to take a more nuanced view, acknowledging both benefits and

costs of privacy. From there, the current mainstream economic thinking has evolved to emphasis the bur-

geoning complexities in understanding privacy in today’s technological society. (See the survey articles

(Acquisti et al., 2016; Lindgreen, 2018).)

At the same time, a separate group of scholars (Abowd and Schmutte, 2019; Hsu et al., 2014; Ghosh

and Roth, 2015; Ligett and Roth, 2012; Li et al., 2017) are using DP to advance a theoretical solution to

the difficult tradeoffs in the economics of privacy. A related but separate literature (McSherry and Talwar,

2007; Nissim et al., 2012) uses DP to incentivise truth-telling in a game-theoretic setting.

However, this ignores the role of respondent burden. The prisoner’s dilemma still holds if the respondent burden
is a significant cost – more specifically if it is greater than e−ε(U0 − P0).
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1.3 Privacy From the Social Sciences Perspective

Current social commentators are prone to decry the rapid disappearance of privacy in the 21st century. As

more and more of our everyday life moves into the cyberspace, there has been a corresponding increase in

privacy intrusions: NSA surveillance programs,35 commercial and political infiltration of our private lives

through social media,36 and consumer tracking by big tech.37

This concerning trend has rightly caused alarm in the last two decades. Yet we have been hearing similar

cries for well over 100 years. Warren and Brandeis wrote in 1890 (Warren and Brandeis, 1890) that “nu-

merousmechanical devices threaten tomake good the prediction that ‘what is whispered in the closet shall

be proclaimed from the house-tops’”. In 1964, privacy was “evaporating [and] under assault from many

directions” (Packard, 1964, p.12) – so much so, in fact, that “we [were standing] on the threshold of what

might be called the Age of the Goldfish Bowl” (Brenton, 1964, p.21). In 2001, “advances in technology

endanger[ed] our privacy in ways never before imagined” (Garfinkel, 2001).

All of these concerns were voiced before the ubiquity of smart phones, social media, online shopping

and Google. If privacy was on its deathbed before all of these new technologies, how is it that ‘the end

of privacy’ has not yet been realised? A focus on technology alone will not be useful in answering this

question – it is obvious that we have the technology to realiseOrwell’s 1984 butwe, collectively as a society,

have so far choosen not to. Further, the law can at best receive partial credit in preventing the death of

privacy, as it has largely failed to keep up with technology’s innovations. I posit that it is the social sciences

35For example, PRISM,MUSCULAR and XKeyscore.
36Cambridge Analytica’s and Russia’s political interference in the 2016 US presidential elections; facial recogni-

tion applied to photos uploaded to socialmedia; and personalised advertising based onwhat an individual has shared
and liked.

37Third-party tracking cookies can follow your internet activity across different websites and thereby learn your
consumer preferences or infer your personal information.
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which best explain the continuing survival of privacy. It is the social sciences which explains the choices of

individuals, organisations, government and society as a whole, to protect and adapt privacy in the face of

today’s technological capabilities.

1.3.1 History and the Arts

In the above discussion, we have highlighted privacy’s continued history in modern Western society.38

Privacy has been a mainstay of political and social discussion following the industrial revolution, going

hand-in-handwith the rise of technology. I havedocumented20th and21st century conceptions of privacy

in thephilosophical and legal summaries (see also (Westin, 2003) for amore detailedhistory), so this section

will focus on earlier history.

Despite the prominence given by critics and proponents alike, technology was not the precursor to the

West’s modern understanding and value of privacy. Rather, technology played foil to the notion of indi-

vidualism– both in the political and economic senses –which emergedwith the growth of the bourgeoisie

in the industrial revolution.39 That “the ordinary human individual rather than the group or estate was

the basic unit of human society”was a novel idea in the 19th century (Moore, 1985, p.25) – and a necessary

one for today’s understanding of privacy. The distribution of property to the bourgeoisie in the early in-

dustrial revolution and the resulting economic independence were further steps towards modern privacy.

Amongst the lower class, the move from agrarian workers to the industrial proletariat also fostered a sense

of individualism. Gonewas communal farmworkwhere both tasks and outcomes were shared. In its place

38The arts are included in this section even though they are part of the humanities rather than social sciences,
because, as I will argue, they have had a significant impact on the historical and current discussions of privacy.

39Some scholars see the growth of the middle class and individualism as starting earlier, in the Renaissance and
Reformation periods (c.1450-1650), with the writings of Thomas More, John Locke and John Stuart Mill. See
(Keulen and Kroeze, 2018) for a summary of this perspective.
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were the discrete, particular responsibilities and personal paycheque of the factory worker.

It was this societal shift towards the individual that gave rise to the moral atmosphere conducive to

modern privacy theorising. In contrast, technology’s comparatively small role in the development of pri-

vacy rights is limited to the threat it poses to this moral atmosphere. One need only look to modern non-

Western societies such as China (see in particular (McDougall and Hansson, 2002)) to see that a rise in

technology is not a sufficient driver for Western notions of privacy.

Privacy in pre-industrial societies – both historically and in modern times – focuses on two narrow

aspects: seclusion and protection against authority (including the right of resistance to an unjust ruler)

(Moore, 1985). (Moore, 1984) charts these privacy norms in theWesternworld through themedieval ages

back to their Greek and Hebrew traditions, along with ancient Chinese and other non-Western histories.

(See the anthropology section for details on non-Western perceptions of privacy.)

The cultural influence of the arts has and continues to have a major impact on privacy discussions.

Dystopian fiction – particularly 1984, Brave New World, The Handmaid’s Tale, A Clockwork Orange,

Fahrenheit 451 and more recently The Circle and Black Mirror40 – paint vivid futures detailing the sur-

prising and often horrifying consequences of erosions of privacy.41 The struggle of the individual man

(and it is almost always a man) to overcome a repressive government has been portrayed so frequently in

40Unsurprisingly, literature has followed the dominating concern of the times. Twentieth century literature fo-
cussed primarily on privacy overreaches of totalitarian governmentswhile twenty first century literature has focussed
on the power of technology companies to disrupt privacy.

41An interesting thought experiment is to imagine Orwell or Huxley’s reaction to the current state of privacy.
Would they be as horrified by today’s society as we are of 1984 or Brave NewWorld? Perhaps we are only contented
with today’s society because of its familiarity (as suggested by psychology, see e.g. (Oulasvirta et al., 2012)) and
horrified only by the novelty of 1984 andBraveNewWorld. That is, maybe these works are concerning only because
the privacy intrusions take different forms – telescreens rather than tracking virtual behaviour; government spying
rather than commerical surveillance; and control of our emotions, opinions and actions by government rather than
corporations – rather than different substances. (This possibility is hinted at by Simson in (Garfinkel, 2001).)
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films – such as Jason Bourne andV for Vendetta – that it is now a trope.

The theme of privacy is not limited to literature and film, nor is it limited to portrayals of future

dystopias. The historical-fiction play The Crucible describes the disaster befalling a society in which one

lacks the privacy to one’s thoughts.42 The lack of privacy is typically a major theme in any artistic por-

trayal of totalitarian regimes such as Nazi Germany, Stalin’s Russia and the Eastern Bloc more generally,

or North Korea. All this is to say that privacy is a concern found pervasively throughout the arts.

The impact of the arts on our collective understanding of privacy cannot be quantified, yet one can only

assume it is great. While we have only examined English-language pieces, it is clear that privacy is front and

centre in some of the most famous works of the last century. Through their mass consumption, these

works have raised awareness of the various aspects of privacy and their importance. Through their com-

pelling narratives, they have highlighted the consequences of privacy loss and spurred many into action.

By their creation of cultural symbols (for example, Big Brother) they have built rallying points for privacy

advocates. Clearly, an understanding of historical and current privacy trends would be acutely deficient

without consideration of the arts’ cultural influence.

1.3.2 Psychology, Cognitive and Behavioural Sciences

In general, human behaviour is multi-faceted and based on a wide range of contextual factors: time of day,

mood and emotion, blood sugar level, environment both social and physical including peripheral cues,

unconscious biases, previous behaviour both long- and short-term, priming stimulus, ego depletion, de-

cision fatigue and so on (Kahneman, 2011; Baumeister and Tierney, 2011). It is complex to the point of

appearing random or contradictory. Human behaviour as it relates to privacy is no exception. A complete

42For another example of non-dystopian artworks on privacy, see Frazen’s Purity.
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understanding of why an individual took some action to increase or decrease their privacy is a chimera.

However, there are many situations where privacy decision making is explainable and consistent across in-

dividuals and across time. While there are alsomany fuzzy, inconsistent boundary cases, an understanding

of the explainable examples can be sufficiently enlightening.

What is clear is that a degree of privacy is necessary for individual well-being (Stuart et al., 2019), al-

though the particular degree depends on the individual and their position in their society. Privacy provides

the space to allow one to relax and escape from external stressors (Margulis, 2003). It allows an individual

to regulate andnegotiate social relationships (Agre andRotenberg, 1997). In fact, a gradual increase in self-

disclosure is one of the primary drivers for the strengthening of interpersonal relationships (Altman and

Taylor, 1973). Without a starting position of privacy and the continuing control of one’s own personal

information, this interpersonal development would be impossible.

On the other hand, human beings are inherently social animals who have a innate desire to share infor-

mation about themselves (Acquisti et al., 2015). There is thus a tradeoff at the most basic, psychological

level: an individual is constantly balancing her desire for privacy against her desire for socialising. This

tradeoffbecomes increasinglymore complicated as one understands themultitude of consequences – both

positive and negative – resulting from any privacy decision. (The various considerations in this tradeoff

are detailed in the economics summary.)

In today’s environment, it is typically very difficult for the individual to evaluate the privacy tradeoff

(Acquisti et al., 2020). As the academic communityhas come to accept this fact, discussionhasmoved away

from the idea of a ‘privacy calculus’ (Laufer and Wolfe, 1977; Culnan and Armstrong, 1999; Dinev and

Hart, 2006) –where the individual analytically, rationally and deliberatelyweighs up the various considera-
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tions in the privacy tradeoff43 – towards a greater emphasis on the psychological and cognitivemechanisms

underpinning privacy decision-making (Acquisti et al., 2015; Lindgreen, 2018; Adjerid et al., 2016).44

In reality, humans frequently resort to “low effort”, fast cognitive processes rather than “high effort”,

slow deliberative calculations (Kahneman, 2011). In these situations, we employ a number of heuristics

and suffer from a number of cognitive biases when making decisions regarding our privacy (Dinev et al.,

2015). For example, people place a greater value on privacy when they have it, as compared to when they

do not (Acquisti et al., 2015, p.510).45 Further, repeated privacy breaches can lose their effect: a behaviour

that was once felt as a privacy invasion can later be viewed with indifference, simply due to its repetition

over time (Oulasvirta et al., 2012).

Another relevant cognitive bias is temporal discounting. Humans weigh the value of future events

less than present events. This helps to explain why we willingly give up valuable private information in

exchange for small rewards (Lindgreen, 2018). Any negative consequences of divulging personal informa-

tion occur sometime in a distant, hypothetical future whereas the rewards are typically immediate. In fact,

we know from construal level theory (Trope and Liberman, 2010) that it is difficult for people to even

create a clear mental picture of future events, especially when there is uncertainty about whether they will

43Even if humans did employ a privacy calculus, it is unclear that an objectivemetric of costs andbenefitswouldbe
appropriate. Since the state of privacy is an inherently psychological phenomenon, subjectivemetrics which account
for intangible goods such as the individual’s well-being would be more correct.

44This evolution in understanding has occurred within a larger trend. Over the last 40 years, the economics prin-
ciple of rational behaviour has been repeatedly question as our understanding of human behaviour and decision
making has expanded to include concepts of bounded rationality – an agent only has access to a limited amount of in-
formation, time and cognition resources – cognitive biases andheuristics. In particular, there is nowawell-developed
theory – called prospect theory (Kahneman and Tversky, 1979) – on how people make decisions in irrational ways
when there is risk and uncertainty (Lindgreen, 2018, p.182).

45This is a specific case of the more general phenomenon called endowment bias or loss aversion: You value your
possessions in part because they are yours. That is, you value an object you own more than an identical object you
do not own. Humans feel a loss more than they feel an equivalent gain.
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actually occur (Demmers, Joris, 2018).46

An understanding of privacy heuristics and cognitive biases such as temporal discounting sheds light

on the privacy paradox (Norberg et al., 2007), which asserts that:

People express concern about privacy in the abstract, but in reality readily give up their

privacy for a small reward and fail to take easy steps to protect their privacy, even when such

steps are obviously available (Solove and Schwartz, 2021).

In other words, there appears to be a disconnect between people’s opinions and their actions. Psychologi-

cal and economic perspectives largely explain this disconnect (Acquisti et al., 2020).47 In particular, prim-

ing and framing effects mean that the situation and context matter when surveying people’s attitudes or

monitoring their behaviours (Acquisti et al., 2015).48 By asking about privacy, a survey can prime respon-

dents to increase their valuation of privacy.49 On the other hand, companies will minimise or obfuscate

privacy concerns so that consumers divulge their personal information willingly.

46Construal level theory states that an individual will devalue an object when there is a large “psychological dis-
tance” between the individual and the object. Psychological distance has four dimensions: spatial, social, temporal
and experiential.

Construal level theory gives insight into the tradeoffmade by individuals in deciding to answer a survey. Respon-
dent burden is immediate and real. On the other hand, privacy consequences occur in a distant, hypothetical future.
Data utility is also temporally and experientially distantwhile also being socially distant – a survey is unlikely to result
in a direct benefit to the participant or anyone in their immediate social circle. Thus, construal level theory suggests
individuals will over-value respondent burden and undervalue privacy and utility factors.

47The economic perspective is given in the relevant summary, but in brief it explains the privacy paradox by ob-
serving a) the informational and computational asymmetry which results in the consumer being unable to make
an informed decision and b) the lack of options in the marketplace for the privacy-savvy consumer (Acquisti et al.,
2020).

48This literature relates generally to questionnaire design and the need for cognitive testing as is widely known by
survey statisticians.

49See also (Singer and Couper, 2010; Couper et al., 2008, 2010) which shows a different but related priming
effect: “making explicit the possible harms that might result from disclosure also reduces willingness to participate”
in a survey.
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Finally, we end this section by considering the psychology of statistical privacy controls. The only liter-

ature on this subject (that I am aware of) relates to randomised response (Warner, 1965). To summarise

this research, survey respondents typically do not understand nor trust randomised response as a privacy

measure without significant work by the interviewer to build understanding and trust (Kirchner, 2015;

Landsheer et al., 1999). This is further evidence that people do not estimate their privacy loss in an eco-

nomically rational way and are unlikely to be persuaded to respond to surveys by the guarantee of complex

mathematical protections such as differential privacy (Oberski and Kreuter, 2020; Drechsler, 2023).

1.3.3 Anthropology and Sociology

On face value, mainstream privacy concerns are relevant only for citizens of wealthy, developed countries.

These concerns appear to rest on the assumption of a pervasive technological environment that facilitates

massive data collection. Arguably, undeveloped countries do not have such technological environments

and so would be unaffected by these privacy concerns. Further, personal data is only commercially valu-

able insofar as it can be used to influence consumer habits and improve a company’s bottom line. Hence,

citizens must be sufficiently rich for personal data collection to be commercially viable. Additionally, a

government must have adequate resources – in terms of money, technology and expertise – to invest in

mass surveillance, which may preclude third-world countries. Finally, people who are struggling to satisfy

their basic needs surely would not be concerned with a lesser concern like privacy – or so the argument

goes. All of this evidence indicates that the current crisis of privacy is unimportant except for the small

minority of citizens who are fortunate to live in a rich, developed nation; that is, privacy is a ‘first world

problem’.

However, this argument supposes a narrow view of privacy in terms of commercial and governmental
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surveillance.50 We know (from the philosophical and legal summaries) that privacy has a much broader

ambit.

Taking the wide view of privacy, there is much evidence supporting the universality of privacy – or at

the very least, the universality of a desire for privacy – across cultures, societies and time (van der Geest,

2018; Acquisti et al., 2015; Moore, 1984; Altman, 1977). Privacy considerations arise in the Bible, the

Talmud, theQuran and inConfucian andTaoistwritings (Acquisti et al., 2015). Privacy has beenobserved

in primates and other animals (Westin, 1967; Wilk, 2018), suggesting that privacy is fundamental to any

functioning society, human or otherwise.

At the same time, privacy practices are highly contextual with complex, situational rules that differ

widely between cultures (Altman, 1977). For example, in some cultures, privacy within families can be

almost non-existent at the same time that privacy between families is strictly observed (Wilk, 2018). On

the other hand,Western societies primarily value privacy in terms of the individual, rather than the family

unit.51

It is not just the extent of privacy that varies between cultures. The moral responsibility and burden

of privacy can variously be placed upon the subject – to guard their privacy – or the potential observer –

50The argument also assumes that only developed nations have achieved a sufficient level of technology adoption
to enable surveillance. This is becoming increasingly false as, for example, rates of smartphone ownership increase
in low- and middle-income countries (Miller et al., 2021). There are already examples in the developing world of
technology-enabled persecution of minorities or political opponents, such as in the Arab spring.

Further, it is unfortunately the case thatmany of the poorest countries are also amongst themost unstable and cor-
rupt. Third-world nations often lack the strong institutions that protect the individual from over-reaching author-
ity. They frequently do not have strong protections for freedom of speech and of thought (amongst other privacy
rights). Thus, third-world citizens often have more to lose from privacy intrusions than those in first-world liberal
democracies. (For example, they can face persecution for LGBTQI status or for expressing dissident opinions.)

51SeeChapter 7 of (Francis and Francis, 2017) for an extended discussion on the questions of privacy and families.
As another example of the varying social norms, “Americans, for example, are reputed to be more open about

sexual matters than are the Chinese, whereas the latter are more open about financial matters (such as income, cost
of home, and possessions)” (Acquisti et al., 2015). For more examples, see (Moore, 1985).
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to not intrude another’s privacy.52 Thus, all human societies have an understanding of privacy but with

differing practices. In other words, privacy is “simultaneously culturally universal and culturally specific”

((Acquisti et al., 2015, p.512) paraphrasing (Altman, 1977)).

One explanation for this apparent paradox is that privacy is valued by all cultures, but its relative value

amongst other competing priorities differs from culture to culture. For example, lack of within-family

privacy may be due to the cohesiveness and communality of the family unit superseding the interests of

the individual. Or perhaps the value of paternal care outweighs the independence of children or the elderly

in the family (Miller, 2021).

Competing priorities exist at all levels of society, not just within families. At a broad level, there is a clash

between the values of liberalism and socialism. How a cultural resolves this clash partly determines the

culture’s relative value of privacy. In a socialist society, “if the state can enhance social welfare by collecting

information about individuals, this automatically supersedes individual rights” (Miller, 2020a). In liberal

cultures on the other hand, individuals have an inalienable right to privacy.

However, a cultural valuation theory of privacy fails to acknowledge that there are varying perceptions

52For example, in the Netherlands it is customary to keep curtains open so that, in theory, anyone could look
inside another’s private dwelling. However, it is very impolite to actually look inside (Van Der Horst and Messing,
2006; Wilk, 2018).

We can also see changes across timewithin the same society. In 1960, theAmerican legal scholarWilliamL. Prosser
wrote (Prosser, 1960, p.422)

No doubt the cases thus far have been sufficiently extreme; but the question may well be raised
whether there are not some limits, and whether, for example, a lady who insists upon sun-bathing
in the nude in her own back yard should really have a cause of action for her humiliation when the
neighbours examine her with appreciation and binoculars.

I can only assume that Prosser used this example as an ‘obvious’ case where the responsibility for maintaining
privacymust laywith the subject (the sun-bathing lady) rather than the observer (her neighours). Yetmodern readers
– with an understanding of victim blaming and a distaste for antiquated notions of modesty – could be forgiven for
disapproving of the ogling neighbours. Although today’s society may not necessarily endorse the lady’s action, it is
clear that modern privacy norms place a greater responsibility on the observer than past norms did.
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of what constitutes a privacy intrusion. It is not simply the case that cultures tradeoff privacy in different

ways, but that they also fundamentally perceive privacy in different ways. For example, a gross intrusion of

the state into an individual’s personal life in one culture is a caring act from a paternalistic government in

another culture (Wang, 2019, 2020). There is a “fine line between care and surveillance” (Miller, 2020b)

which changes between cultures and across time.53

Understandingwhere this line stands requires knowing the norms– the socially acceptable behaviours –

of the society in question. Evenwhen taking the narrow view of privacy in terms of divulging information,

there are many aspects of an information-sharing activity and its context which are relevant in judging

whether it is socially acceptable (Nissenbaum, 2010). (See the economics summary for an outline of these

aspects, as given in (Nissenbaum, 2010).) The social understanding of acceptable privacy-sharing activities

is thus complex and nuanced.

Sociologists are interested in privacy in its own right – as one fundamental characteristic of a society –

and in the ways it intersects with other fundamental societal characteristics, such as how privacy is used as

a tool for social control; how – depending on the context – both privacy and lack of privacy can promote

individual development and group cohesion; and how privacy relates to social stratification andmore gen-

erally social order and inequality (Anthony et al., 2017; Kasper, 2007).

In the previous section, we observed a privacy tradeoff at the psychological level. We end this section

by observing another privacy tradeoff, this time at the society-wide level. On one hand, privacy is a social

good (Kasper, 2007) and fundamental to a well-functioning society ((DeCew, 2018) summarising a broad

53The evolution of a culture is particularly apparent in times of crisis. One recent example is the acceptance of
COVID19 tracking smartphone apps in liberal countries such as Australia. Pre-pandemic, there was little social
appetite for government surveillance of where you have been and who youmet up with. But the pandemic changed
the privacy tradeoff, resulting in widespread adoption of these apps (Biddle et al., 2021; Miller, 2021; Sharma and
Bashir, 2020).
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literature including (Mead, 1928; Westin, 1967)). On the other hand, society by definition requires com-

munality. Therefore, “without accepting some intrusions of privacy society cannot exist” (van der Geest,

2018). In summary, there is an inevitable tension between a lack of privacy as a cohesive force for soci-

ety and a degree of privacy as a necessity for well-functioning society. In the words of the anthropologist

DavidMiller,

“We cannot be for or against privacy. It must be a question of balance.” (Miller, 2020a)

1.3.4 Political Science

What ismeant by the term ‘politics’ is highly contested but onemainstreamdefinition takes it to denote the

public affairs of a society (Heywood, 2013; Leftwich, 2004). More explicitly, this definition asserts that

“the distinction between ‘the political’ and ‘the non-political’ coincides with the division between [the]

public sphere of life and [the] private sphere” (Heywood, 2013, p.5).54 In this case, politics and privacy

are complementary concepts: what is political is not private, and visa versa. Could then political science –

aka the study of politics – be characterised as the study of what is not, or should not be, private? Could

the boundaries of the political inform us of the boundaries of the private?

Alternatively, we could take politics tomean the “exercise, legitimacy and organisation of power” (Raab,

2018, p.257) (see also (Heywood, 2013, p.9 “politics as power”)). While not immediately apparent, this

definition is also complementary to privacy. The boundaries of power over the individual ascribe the rights

of the individual “to be let alone” (Warren and Brandeis, 1890) – or, in other words, the right to privacy.

And conversely, the right to be let alone delimits the boundaries of political power.

54This conception of politics and privacy can be traced back to Aristotle’s Politics.

36



So far, I have been deliberately vague on who holds this power because, under this broad definition, po-

litical power can appear at many levels: a government, an organisation or a family. In fact, political power

can appear in all social activity, in all groups, institutions and societies (Leftwich, 2004). Freedom of the

press is a non-obvious example of political power; and the limits to journalist’s free expression are curtailed

by the rights to privacy (Lever, 2015). In saying that, the most recognisable politics-privacy dynamic con-

cerns the power of the state as restricted by a bill of rights (see the constitutional right to privacy in the

legal summary).55

Indeed, the U.S. Bill of Rights and the FrenchDeclaration of the Rights ofMan and of the Citizenwere

important drivers for both today’s privacy and today’s politics (Keulen and Kroeze, 2018, p.28).56 More

generally, democracy necessitates a degree of privacy and visa versa (Moore, 1985), since both concepts

rest on the principle of the inviolate individual. Many of the tenets of democracy – freedom of voting,

speech, assembly, religion and unwarranted government intrusion – are rights of privacy. At the same

time, some level of transparency is required in a true democracy (Francis and Francis, 2017, p.290).57 A

55More concretely, the state is provided the power to acquire information necessary for the well-functioning of
society – for example, search warrants, surveillance to identify anti-social activity but also official statistics. What is
‘necessary for the well-functioning of society’ is hotly contested and varies between nations but it is limited by the
informational privacy rights of that society. The state is also provided the power to restrict individual behaviour to
the benefit of society’s functioning or morals – for example, controlling abortion rights; restricting child pornogra-
phy; or implementing public health measures such as adding fluoride to drinking water (Keulen and Kroeze, 2018,
p.36) or mandating vaccination. The state’s power in this regard complements the legal notion of decisional privacy
rights.

56These documents were created around the time of the industrial revolution with the growth of the bourgeoisie.
As I argued in a previous section, this was the environment in which the modern notion of privacy was conceptu-
alised. It was also the environment which birthed the modern liberal democracy.

57Primarily, a democracy requires a transparent government, secure freedom of information rights and a press
that is free to be politically critical. Secondarily, a democracy also requires individuals to sacrifice their privacy. In
order to limit corruption – which is antithetical to democracy – some prying into the private lives of politicians
and public servants is inevitable. Finally, national security concerns require the private citizen – not just the public
official – to give up some of her privacy in order to secure the democratic state against insurgent forces (Francis and
Francis, 2017, p.290).
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privacy tradeoff – termed the “paradox of the liberal state” (Keulen and Kroeze, 2018, p.31) – therefore

arises in the political context as well the psychological and sociological.

The politics of allocating privacy

A third definition of politics states that it is the decision-making of resource allocation within a society

(Boswell, 2020). If privacy is a resource, how should it be distributed? This question is fundamentally

political.

As embodied in the UN’s Universal Declaration of Human Rights, the legal ideal is that privacy is a

basic right. As such, all individuals should enjoy some minimum level of privacy. In other words, privacy

should be distributed equally. However, the political reality may be very different to the legal ideal. There

is a strong argument that privacy is now a luxury good: The base price of a typical good or service is sub-

sidised by the collection of personal information; and privacy is available only to those who can afford the

(often expensive) extra premiums (Papacharissi, 2010).58 Maintaining one’s privacy then requires one to

repeatedly pay a premium for each good or service. Privacy is thus a luxury in the sense that the aggregate

cost of these premiums is beyond the budget of the average citizen.

If politics is resource allocation decision-making, then technological artefacts have politics (Winner,

1980; Bowles, 2018).59 That is, a technology confers a certain distribution of resources when embedded

in a society. it is true that how a technology furnishes this distribution amongst members of society is

58The extra premiums are not necessarily monetary; they could be the extra time required to monitor and disable
settings to share your personal information, or the requirement to be savvy and computer-literate. Alternatively, it
may be that it is impossible to access the good or service without degrading privacy. In this case, privacy is a luxury
good sincemaintaining privacywould require the often-significant cost of forgoing this good or service. For example,
one must divulge their personal information to access Facebook. On the other hand, forgoing Facebook can come
at significant cost of social capital. As such, it may only be an option to people with sufficient social resources.

59See also the literature on algorithmic fairness for more examples of how technology can have unintended and
unexpected political consequences.

38



often implicit. But despite it being hidden from plain view, a technology’s implied resource allocation is

no less important than more explicitly allocations, such as a government’s policy agenda.

Differential privacy (DP) is no exception in this regard. (In its vanilla version) it is equalitarian since

the same protection is given to everyone. Traditional statistical disclosure control techniques are typically

more equitable than they are equal: more protection is given to unique or distinguishable records, and

minimal or no protection is given to the ‘average’ person.

DP is also political in its focus on the individual as the unit of protection. The question of whether

individuals, groups, or sub-populations deserve protection, is a question of privacy resource allocation. It

is thus a question of politics. DP’s implied answer to this question is therefore political.

Marginalised populations are defined by the fact that they are discriminated or excluded based on their

population-level characteristics. Thus, almost by definition, marginalised populations can be hurt by

group-level inference – not just individual-level inference. On the other hand, members of majority pop-

ulations are not hurt by group-level inference, since they are not discriminated by their population-level

characteristics. DP is therefore political in its choice of protecting the individual and its absence of protec-

tion for marginalised groups.

This is not to say that DP cannot be modified so as to adapt its politics. This discussion solely serves to

highlight the politics implicit in a technology, particularly as they relate to the question of privacy. It is a

reminder that a well-developed technology has hidden political biases just as a human expert has; and that

we must be cognisant to these biases as we implement the technology in society, lest we cause harm and

reinforce systemic discrimination by doing so. My aim with this discussion is to open the door to further

political analysis of privacy technologies (particularly by experts who knowmore about politics than I).
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Summary

To summarise, privacy and politics are inseparable. It is not simply that changes in one influence the other;

rather any change in one is a change in the other. A shift in how the state interacts with the citizen (for

example, personalised e-government service, surveillance or national identifiers) is simultaneously a change

of bothpolitics andprivacy. Yet, the study of privacy has been largely neglected bypolitical scientists (Raab,

2018).

Political scientists are concerned with resource allocation – the questions of “who gets what, when and

how” (Boswell, 2020). They have a well-developed theory of the exercise, legitimacy and organisation of

power. They elucidate the distinction between public and private affairs. These matters naturally arise as

we grapple with today’s privacy issues. Thus, the political perspective on privacy is integral to balancing

the many competing interests in the privacy debate.

1.4 Privacy Under a Philosophical Lens

Solove begins his 2008 monograph “Understanding Privacy” (2008) by stating:

Privacy … is a concept in disarray. Nobody can articulate what it means. Currently privacy
is a sweeping concept…. Philosophers … have frequently lamented the great difficulty in
reaching a satisfying conception of privacy.

As a further complication, we must weigh privacy’s virtues – for example, its protection of human

autonomy, amongst other things – against its ability to enable corruption and abuse.60 Moreover, many

philosophers argue that privacy can, at least in most cases, be explained in terms of other rights or moral

goods (Thomson, 1975). Thus, the concept of privacy is afflicted by slipperiness in its multiple meanings

60That privacy could be negative has been known since antiquity through the myth of the ring of Gyges (Laird,
2001), and remains relevant today as evidenced by the feminist critique of privacy (MacKinnon, 1989).
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and uncertain scope; in its sweeping reach across many facets of life and society; in its position as a virtue

on the precipice of vice; and in its frequent reduction to other rights.

Philosophical discourse onprivacy dates back toAristotle’s distinction of the public andprivate spheres.

Yet the philosophical development of privacy only began in earnest with the late 19th century legal discus-

sions (Warren andBrandeis, 1890) and continues to this day closely entwinedwith the law’s understanding

of privacy.

The 20th century sawmuchdebate over how to conceptualise and ascribe value to privacy. Onepopular

view, as described in (Parent, 1983), characterises privacy as control over information: privacy is defined “as

the condition of not having undocumented personal information knownor possessed by others” (DeCew,

2018). A related, but in some ways broader, conceptualisation defines privacy in terms of access – to

an individual’s body, thoughts, personal information or attention; or to a physical location (Bok, 1982;

Gavison, 1980; Allen, 1988; Moore, 2003). Other philosophers took the reductionist view (Thomson,

1975) that privacy is not a concept in and of itself, but simply a proxy for a variety of other moral interests;

as such any perceived right to privacy is no more than a derivative of other rights.

Accounts of the philosophical value of privacy are similarly varied: One view considers privacy as essen-

tial for one’s autonomy and for developing a concept of self as an independent agent (Gross, 1971;Henkin,

1974). Others see privacy as instrumentally valuable61 for human dignity (Bloustein, 1964); put another

way, “invasion of privacy is best understood, in sum, as affront to human dignity” (DeCew, 2018). A

third view takes privacy as important because intimacy is impossible without it (Inness, 1992), or more

generally because the ability to be self-expressive is critical for developing any interpersonal relationship

(Rachels, 1975). Philosophers have used these arguments to develop values-based definitions of privacy.

61X is instrumentally valuable if there is a valuable good which cannot exist withoutX, or degrades asX degrades.

41



Privacy has not been free of criticism. Most prominently, feminist critiques (MacKinnon, 1989; Allen,

1988)worry that privacy, particularly in the home, enables domestic abuse. More generally, privacy can aid

a wide variety of crimes, such as financial malpractice or acts of terrorism. However, privacy can be useful

for facilitating actionswhich are acceptable yet run against the prevailing social norms, such as LGBTQI re-

lationships. Therefore, there is a continuing difficulty in drawing the fine line separating the public/private

dichotomy (Moore, 2015).

21st century trends appear tomove away from an abstract understanding of privacy in terms of an essen-

tial characterisation. Many contemporary authors see any such approach – including values- and concept-

driven definitions – leading inevitably to flawed theories of privacy. Instead, modern understandings have

moved towards pluralistic views of privacy as a set of inter-related concepts (DeCew, 2018), which can

only be properly understood and constructed in context (Moore, 2008). Broadly these approaches (see

(Nissenbaum, 2010; Barth et al., 2006; Rubel, 2006, 2011; Solove, 2002, 2008; DeCew, 1997)) can all

be thought of as normative theories62 of privacy and are collectively termed family resemblance views of

privacy.63

62Normative theories of privacy describe what should be private based on an understanding of a given soci-
ety/culture’s norms. In contrast, a descriptive theory of privacy details what is private. Both types of theory can
be useful in describing the reality of privacy as it exists in society – although one should obviously build systems
which uphold the ideal of a normative theory, rather than the reality of a descriptive theory.

63Ourontology of privacy also follows thismodern trend, by specifying, in a given context, A)what shouldbe kept
private (the ‘secrets’) and to whom (the ‘attackers’); B) how, and by what extent, privacy can be lost (the ‘measure of
increase in attacker’s confidence’); and C) what the contextual value of that privacy loss is (the ‘loss function’).

There is a parallel here between the historical trends in the philosophical and computer science understandings of
privacy: Computer scientists, like philosophers, began by trying to distil privacy into a single characterisation. (In
the case of computer science, this characterisation is the single equation of differential privacy Pr(M(D) ∈ A) ≤
eε Pr(M(D′) ∈ A).) After about 50 years, philosophers gave up on this elusive ideal and moved to a context-driven
approach. Now, almost 20 years later, the computer science literature – our work included, along with (Nissim and
Wood, 2018; Kifer andMachanavajjhala, 2011, 2014) – is beginning to argue that a single characterisation is impos-
sible and a context-driven approach is, in fact, required. Philosophers can be forgiven for feeling a bit exasperated.
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2
Five Building Blocks of Differential Privacy1

2.1 Motivation: Why Do We Need To Identify Building Blocks
for DP?

Differential privacy exemplifies a formal approach to data privacy protection. It advocates

a mathematical formulation of the otherwise elusive concept of ‘privacy,’ which in turn provides design

principles to data release algorithms that provably satisfies the stated formulation. Less than two decades

since the inception of the first differential privacy definition, ε-indistinguishablility (Dwork et al., 2006b),

differential privacy has grown into a vast literature, with a simple Google Scholar search of the phrase

returning over 8 million results as of this writing. The interest in differential privacy is fueled by renewed

threats to the confidentiality of individual data contributors as one of the core challenges to the modern

reality of increased data collection, sharing, and dissemination.

1Based on work coauthored with Ruobin Gong and Xiao-Li Meng.
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As differential privacy finds its application in a variety of scientific, commercial, and administrative con-

texts, much scholarly attention has been devoted to refining the original definition in ways that suit the

unique characteristics of the data and relevant usage. For example, straightforward mathematical general-

izations to ε-indistinguishablility are found to be conducive to thinner-tailed privacy noise distributions,

which can be less harmful to the data quality. Certain structured databases, such as network, graph, and

geospatial data, present complications in conceptualizing the notion of an “individual” and gave rise to var-

ied treatments. Also prevalent, particularly so in the context of official statistics, are external constraints

that the data product must satisfy. These practical restrictions gave rise to branches of work that recapitu-

late DP under invariants, as well as other empirically defined or derived standards or hybrids. We provide

an extended, albeit still selected, review of some of these variants in Section 2.3.

Themyriad ofmodificationsmade to the original definition of differential privacy, asmuch as theymay

be justifiably motivated by the use case to which they apply, insinuates the worry that the essence of its

protection becomes diluted (Dwork et al., 2019). Without standardization and comparability, it becomes

challenging for stakeholders to tell when a definition becomes “too” diluted. Separately exacerbating is

the tremendous, though ironic, success that differential privacy has achieved in streamlining privacy loss

into a single numerical quantity. Indeed, proposals that discuss the “privacy-utility tradeoff” frame privacy

loss as a one-dimensional value that can be depicted on an axis (see e.g. Abowd and Schmutte, 2019, Fig.

1). While convenient, an oversimplified narrative of privacy protection induces forgetfulness that “privacy

loss” is nomore than a shorthand representation of a set of complex probabilistic characteristics associated

with a data product to which real people contributed their information.
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2.2 Contributions: Five Building Blocks of DP

Our starting point is the question, who is eligible for privacy protection? Under our framework, this ques-

tion is answered by specifying the actual, potential or counterfactual datasets that are to be protected. The

collection of all such datasets is called the data space, or domain, and is denoted byX . From an attacker’s

perspective, the confidential dataset x – which always belongs toX by design – is the unknown “parame-

ter” to be inferred from the released data, hence the choice of X is conceptually analogous to the choice

of a parameter space in standard statistical inference. Based on the confidential dataset x, some output

statistics are computed and published via a data-release mechanism T – a random function of x ∈ X .

In this work, we takeX as fixed, for it is sufficient for all subsequent developments. However, explicat-

ingX is necessary but insufficient. As we discuss repeatedly, permitting invariants necessitates the concept

of a data universeD ⊂ X , which is a collection of all datasets that are deemed possible for a specific world

in whichwe live. For example, when the enumeratedUS population sizeNUS is 330million, then any data

set that does not lead to its total countN to be 330millionwill not be eligible for being in the data universe

whenNUS is an invariant.

A reader may wonder why we do not restrict X in the first place to eliminate any dataset that violates

N = 330, 000, 000. The answer is because the particular value of the observed national total is accidental

— even if it was a completely accurate enumeration (which it never is), it is only the total at the time of

the Census. The DPmechanism needs to work regardless of the actual value of the total. This leads to the

concept of a data multiverse D , which is a collection of all possible data universes D – be they actual or

hypothetical – to which privacy protection can be extended. Hence the data multiverse is specified by es-

sential quantities (e.g.,NUS), while a data universe corresponds to the accidental values these quantity take
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(e.g.,NUS = 330, 000, 000), a distinction necessary to ensure the generality of the theoretical guarantees

of DP.

The data multiverse D answers the question, to where does the protection extend? Next is the question

of what is the granularity of protection, which can be a source of confusion, as well as potential for ma-

nipulation in capable but malicious hands. The granularity is given by the protection units – the entities

whose data changes when the data x is counterfactually altered. Individual persons or business entities are

common choices for the protection units, but they are not the only ones. For example, for the privacy pro-

tection of electronic communications, the unit may be defined as a single message sent by a person, rather

than the sender herself. As an individual may send many messages a day, such a fine-grained privacy unit

allows a social media platform to declare a privacy loss budget that is impressively small on a nominal level,

even though the actual risks of identification of the sender remain exponentially large.

In DP, a protection unit is formally conceptualized via a premetric dX (x, x′), which is a measure of the

difference between two datasets x and x′ inX . A unit of privacy protection corresponds conceptually to a

unit difference in dX . That is, the difference between datasets x and x′ with dX (x, x′) = 1 – which might

be, for example, the deletion of one record, or the alteration of a single attribute – is the formal definition

of a protection unit.

Fundamentally, DP quantifies privacy protection as the rate of change in output variations. This rate is

calculated with respect to the premetric dX on the data spaceX but, how is the change in output variations

measured? Apremetric is also used for this, except in this case the premetricDPr(Px,Px′) is ameasure of dif-

ference between probability distributionsPx andPx′ . Here,Px denotes the probability distribution of the

released statistics, as a function of the confidential data x, where the randomness inPx is introduced solely

by the data-release mechanism T. This is a sensible approach to privacy quantification: as all statistical in-
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formation is created by variations in the data, by limiting the relative changes in the output distributions,

we limit the changes in variations due to the change from x to x′ asmeasured by dX (x, x′). Wewill show in

Section 2.4 that the most commonDP definitions, including the classic pure ε-DP, approximate (ε, δ)-DP,

and zero-concentrated ρ-DP (zCDP), are all special cases of the general formulation:

DPr(Px,Px′)

dX (x, x′)
≤ ε, or, more correctly, DPr(Px,Px′) ≤ εdX (x, x′), for all x, x′, (2.1)

with different choices forDPr and dX . We provide two expressions here because the first one resembles the

familiar notation of taking derivative, and hence the term “differential privacy”; while the second shows

that mathematically a DP specification is simply a Lipschitz continuity condition on Px as a function of

the input data x. (Informally speaking, Lipschitz continuity is simply a generalization of differentiation.)

Only with answers to the above questions – “who” “where”, “what” and “how” – can we render the

privacy loss budget (the answer to “how much”) a concrete meaning. Taken together, these five answers

form the building blocks of a differential privacy specification:

• The protection domain (who is eligible for protection?), as defined by the setX .

• The scope of protection (where does the protection extend to?), as instantiated by the multiverse

D , which is a collection of universesD ⊂ X .

• The protection unit (what is the granularity of protection?), as conceptualized by the input pre-

metric dX on the domainX .

• The standard of protection (how to measure change in the output variations?), as captured by the

output premetricDPr on the released data’s possible probability distributions.
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• The intensity of protection (how much protection is afforded?), as quantified by the privacy-loss

budget εD for each data universe D (where smaller budgets correspond to a higher intensity of

protection).

2.3 An Etymological Account of DP

2.3.1 The Origin of DP: ε-Indistingushability

A data custodian is interested in publishing a privacy-protected (i.e. sanitized) statisticT ∈ T based some

data x ∈ X . The data x is some representation of a population – a collection of individual entities, which

need not be persons, but could be, for example, households or business entities; and the statisticT is simply

a function (i.e. a transformation) of the data x.

Although the data x is frequently held in confidence by the data custodian, this is not always the case.

For example in randomized response (Warner, 1965) (or in local DP (Kasiviswanathan et al., 2011) more

generally), the data custodian does not have access to x. We therefore use the term ‘data custodian’ in this

paper to refer to the entity responsible for designing and implementing the function T.

We name T the data-release mechanism to emphasize that, in addition to privacy protection, T may

encompass many other data processing steps (such as cleaning, coding, imputation, etc.) from data collec-

tion – or even earlier – through to data publication (see Subsection 2.4.2). In fact, the dual role of T as

simultaneously a statistic about the population from the data user’s perspective and a data privatization

mechanism from the privacy analyst’s perspective creates a fundamental tension in its design, one that has

come to be known as the privacy-utility tradeoff (see e.g. Abowd and Schmutte, 2016).

For a concrete example, Tmay be the mean of the realized data x. This may not be sufficiently privacy-

protecting (indeed, according to the standards of DP, it is typically not), in which case the data custodian
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may add some noise to the mean before release, so that T is a noisy mean of x.

The first definition of DP, called ε-indistinguishability (and, later, pure ε-DP), is given by Dwork et al.

(2006b) and is paraphrased below.

Definition 2.3.1 (Definition 1 of Dwork et al. (2006b)). Let the datset x be a vector of n records from

some domainR, typically of the form {0, 1}d orRd. A data-release mechanism T is ε-indistinguishable if

for all neighbors – i.e. pairs x, x′ ∈ Rn of datasets which differ in exactly one record – and for all outputs

t ∈ T : ∣∣∣∣ln P(T(x,U) = t)
P(T(x′,U) = t)

∣∣∣∣ ≤ ε. (2.2)

Here, using our generic notation, T is the space of possible outputs, or simply the output space. Typ-

ically T ⊂ Rd, but it can be more complex. For example, if T is an algorithm that turns a confidential

dataset into a synthetic one, then T contains all possible configurations and values of the synthetic dataset.

It is important to emphasize that T is a random map from X to T . The probability P as it appears

in (2.2) is induced solely by the auxiliary randomness (the seed) U in T and not in x, which is treated as

fixed. To pinpoint this source of randomness we assume (without loss of generality) thatT : X ×U → T

is a function of both x and some auxiliary random variable U ∈ U . When the dependence of T on U or

on both (x,U) is apparent from the context, we write T(x) or just T for simplicity.

Since it is not modeled, the dataset x – as the object of an attacker’s inference – plays the role of the pa-

rameter in privacy analysis. An immediate consequence is that any distribution placed on x can be viewed

either as a posited generative model for x or as a prior distribution for x, or a blend of both in its construc-

tion. We emphasize the crucial role of x by denoting the law of T(x,U) by Px.

Definition 2.3.1 allows for an intuitive understanding of DP as a condition on the data-release mecha-
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nism T. It is the requirement that if the data x change slightly, then the output T(x) – or more precisely,

the distribution Px(T ∈ ·) of the output – also only changes slightly. In other words, DP requires that

the stochastic behavior of T be robust to small perturbations in x.

To state the intuition mathematically, a data-release mechanism T satisfies ε-DP if the “derivative” of

lnPx with respective to x is bounded within [−ε, ε], for all permissible datasets x. The considerations of

what constitute permissible lead to concepts of multiverse D and universe D, as we shall discuss in de-

tail shortly. Furthermore, the choice of lnPx has the statistical interpretation of controlling information

loss via limiting the power of any hypothesis test for distinguishing x and x′ (Wasserman and Zhou, 2010;

Kifer et al., 2022; Bailie and Gong, 2023a). But without casting this choice in a broader framework that

permits potentially other choices, we deprive ourselves the opportunity to seek the optimal mathematical

representations of privacy control, including forming criteria and guiding principles for defining the op-

timality. Clearly the meaning of ε – which in this context is called the privacy loss budget – depends on

which derivativewe choose (as well as the broader social context (Nissenbaum, 2010)). These are the issues

that wewill examine one by one in Section 2.4, after a brief overview (Subsection 2.3.2) of themajor works

extending pure ε-DP, as ε-indistinguishability is now termed.

2.3.2 Generalizations, Relaxations and Variations of Pure ε-DP

Nearly two decades of research following Dwork et al. (2006b) has taken DP to the academic forefront

of data privacy protection. Central to this work is the quest to delineate the very notion of “privacy” that

is encapsulated by the mathematical definition of DP. While a plethora of literature exists on the subject

(see Cuff and Yu (2016); Tschantz et al. (2020); Kifer et al. (2022) and the references cited therein), there

remains a significant misperception in some of the common (non-technical) narratives concerning what
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DP truly safeguards. This misperception largely stems from the slipperiness in translating the Lipschitz

bound (2.1) into more intuitive (i.e. less mathematical) notions of privacy. Such translations sometimes

rely on the “strong adversary” (SA) assumption, which appears on the surface to correspond to the “worst-

case” scenario. This assumptionposits that the adversary knowswith certainty the entire population except

for the data belonging to a single unit, which is the adversary’s intended target (Tschantz et al., 2020).

(For the purposes of an informal exposition, the reader may think of a unit as an individual person; more

generally, protection units are defined via the choice of dX in a DP specification – see Section 2.4.4.) In

place of the strong adversary assumption, otherwork use any of a number of commensurate assumptions –

which we collectively term generalized strong adversary (GSA) assumptions to highlight their similarity to

SA – such as: the non-target units are conditioned upon, or independent of, the target unit; or the target

unit can be counterfactually manipulated or deleted (e.g. via the do-operator (Pearl, 1995)); or the target

unit can be counterfactually resampled from a distributionwhich can depend arbitrarily on all other units

in the population (Dwork et al., 2006b; Wasserman and Zhou, 2010; Kifer and Machanavajjhala, 2011;

Kasiviswanathan and Smith, 2014; Tschantz et al., 2020; Kifer et al., 2022).

If DP protects against the strong adversary, who has access to the maximal amount of auxiliary infor-

mation, it should stand to reason that DP would also protect against weaker adversaries. Yet the greater

the knowledge we attribute to an adversary, the more we limit the remaining information which the ad-

versary can attack. Consequently, DP actually offers diminished protection against adversaries whose

information-seeking goes beyond the confines of the GSA assumptions – assumptions we contend are

rarely met in reality, a point we will elaborate on in a forthcoming article (Bailie et al., 2025e). In fact,

regardless of how one measures the adversary’s knowledge-gain from observing a DP output T (e.g. ac-
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cording to the power of the adversary’s hypothesis test relative to its size; or the increase in their posterior

relative to their prior, or relative to a counterfactual posterior where the target unit did not contribute to

the data; or their improvement in reconstructing the target unit’s record (Jarmin et al., 2023; Kifer et al.,

2022; Bailie and Gong, 2024)), a GSA assumption is necessary to ensure that pure ε-DP bounds the at-

tacker’s knowledge-gain by the nominal level exp(ε). More generally, a DP specification directly protects

only those units which can be counterfactually altered (as determined by dX ), and only when such alter-

ations are not just mechanistically conceivable (i.e. in the same data universeD), but are in fact statistically

feasible, as made possible by a GSA assumption. Any one of the GSA assumptions works because they

all have the common effect of reducing the attackable information to that which is completely unique to

the target unit – i.e. to the variations unexplained by any other unit in the database, or by knowledge on

(and beyond) the database population. When the literature states that DP provides relative privacy, this

is what is meant: protection of what is left of your personal data after excluding any information that

can be inferred from your relatives, colleagues, neighbors and broader community (Hotz and Salvo, 2022;

Jarmin et al., 2023). (This is in contrast with the alternative definition of relative privacy as the protection

of information which is a-priori unknown to the attacker.)

Additional information may still be protected by a DP specification, but at degraded levels of protec-

tion, where the level of degradation depends on the specification’s “group privacy” properties.2 DP’s rel-

ative protection of this additional information is modelled by an adversary’s knowledge-gain under some

relaxation of a GSA assumption. This relaxationmight be, for example, the assumption that the adversary

knows all but k > 1 units. So these sorts of relaxations limit the information-seeking of the attacker not

2Group privacy (Dwork and Roth, 2014) refers to the bound onDPr(Px,Px′)when dX (x, x′) > 1.
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to an individual unit’s unique information, but instead to that of a group of units (Kifer andMachanava-

jjhala, 2011).

It is crucial for discussions on the essenceofDP to steer clear of perpetuatingmisinterpretations andmis-

conceptions. On this front, we briefly make two points. Firstly, since data privacy is a multi-dimensional

problem(tohint at just a fewdimensions, consider the adversary, the legitimatedatauser, thedata-generating

mechanism, the probability induced by the data-release mechanism and the a-posteriori observed output

of the data-release mechanism), the worst-case scenario is not well-defined without first specifying A) how

to rank scenarios when deciding which is worst; B) which dimensions are allowed to vary when determin-

ing the “worst-case”; and C) which dimensions are being held constant – and indeed there must be some

dimensions held constant in order to speak about non-trivial worst-case protection (Dwork and Naor,

2010; Kifer and Machanavajjhala, 2011). Secondly, we emphasize that when we write throughout this ar-

ticle about the privacy protection afforded by a DP specification, we are referring solely to the Lipschitz

continuity bound (2.1), rather than bounds on the knowledge gained by an adversary – unlesswe explicitly

state otherwise. The translation of (2.1) into ameasure of protection against an adversary3 is the subject of

muchwork (see Dwork et al. (2006b); Ganta et al. (2008);Wasserman and Zhou (2010); Dwork andNaor

(2010); Bassily et al. (2013); Hall et al. (2013); Kasiviswanathan and Smith (2014); Cuff and Yu (2016);

Dwork et al. (2016); Kairouz et al. (2017); Balle et al. (2019); Tschantz et al. (2020); Desfontaines et al.

(2020); Protivash et al. (2022); Kifer et al. (2022); Bailie and Gong (2023a); Bailie et al. (2025e)). In this

article, we limit our attention on such work to the preceding discussion and one additional remark: Any

non-vacuous translation requires assuming a GSA, or one of its relaxations (Dwork andNaor, 2010; Kifer

3Such measures of protection are called ‘privacy semantics’ in the literature, following the terminology of ‘se-
mantic security of encryption’ (Goldwasser andMicali, 1984).
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and Machanavajjhala, 2011). This is not a criticism of DP since such an assumption is necessary in order

to artificially demarcate a boundary between individual- and population-level information (which, by the

sorites paradox, are naturally two ends of a continuum) and hence these complications are inevitable to any

workable statistical-inferential conceptualization of data privacy which permits population-level learning.

Even putting such fundamental issues aside, as differential privacy has been applied to a myriad of prac-

tical contexts, researchers have come to realize the limits of the original definition of Dwork et al. (2006b),

and to recognize the need for variants and relaxations of pure ε-DP. In this subsection, we briefly review

some of this literature, grouped in terms of the four building blocksDPr, dX ,D andX .

A first branch of work seeks to augment and relax the ways that the change in output distributions

are measured (Subsection 2.4.5). Pure ε-DP requires that the log-likelihood ratio between Px and Px′ is

universally bounded between−ε and ε. This requirement is too stringent in many practical settings, such

as the US census, since it requires fat-tailed (i.e. e−O(|x|) density) noise distributions. As a result, notions

such as (ε, δ)-approximate DP (Dwork et al., 2006a), computational DP (Beimel et al., 2008; Dwork et al.,

2006a; Mironov et al., 2009), Rényi DP (Mironov, 2017), concentrated DP (Bun and Steinke, 2016), f-

divergence privacy (Barber and Duchi, 2014; Barthe and Olmedo, 2013) and f-DP (including Gaussian

DP) (Dong et al., 2022) relax this requirement by considering different choices for DPr in place of the

multiplicative distance (defined below in equation (2.9)) which is mandated by pure ε-DP. These different

choices forDPr trade-off the strictness of pure ε-DP for an increase in efficiency of statistical inference and

estimation.

A secondbranch seeks to clarifywhat databases constitute neighbors and to give flexibility to this choice

(Subsection 2.4.4). For example, the data custodian may want an asymmetric neighbor relation (Kotso-

giannis et al., 2020; Takagi et al., 2022). More generally, (R, ε)-generic DP (Kifer and Machanavajjhala,
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2011) defines neighboring datasets with an arbitrary relation onX . In our terminology, this line of work

explores different choices of the input premetric dX and hence investigates the concept of the protection

unit. Further examples include applications to social networks and graph data which conceptualize neigh-

bors according to modifications of a single edge or node (Hay et al., 2009; McSherry andMahajan, 2010).

Understanding neighbors as datasets separated by a unit distance lead to d-metric DP (Chatzikokolakis

et al., 2013) – a generalization of pure ε-DP which uses a metric d instead of neighbors. Flexibility in the

choice of neighbors has been used to accommodate the need to allow for structured databases for which

some existing information already exists. Blowfish privacy (He et al., 2014) considers neighbors induced

by a policy graph, which is designed to encode known constraints on the dataset. Related variants include

element-level DP (Asi et al., 2022), distributional privacy (Zhou et al., 2009), one-sidedDP (Kotsogiannis

et al., 2020), asymmetric DP (Takagi et al., 2022), event-level vs user-level DP (Dwork et al., 2010a), and

others (see the many examples listed in Section 4 of Desfontaines and Pejó (2020)).

A third branch is concerned with restricting the scope of protection (Subsection 2.4.3). Blowfish pri-

vacy addresses this concern by allowing the data custodian to limit the set of potential datasets – that is,

it allows the data custodian to specify data universes. In addition to the existing literature on privacy un-

der invariants (Ashmead et al., 2019; Gong and Meng, 2020; Gao et al., 2022; Dharangutte et al., 2023),

other work in this branch include conditioned or empirical DP (Abowd et al., 2013; Charest and Hou,

2016), personalized DP (Ebadi et al., 2015; Jorgensen et al., 2015), individual DP (Soria-Comas et al.,

2017; Feldman and Zrnic, 2022), bootstrap DP (O’Keefe and Charest, 2019), stratified DP (Bun et al.,

2022), per-record DP (Seeman et al., 2023) and per-instance DP (Wang, 2018; Redberg andWang, 2021).

Such work is concerned with the specification of the multiverse D , and of the privacy loss budget εD as a
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function of the universeD ∈ D .

A fourth branch is concerned with what the protection objects x ∈ X are (Subsection 2.4.2). While

DP was traditionally concerned with tabular data (see Definition 2.3.1), x ∈ X could instead be, for

example, a graph encoding network data (Hay et al., 2009), or geospatial data (Andrés et al., 2013). (Note

that alternative data structures often necessitate new choices for dX , not just X .) Alternatively, X could

be artificially restricted to make DP easier to implement – for example, by assuming the domain of every

possible dataset record is [−a, a]d (for some large a), rather than Rd. Another possibility is to permit

randomness in the confidential dataset, by generalizing the protection domainX to be a set of probability

measures on the data space, rather than the data space itself. Pufferfish privacy (Kifer andMachanavajjhala,

2014; Bailie and Gong, 2024) uses this generalization to encode the background knowledge of an attacker

via a probability distribution. Special cases of the same idea can be found in Bhaskar et al. (2011) and

Seeman et al. (2022). A related vein of work studies how DP protection varies as the domain X moves

along the data life cycle. (We use the terms ‘data pipeline’, ‘data journey’ and ‘data life cycle’ synonymously,

although we prefer the latter since it highlights the circular nature of, and feedback loops inherent to,

the processes of data conceptualization, generation, processing, analysis, etc.) This includes the effect of

privacy amplification by shuffling (Cheu et al., 2019; Erlingsson et al., 2019; Feldman et al., 2022; Cheu,

2022) and by sampling (Beimel et al., 2010; Balle et al., 2020; Bun et al., 2022), as well as the effects of

data pre-processing steps in general (Debenedetti et al., 2024; Hu et al., 2024). However, work studying

pre-processing steps is still largely primarily, and a broad understanding of how – for example – various

common survey sampling steps (e.g. non-response imputation, editing and survey weight adjustment)

alter privacy is still an open area of research (Reiter, 2019; Drechsler, 2023; Das et al., 2022; Bailie and
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Drechsler, 2024; Drechsler and Bailie, 2024).

This subsection is a soupçon of the literature on DP which is limited to a cursory discussion on a few

of the many research areas in this large and active field – the ‘systematization of knowledge’ article Des-

fontaines andPejó (2020) found approximately 225 publishedDP specificationswhich are generalizations,

relaxations or variants of pure ε-DP. Our intentions here are threefold: to give credit to existing research

which informed our understanding of a DP specification as a tuple of five components; to provide an ini-

tial demonstration of why this system of five building blocks may be useful for comparing different DP

formulations; and to hint at how these formulations all share a common spirit as Lipschitz continuity con-

ditions. This discussion also explains the phrase “stirred, not shaken” as it appears in this paper’s title. As

this systemofDP specifications is not itself a novel conceptualization, theway thatwe discussDP through-

out this article stays faithful to its spirit as exemplified in the original formulation ofDefinition 2.3.1. That

is, DP – as a Lipschitz condition – studies the change of the variations in the output statistics with respect

to alterations in the input space. Granted this way of thinking, however, we will argue and demonstrate

that small distinctions in the choices for the components of a DP specification can make a substantial

difference in the quality and the strength of the resulting privacy guarantee in practice.

2.4 A System of DP Specifications

2.4.1 A DP Specification: Flavor and Intensity

As Section 2.2 overviews, there are five building blocks to a DP specification. We begin with the “who”,

“where”, “what”, and “how” questions, which define the flavor of a DP specification.

Definition 2.4.1. A differential privacy flavor is a four-tuple (X ,D , dX ,DPr)where

1. The domainX is a set, whose elements are called protection objects;
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2. Themultiverse D ⊂ 2X is a collection of universesD ⊂ X ;

3. The input premetric dX is a premetric (see Definition 2.4.14 below) onX ; and

4. The output premetric DPr is a probability premetric (Definition 2.4.16).

A flavor of DP is therefore a distinct set of choices for the domain X , the multiverse D , the input

premetric dX , and the output premetricDPr. The domain X is typically the data space – the space of all

(theoretically-conceivable) datasets – but it can take other forms (as explained in the previous subsection).

We typically denote protection objects – i.e. elements ofX – by x or x′.

After fixing a particular flavor of DP, the “how much” question becomes relevant, as it affords a mea-

surement of the intensity of privacy protection. Importantly this intensity is relative to the chosen flavor

and hence must always be interpreted within its context. The flavor and the intensity together constitutes

a DP specification, as defined below.

Definition 2.4.2. A differential privacy specification is a quintuple (X ,D , dX ,DPr, εD) consisting of a

DPflavor (X ,D , dX ,DPr) and a privacy-loss budget εD : D → [0,∞] (or privacy budget for short). Wede-

note aDP specificationby εD-DP(X ,D , dX ,DPr) (following the notational style ofKifer andMachanava-

jjhala (2014)).

Definition 2.4.3. A data-release mechanism (or mechanism for short) is a function T : X × U → T ,

along with a probability P(U ∈ ·) on the (secret) seed U ∈ U . The probability P(U ∈ ·) induces a

distribution Px on T in the standard way:

Px(T(x,U) ∈ S) = P
(
U ∈ {u ∈ U : T(x, u) ∈ S}

)
.
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Px is the distribution of the data-release mechanism T(x,U)’s output, given a fixed x ∈ X . (We omit some

non-trivial measure-theoretic details of this definition – see Appendix A.1.)

Definition 2.4.4. A data-release mechanism T : X × U → T satisfies the DP specification εD-DP(X ,

D , dX ,DPr) if, for all data universesD ∈ D , and all protection objects x, x′ ∈ D,

DPr
[
Px(T ∈ ·),Px′(T ∈ ·)

]
≤ εDdX (x, x′). (2.3)

Definition 2.4.5. Given a DP flavor (X ,D , dX ,DPr), the privacy loss of a data-release mechanism T is

the smallest εD such that T satisfies εD-DP(X ,D , dX ,DPr).

Remark 2.4.6. To resolve the edge case where εD = 0 but dX (x, x′) = ∞, we define 0 × ∞ = ∞.

This means DP never controls the difference betweenPx andPx′ when dX (x, x′) =∞, even in the case of

complete privacy (εD = 0).

Remark 2.4.7. In Definition 2.4.4, the domain of the data-release mechanism T and the domain of the

DP specification εD-DP(X ,D , dX ,DPr) are exactly the same set X . This is a necessary precondition for

a data-release mechanism to satisfy a DP specification.

Remark 2.4.8. Throughout this article, we use the terms ‘DP definition’ and ‘DP formulation’ informally

to refer generally to an existing notion ofDPor one of its variants, extensions or generalisations. We reserve

the terms ‘DP flavor’ and ‘DP specification’ for the precise meanings given in Definitions 2.4.1 and 2.4.2.

A ‘DP mechanism’ is a data-release mechanism which satisfies some (implicit) DP specification. When

we speak of the ‘DP guarantee’, or the ‘privacy guarantee’ of a DP mechanism T, we are referring to the

assurance that T satisfies the Lipschitz condition (2.3), under a given (implicit) DP specification.
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The privacy loss budget εD controls the intensity of protection that is guaranteed by aDP specification.

A larger budget allows for mechanisms with less intense protection; whereas a small budget corresponds

to requiring a higher intensity of privacy protection.

Note that the privacy loss budget is a component of a DP specification, whereas the privacy loss is an

attribute of a DP mechanism. The privacy loss budget should be interpreted as the maximum possible

privacy loss that is considered acceptable by the data custodian. (The maximum acceptable privacy loss

can be in absolute terms, or it can be relative to the statistical accuracy achievable under the corresponding

DP specification (Abowd and Schmutte, 2019).) In contrast, the privacy loss of a DPmechanism T is the

actual reduction in privacy that results from releasing data via T. As with the budget, the privacy loss is

always relative to the underlying DP flavor.

The privacy loss budget εD is allowed to varywith the universeD. That is, εD is a functionwith domain

themultiverseD . Since each universe is allowed to have its ownprivacy loss budget, some universesmay be

afforded more protection than others. This property is important in many applications, such as stratified

DP (Bun et al., 2022) or per-record DP (Seeman et al., 2023).

TheDPproperty (2.3) is achievedby injecting artificial noise into the data-release process. Bydecreasing

the dependence of Px on x, noise injection flattens the ‘derivative’ dPx
dx of the data-release mechanism and

hence one can view DP as a stability, or a robustness, condition (Dwork and Lei, 2009; Avella-Medina,

2020, 2021; Asi et al., 2023; Hopkins et al., 2023).

Definition 2.4.9. LetM(X ,D , dX ,DPr, εD) denote the set of data-release mechanisms which satisfy

the DP specification εD-DP(X ,D , dX ,DPr).

We say that one DP specification εD-DP(X ,D , dX ,DPr) is stronger than another specification ε′D-
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Notation Description Reference

X The domain Subsection 2.4.2

D ⊂ 2X The multiverse; a set of subsets of the domainX Subsection 2.4.3

dX : X × X → [0,∞] The input premetric; a premetric on the domainX Subsection 2.4.4

DPr : P × P → [0,∞] The output premetric; a probability premetric Subsection 2.4.5

εD : D → [0,∞]
The privacy-loss budget; whenDPr 6= DMult, it may
be denoted by other Greek letters, e.g. ρD.

Subsection 2.4.1

(X ,D , dX ,DPr) A generic DP flavor Definition 2.4.1

(X ,D , dX ,DPr, εD) or
εD-DP(X ,D , dX ,DPr)

A generic DP specification Definition 2.4.2

M(X ,D , dX ,DPr, εD)
The set of all data-release mechanisms satisfying
the DP specification εD-DP(X ,D , dX ,DPr)

Definition 2.4.9

Table 2.1: Notation related to DP flavors and specifications.

DP(X ,D ′, d′X ,D′
Pr) if

M(X ,D , dX ,DPr, εD) ⊂M(X ,D ′, d′X ,D′
Pr, ε′D).

2.4.2 The Projection Objects: The DomainX

The domainX is the set consisting of all the protection objects – that is, all those objects which are eligible

for protection by a DP mechanism. Supposing that the protection objects are datasets, X can be under-

stood before data collection as the set of all potential datasets that are a-priori realizable. (We use the term

‘potential’ in the same sense as ‘potential outcome.’) After the actual dataset has been realized,X may be

interpreted as the set of all possible, counterfactual datasets.

However, this definition of the domainX is not completely satisfactory because it leaves indeterminate

what makes one dataset potentially or counterfactually realizable and another dataset not so. To address

63



Notation Description Reference

x, x′ ∈ X Two generic protection objects, i.e. elements of the domain
X ; typically (for most DP flavors) x, x′ are datasets Subsections 2.3.1 & 2.4.1

D ⊂ X A universe; an element of the multiverseD Subsection 2.4.3

T A data-release mechanism; a functionX × U → T ;
Also denoted by T(x) or T(x,U)

Subsection 2.3.1,
Definition 2.4.3

T The space of all possible outputs; the codomain
of the data-release mechanism T Subsection 2.3.1

t An element of T ; a generic, realized output (as
opposed to the (unrealized) random variable T) Subsection 2.3.1

U and U The random seed of a data-release mechanism T and its space Subsection 2.3.1

P,Q Two generic probability distributions –

P(U ∈ ·) The probability of the random seedU Definition 2.4.3

Px and Px′
The probability distributions of T(x,U) and T(x′,U),
respectively, as induced by the random seedU Subsection 2.3.1

px The density of Px (with respect to some dominating measure) –

L(x | t) The likelihood of x given output t; px(T = t) Subsections 2.4.5

(Ω,F )
A generic measurable space where Ω is a set
andF is a σ-algebra on Ω –

P(Ω,F ) The collection of all probability measures on (Ω,F ) –

P The collection of all probability measures Definition 2.4.16

Table 2.2: Notation related to data-releasemechanisms.
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Notation Description Reference

D(·) and
D = D(x)

A universe functionX → 2X and
the universe associated to x Subsection 2.4.3

c : X → Rl A generic invariant function Subsection 2.4.3

Dc(·) : X → 2X and
Dc = {D(x)}x∈X

The invariant-induced universe function and the
corresponding invariant-induced multiverse Subsection 2.4.3

duHamS(x, x′)
The Hamming distance on unordered datasets at the
resolution u; umay be, for example,
person-records p or household-records h (duHamS is an example of dX )

Equation (A.3)

DMult
The multiplicative distance; the probability
premetric used by pure ε-DP Equation 2.9

DNoR
The normalized Rényi metric; the probability
premetric used by ρ-zero concentrated DP Subsection 2.4.5

Table 2.3: Notation related to various choices for the five building blocks of a DP specification.

this criticism, one may define the domainX according to a pre-specified database schema. (A schema is a

set of logical rules describing the “blueprint” of a database, which includes a declaration of the variables of

the database and the set of values each variables can take.) From this perspective,X is the set of all datasets

that are compliant with the given database schema. Yet this definition, while concrete, is not particularly

illuminating, since it begs the questions, why is the database schema the way it is, and why this database

schema, rather than some other schema?

To fully appreciate the domainX and its role in DP’s privacy protection, we need to examine the data

life cycle: the journey of the data within the context of its environment, from conceptualization, gener-

ation, collection and processing, through to analysis, visualization, re-use and beyond. (This is not an

exhaustive list of the various components of a data life cycle. For a more comprehensive treatment, see

Wing (2019), Leonelli and Tempini (2020), Gitelman (2013) and Borgman (2019).)
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The data-release mechanism – as a procedure which processes and transforms the data – is an integral

phase of the data life cycle. Butwhat steps of the data life cycle are included as part of the data-releasemech-

anism is a subjective decision – onewhichmust bemade by the data custodian in the course of implement-

ing DP. In fact, the data custodian is, consciously or unconsciously, forced to categorize the steps of the

data life cycle into three consecutive phases: 1) the data-recording phase, which comprises the initial steps

of the data life cycle up until the data-releasemechanism starts; 2) the data-processing phase, which consists

of the steps that are performed by the data-release mechanism; and 3) the post-release phase, which covers

all the subsequent steps of the data life cycle. Although it is not always the case (since it depends on the

data custodian’s choice of data-release mechanism), the data-recording phases usually includes data con-

ceptualization and generation, as well as the recording (or measurement) step; the data-processing phase

might involve data cleaning, preprocessing and wrangling, along with the privacy-noise injection; and the

post-release phase may incorporate analysis, visualisation and data re-use.

By delineating where the data-release mechanism ends in the data life cycle, the data custodian defines

the processing-disseminating boundary– the boundary between the second and third phases. And in decid-

ing where the data-release mechanism starts in the data life cycle, the data custodian defines the recording-

processing boundary, which demarcates the first and second phases. This boundary provides us with a

fully-rigorous definition of the domainX : Each x ∈ X is a potential input to the data-release mechanism

and these inputs are, by definition, the outputs of the data-recording phase. Therefore, the domain X is

the set of all a-priori potential, or a-posteriori counterfactual, outputs of the data-recording phase.

While important for the data analyst (as illustrated by the debate surrounding the 2020 US Census

“noisy measurement files” (McCartan et al., 2023)), the processing-disseminating boundary is inconse-
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quential from the perspective of DP, because the post-processing property (Subsection 2.5) implies that

the DP guarantee applies to all data downstream of this boundary. However, the same point does not

apply to the recording-processing boundary: moving this boundary upstream – by re-categorizing data-

recording steps as data-processing – can dilute, or even invalidate, the DP guarantee (Das et al., 2022; Bun

et al., 2022;Hu et al., 2024). In fact, wewill see that the recording-processing boundary plays an important

role in determining the privacy protection actually afforded by a DPmechanism.

The data life cycle of the 2020 US Decennial Census provides an illustrative example. After respon-

dents provide their information (which, to be clear, is not the start of the life cycle), the resulting data is

passed through a number of complex processes, including data coding, editing (to correct implausible or

illogical responses) and imputation (to fill in missing responses) (Cantwell, 2021; Ramirez and Borman,

2021; Marks and Rios-Vargas, 2021). The dataset outputted at the end of these processes is termed the

Census Edited File (CEF), which is the input to the data-release mechanisms of the 2020 Census (e.g. the

TopDown algorithm) (Abowd et al., 2022a). Therefore, the “data-recording” phase of the 2020 Census

includes key steps which would ordinarily be classified as data processing, such as imputation and editing.

The reader may wonder why discussion on the processing of Census data is important to privacy. The

key realization is that, because it is the dataset x ∈ X at the recording-processing boundarywhich is subject

to the Lipschitz condition (2.3), it is this dataset which is protected by a DP mechanism. As such, DP’s

semantics (i.e. measures ofDP’s protection against an adversary – see Subsection 2.3.2) are framed in terms

of inference about this dataset. That is to say, DP semantics assume that the attacker’s target of inference

is the data at the recording-processing boundary (or some subset of these data).

While the Lipschitz condition (2.3) holds for data at the recording-processing boundary whenever the

data-releasemechanism is DP, there is no guarantee that this condition holds for data elsewhere in the data
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life cycle. In fact, there are simple examples which illustrate that, without additional assumptions on the

data life cycle, a DPmechanism does not ensure that the Lipschitz condition (2.3) holds for data upstream

or downstreamof the recording-processing boundary: Data downstreamof any noise-injectionwill clearly

not satisfy (2.3), at least not with the same privacy loss, and neither will data which is upstream of steps

that impact a query’s sensitivity, such as data-dependent clipping4 (Kamath et al., 2023) or imputation

(Das et al., 2022). (For amore general discussion on this point, see the linkage inequality of privacy (Wang

et al., 2017).) It follows that only the data at the recording-processing boundary – not data elsewhere in

the data life cycle – are directly covered by DP’s privacy semantics.

The domainX of aDPmechanism’s flavor is therefore important since it specifieswhich data is directly

protected by the mechanism. Returning to the 2020 US Census as an example, the domain of the TDA’s

flavor is the set of all possible CEFs, not the set of all respondents’ possible data. As such, it is not the

respondents’ data (i.e. their ‘raw’Census responses) which are directly protected by theTDA, but rather it

is the edited and imputed data (i.e. the CEF) which receives the DP guarantee. (Moreover, by their choice

of dX , the USCB’s DP analysis treats the CEF as if it were the ‘raw’ data – see Subsection 2.4.4.) The

TDA’s privacy semantics therefore model an attacker who is interested in learning the edited and imputed

responses, not the respondents’ actual answers.

Because pre-processing steps are pervasive in machine learning and data analysis, similar complications

also arise in many other scenarios beyond the 2020 Census. In addition to the examples of coding, editing

imputation and data-dependent clipping mentioned above, data deduplication, scaling and quantization

are common pre-processing steps which can reduce privacy. That is to say, data downstream of these pre-

4Clipping is also called winsorizing or top- and bottom-coding, depending on the context.
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processing steps will have weaker (or no) privacy guarantees than data upstream; or equivalently, moving

these steps from the data-recording phase to the data-processing phase would require additional noise to

be added in order to maintain the same level of privacy protection (Debenedetti et al., 2024; Hu et al.,

2024).

Thedata custodian faces anumberof important considerationswhendetermining the recording-processing

boundary. If there were a point in the data life cycle when the data were ‘raw,’ then one might reasonably

suppose that the recording-processing boundary should be drawn at that point. Yet ‘raw data’ is an oxy-

moron (Bowker, 2005); data never ‘just exist’ but are alwaysmanufactured (Gitelman, 2013). Even so, data

are generally ‘rawer’ at earlier points in their life cycle. This suggests that to effect better privacy protection

a data custodian should set the recording-processing boundary towards the start of the data life cycle. For

example, by including editing and imputation inside the data-processing phase, the data custodian pro-

tects a form of the data which is a closer representation of the collected data (although perhaps not a closer

representation of the respondents’ ‘actual’ – i.e. ‘true’ – information). An extreme example of this ap-

proach is Pufferfish privacy (Kifer and Machanavajjhala, 2014), which mandates that the data-generation

process is included in the data-processing phase. In this case, the data-recording phase ends before the data

is even generated (but crucially, this phase still includes the data conceptualization step), and the protec-

tion objects x ∈ X are not datasets, but rather they are the potential probability distributionswhich could

(potentially or counterfactually) generate the data (Bailie and Gong, 2024). Alternatively, the goal may of-

ten be to protect the ‘untransformed’, ‘unprocessed’ responses of the data providers (when it is clear what

are the ‘untransformed’ responses). If so, the recording-processing boundary should be set at point of the

life cycle where the data are these ‘untransformed’, ‘raw’ responses.

69



We have described why the recording-processing boundary should be set early in the data life cycle.

However, there are also compelling reasons to set the recording-processing boundary later in the data life

cycle. Firstly, some stages of the data life cycle may be out of the data custodian’s control. Pragmatically, it

may be difficult to incorporate these stages in aDPmechanism. If that is the case, the recording-processing

boundary will need to be drawn after these stages. Secondly, DP privacy semantics usually assume implic-

itly that an attacker does not have knowledge of data intermediate to the data-processing phase. This

assumption is reasonable when the data-processing phase is completely contained within a secure comput-

ing environment, but it is harder to justify when the phase includes real-world processes such as survey

sampling. In fact, if an attacker has auxiliary information about a data-processing step (such as knowledge

of who is in the sample), they can partially undo the DP mechanism’s protection, rendering the typical

DP semantic guarantees invalid (Bailie and Drechsler, 2024). Thirdly, because the recording-processing

boundary determines what data is protected by a DP mechanism, there is an ethical consideration when

setting this boundary: What form of the data is the custodian obligated to protect? Returning to the US

Decennial Census as an example, does the data custodian have a responsibility to protect the data as it

is reported by respondents (in which case the data-processing phase should begin immediately after data

collection and include editing and imputation), or should the data custodian protect their best guess of

the respondents’ actual data (in which case the data-processing phase should only begin after processing

the raw responses into the data custodian’s best guess of the actual data and thus editing and imputation

should be included in the data-recording phase)? In summary, it is debatable where the data custodian

should draw the recording-processing boundary. As such, the data custodian’s segmentation of the data

life cycle into the three phases of recording, processing and post-release is a value-laden, but necessary,
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designation.

To conclude this subsection, we reiterate three points. Firstly, the domainX of a DP flavor matters be-

cause it encodes where the recording-processing boundary is drawn. Secondly, the recording-processing

boundary is important because a DP mechanism protects the data as it is conceived at this boundary. In

the terminology of Seeman and Susser (2023), this is one of the framing effects of a DP flavor. (In fact,

we will see throughout this section that all four components of a flavor contribute to its framing effects.)

Thirdly, understanding the recording-processing boundary is crucial because this places the protection

objects x ∈ X within the broader context of their data life cycle. Contextualization determines how

the protection objects x ∈ X are given meaning and value (Leonelli, 2019). It defines how x relates to

real-world entities (e.g. the survey respondents) and what real-world quantities x measures (e.g. the re-

spondents’ characteristics). Therefore, the choice of X , as the set of possible data within the context of

the recording-processing boundary of the data life cycle, partly determines the substance of a DP flavor’s

protection by specifying “who” and “what form and kind of their data” is eligible for protection.

2.4.3 The Scope of Protection: TheMultiverseD

ThemultiverseD is a collection of subsets of the domainX . The elements ofD are the potential universes

D, and each universe D is a set of mutually-plausible datasets. (For ease of interpretability, we assume

throughout this subsection that the protection objects x, x′ ∈ X are datasets, although the discussion

generalizes beyond this case.)

For example, in the 2020 U.S. Decennial Census, any applicable DP flavor must entertain universes

which are delineated by values for the state population totals, as mandated by the U.S. Constitution (see

Theorem 3.3.1 specifically and Proposition 2.4.11 below more generally). Any particular combination
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of state population totals would be accidental upon observation: there does not exist a universal law that

dictates that these totals could not have been realized in a different way. On the other hand, that the pub-

lished Decennial Census accords to the known state population totals is essential to the Census because

it is made to happen by design. It is this essential quality (hence the multiverse D), rather than any acci-

dental observation (i.e. any particular universe D attained), that must be respected by an applicable DP

mechanism. Therefore, the multiverse commands careful treatment in a DP specification, to ensure that

no information of accidental nature leaks through privacy protection, such as those illustrated in Gong

andMeng (2020) which render the celebrated composition property of differential privacy inapplicable.

One may see the distinction between the multiverse and a universe as analogous to the difference be-

tween the conditional probability P(·|Y) conditioning on a random variable Y and the conditional prob-

ability P(·|Y = y) conditioning on an event {Y = y}. The random variable Y is the essential quality and

the event {Y = y} an accidental observation; in the same way, a DP specification is concerned with the

essential nature of a data-release mechanismT, rather than the properties ofTwithin some particular, but

accidental, universeD.

A DP specification requires that, for every data universe D ∈ D , the Lipschitz continuity condition

must hold in the spaceD –but not necessarily in the spaceX . This distinction is crucial because x typically

has high dimension, and we could plausibly demand for Lipschitz continuity along every dimension – i.e.

we could require that the ‘derivative’∇vPx is bounded by ε in every ‘direction’ v = x′−x
dX (x,x′) . (Herewewrite

the derivative as the gradient∇vPx to emphasise the intuition that the derivative can be taken in multiple

directions.) By limiting the choices of x′, restricting D decreases the directions v for which the directive

∇vPx is bounded. Therefore, reducing the size of the universes strictly weakens the privacy protection in
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two senses: 1) it limits the datasets x that are protected to those in some universeD; and 2) it reduces the

protection afforded to each of these datasets x ∈ D by limiting comparisons to other datasets x′ which are

also inD. This is the sense in whichD defines the scope of the protection given by a DP flavor.

In practice, it is often the case that the multiverse D is induced via a set-valued function that we call

the universe function D(·) : X → 2X , which associates every potential dataset x ∈ X with a universe

D = D(x) ⊂ X . In this case, the multiverseD = {D(x)}x∈X is the image of the universe functionD.

An important class of universe functions encodes invariants: exact quantities calculated from the con-

fidential dataset. Due to legal and policymandates, or other guidance, invariants are published as-is. From

the perspective of data utility, invariants are thus restrictions on the output of a mechanism. Conversely,

from the perspective of data privacy, invariants are restrictions on the input, or more exactly, on the data

multiverseD . For this work, we are particularly interested in universe functions of the form

Dc(x) =
{
x′ ∈ X : c(x′) = c(x)

}
, (2.4)

for a given deterministic function c : X → Rl. Here the function c describes the features c(x) of the

dataset x which are taken to be invariant. We call Dc(·) the invariant-induced universe function and its

image {Dc(x)}x∈X the invariant-induced multiverse Dc.

Note that invariants of this form define an equivalence relation∼ over its domainX , defined by x ∼ x′

if c(x) = c(x′). Hence, the data universe function (2.4) induces a partition ofX indexed by the image of

the invariant function c.

Example 2.4.10. Let the dataset be an contingency table of m × n records taking non-negative integer

values: X = (N+)m×n. Suppose the function c : (N+)m×n → (N+)m+n tabulates the column- and
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row-margins:

c(x) =
( m∑

i=1
xi1, . . . ,

m∑
i=1

xin,
n∑
j=1

x1j, . . . ,
n∑
j=1

xmj

)
. (2.5)

The data curator may treat the column- and row-margins of the confidential dataset as invariant. This

would be equivalent to employing the universe function Dc(·) as defined in (2.4) using the function c

from (2.5), sinceDc(·) ensures that only pairs of datasets x, x′ with the same column- and row-margins are

subject to the Lipschitz condition (2.3) of the DP specification.

In some applications, there are also inequality invariants (Abowd et al., 2022a). As an example of such

an invariant, the 2020 US Decennial Census requires that the reported number of group quarters in any

geographical unit is at most the number of persons in that unit. More generally, an inequality invariant

is of the form f(x) ≤ 0 for some function f : X → R. Such an invariant can be incorporated in our

framework by defining

c(x) =


1 if f(x) ≤ 0,

0 if f(x) > 0.

(2.6)

While weakening the Lipschitz condition (2.4.4) via a non-vacuous multiverse D leads to a reduction

in actual privacy protection, this complication is necessary in many real-world applications of DP. (Amul-

tiverse is vacuous if, for all distinct x 6= x′ ∈ X with dX (x, x′) < ∞ or dX (x′, x) < ∞ there exists a

universe D ∈ D with x, x′ ∈ D.) In addition to the examples from the literature referenced in Subsec-

tion 2.3.2, we prove in Subsection 3.3 that an invariant-induced multiverse Dc is necessary for describing

the DP guarantee of the 2020 U.S. Census. Furthermore, the practice of empirically restricting the data

universe is typical in statistical disclosure control and data analysis more broadly. Top-coding – where one

sets a maximum limit on a continuous variable, usually after looking at the raw data – is one common
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example.

In the following two propositions, wewill see that the interpretation of the value of ε cannot be isolated

from themultiverseD , and indeed this complicates the comparison of privacy loss budgets across different

applications. For these two results, fix a domainX and invariants c : X → Rl.

Proposition 2.4.11. For any dX and DPr, the mechanism T(x) = c(x) that releases the invariants exactly

satisfies εD-DP(X ,Dc, dX ,DPr) with privacy loss budget εD = 0 for allD ∈ Dc.

Now suppose DPr(P,Q) = ∞ if dTV(P,Q) = 1.5 Let D be a multiverse such that there exists some

universe D0 ∈ D and some x, x′ ∈ D0 with dX (x, x′) < ∞ and c(x) 6= c(x′). Then T does not satisfy

εD-DP(X ,D , dX ,DPr) whenever εD0 <∞.

The results of Proposition 2.4.11 also hold ifD is any multiverse with c constant within every universe

D ∈ D (i.e. if c(x) = c(x′) for all x, x′ ∈ D and all D ∈ D). The following result is the converse of

Proposition 2.4.11.

Proposition 2.4.12. Suppose that amechanismTvarieswithin someuniverseD0 ∈ D in the sense that there

exists x, x′ ∈ D0withdX (x, x′) <∞butPx 6= Px′ . WhenDPr is ametric, T satisfies εD-DP(X ,D , dX ,DPr)

only if εD0 > 0.

These two propositions demonstrate that in order to formulate DP with invariants c, it is necessary

and sufficient to limit the Lipschitz condition via the invariant-induced universe functionDc. Necessity

follows from the second half of Proposition 2.4.11: if there are datasets x, x′ ∈ D0 with different values on

5We write dTV to denote the total variation distance (or statistical distance). dTV(P,Q) = 1 means that the
probability measures P andQ have no common support. The assumption dTV(P,Q) = 1 ⇒ DPr(P,Q) = ∞ is
satisfied by most common choices ofDPr.
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the invariants, then releasing the invariants exactly would require εD =∞. Sufficiency is described in two

parts: 1) the invariants can be released exactly without privacy loss (by the first half of Proposition 2.4.11);

but 2) any additional information (not logically equivalent to the invariants) cannot be released without

incurring privacy loss (by Proposition 2.4.12).

As a concrete example of how the meaning of the privacy loss budget εD changes with D , consider

evaluating the same mechanism T against two DP flavors (X ,Dc, dX ,DPr) and (X ,Dc′ , dX ,DPr)which

differ only on their invariants. Suppose the second set of invariants are nested within the first; that is, c is

strictlymore constraining than c′. (For example, c are population counts at the block level and c′ are counts

at the county level.) Then T’s privacy loss ε′D′ underDc′ cannot be smaller and may be strictly larger than

T’s loss εD underDc, for anyD′ ⊂ D. We formalize this statement in Proposition 2.4.13.

Aswe repeatedly emphasize, it is dangerous to think that the c-release is indeed affordedwith less privacy

protection than the c′-release because there is privacy leakage due to specifying additional invariants, which

is not captured by the “within-system” privacy evaluation ε. Indeed in the extreme example where c is an

injective function so that the universesD are singletons, there is no privacy protection afforded by the DP

specification εD-DP(X ,Dc, dX ,DPr) regardless of the choices of dX ,DPr and εD. This point is crucial to

understanding the comparative analysis between the PSA and the 2020 TDA as presented in Section 3.4.

Proposition 2.4.13. Suppose that D and D ′ are nested in the sense that, for all D′ ∈ D ′, there exists

some D ∈ D such that D′ ⊂ D. (That is, D ′ is a refinement of D .) Then, for all privacy loss budgets

ε′D′ : D ′ → [0,∞], we have

M(X ,D , dX ,DPr, εD) ⊂M(X ,D ′, dX ,DPr, ε′D′), (2.7)

where εD = inf{ε′D′ : D′ ∈ D ′ withD′ ⊂ D} is the budget under D . Further, (2.7) holds for all privacy
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loss budgets εD : D → [0,∞] when ε′D′ = inf{εD : D ∈ D withD′ ⊂ D} is the budget underD ′.

This proposition illustrates that refining the data multiverse weakens the protection provided by a DP

specification. As we have stated, this is (intuitively) because reducing the comparisons between protection

objects reduces the dimensions along which Lischitz continuity is required. The operation of refining the

data multiverse is mathematically equivalent to redefining dX , as shown by the following proposition.

2.4.4 The Protection Units: The Input Premetric dX

Because information is generated by variations – and differential privacy is the control of variations – we

need a way of measuring how Px varies as x ∈ X is altered. To do so mathematically, we first need to have

a measure of change in x ∈ X . In the context of DP, the general notion of premetric is useful.

Definition 2.4.14 (premetric). A premetric don a set S is a function S×S→ [0,∞] satisfyingd(x, y) = 0

if x = y.

Apremetric generalizes themathematical concept of ametric, because it is not required to be symmetric,

positive for distinct points, nor does it need to satisfy the triangle inequality. Whilemany of the premetrics

used in DP are metrics – such as the multiplicative distance adopted in the original formulation of DP

(Dwork et al., 2006b) – themore general notion of premetric is needed because it has been used in forming

various approximations to the multiplicative distance, as we shall see in the next subsection, and because it

has been used in generalizing Dwork et al. (2006b)’s notion of neighboring datasets, as we explore in this

subsection.

The input premetric dX of a DP flavor (X ,D , dX ,DPr) is a mathematical tool which encodes the

flavor’s protection units – that is, the entities that an attacker is assumed to be interested in, or the entities
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that the data custodian wants to directly protect. Although common narratives focus on an individual’s

personal information as the adversary’s target,many applications are concernedwithprotecting theprivacy

of other kinds of units, such as households, businesses, messages, transactions or even single attributes. In

the literature, the protection units are ordinarily implied by the neighboring datasets, that is, the pairs

of datasets that “differ by one entry” (as stated in Definition 2.3.1). Here “an entry” refers to the data

associated with a single unit and “differ by one entry” refers to changing a unit’s attributes as recorded in

the dataset, or to changing the indicator of whether a unit is included in the dataset or not. In this way,

exactly one protection unit’s data changes when x is counterfactually altered to a neighboring x′.

The input premetric dX provides a way to encode neighboring datasets: x, x′ ∈ X are neighbors if and

only if dX (x, x′) = 1. Hence, dX also provides a way to describe the protection units: A protection unit

is an entity i for which there exists x, x′ ∈ X with dX (x, x′) = 1 such that x and x′ differ only on i’s data.

Put simply, a protection unit is an entity whose data is the difference between neighboring datasets.

While we have described how to derive the protection units from the input premetric dX , typically in

practise, the protection units are actually chosen first. In the process of implementing DP, the data cus-

todian will usually determine the entities that they want to directly protect. These entities will then serve

as the protection units. As mentioned earlier, they could be persons, businesses, households, interactions

with a website or service, etc. After deciding upon the protection units, the data custodian will then select

an input premetric which encodes their choice of protection units. By ‘encoding protection units’, we

mean that this input premetric dX satisfies the requirement: dX (x, x′) = 1 if and only if x and x′ differ on

a single protection unit’s data. For example, if the data custodian’s desired protection units are individual

persons, then they could select the Hamming distance dpHam on person-records as their input premetric.
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TheHamming distance dpHam(x, x′) on person-records between two equal-length databases x and x′ is the

number of records – where each person is associated with a single record – which differ between x and x′.

(See Appendix A.4 for a precise definition, along with the definitions of other common choices for dX .)

Hence dpHam(x, x′) = 1 if and only if x and x′ differ on the attributes of one individual, which is one of

the data custodian’s protection units.

In the above discussion, we did not explain what is meant by ‘an entity’s data.’ Since this is critical

for understanding what protection units are encoded by an input premetric, and hence what entities are

protected by a DP mechanism, this deserves some attention. In simple cases, it is obvious which entities

each data point concerns. Hence, a rudimentary definition of ‘entity i’s data’ is all the data points which

are concerned with i.

In more complex cases, it may not be clear which entities a data point concerns. This can make it diffi-

cult to determine the protection units. To illustrate this complexity, we return to the 2020 US Decennial

Census. As discussed in Subsection 2.4.2, the domain X is the set of all Census Edited Files (CEFs), and

each CEF x ∈ X can be represented as a dataset of person-records. The input premetric dX is the Ham-

ming distance dpHam on these person-records (Abowd et al., 2022a). Therefore, one might naturally sup-

pose that the protection units are individuals. However, in producing the CEF, the Census Bureau copies

the records of a donor household to impute the missing records of a nearby, recipient non-responding

household (Ramirez andBorman, 2021). In this way, the data of a donor individual can be associatedwith

multiple person-records in the CEF: the donor’s original record; and zero, one or more imputed records.

Plausibly, an imputed record may concern either 1) the recipient only (since it contains the geographical

information of the recipient, not the donor, and since it may be considered as the Census Bureau’s best
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guess of the recipient’s data); 2) the donor only (since it is a copy of the donor’s response); or 3) both the

recipient and the donor (by a combination of the previous two rationales). The protection units of the

2020 Census are individual persons only in the first of these three possibilities, because, in the other two

cases, dpHam(x, x′) > 1 whenever x and x′ differ on a donor’s data, and so donor individuals cannot be

protection units.

Since in certain scenarios it is unclear which entities a data point concerns, a more sophisticated defi-

nition of ‘an entity’s data’ is required. At the core of DP’s philosophy is the conceptualization of privacy

as indistinguishability: under DP, an attacker should not be able to distinguish between two protection

objects x and x′ (which are in the same universe and have smaller input premetric). Equivalently, DP is

concerned with masking the difference between such x and x′. If we want to mask an entity, what really

matters is the influence of the entity on the protection objects. Therefore, we properly define ‘an entity’s

data’ as the data points which change when the entity counterfactually alters their behavior or attributes

during the data-recording phase. By the definition of the protection units above, it follows that the pro-

tection units are those entities with the following property:

There exist two counterfactual runs of the data-recording phase which are the same in every
regard except that the entity behaves differently (or has different attributes) in these two runs.
Suppose these two runs produce the protection objects x and x′. Then dX (x, x′) = 1.

In making this definition, we must assume that the probability distributions of the protection units

are mutually independent (except for deterministic or logical constraints between units, such as those in

graph data). This allows a protection unit to change their behavior without affecting the rest of the data-

recording phase, except in deterministic ways. (If non-deterministic dependencies were allowed, the result-

ing outputs x and x′ would not even be well-defined.) This is a necessary assumption to avoid modelling

the data-recording phase, as is typically desired. Yet it is also why a generalized strong adversary assump-
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tion (or one of its relaxations) is necessary for translating DP specifications into privacy semantics (see

Subsection 2.3.2).

The above definition of ‘an entity’s data’ resolves the ambiguity in the 2020 Census’s protection units.

A donor can behave differently in the data-recording phase by altering their response to the Census. Their

behavior affects multiple records – their own and their recipients’ – and hence the resulting CEFs x and

x′ would have dpHam(x, x′) > 1. The 2020 Census’s protection units are thus ‘post-imputation persons,’

those (fictional) entities with data that is exactly one record in the CEF, so that the attributes of a ‘post-

imputation person’ can be altered in the data-recording phase without affecting other records in the CEF.

The distinction between ‘post-imputation persons’ and real world persons is important. Notably, a

donor individual’s privacy is not protected at the nominal level given by the privacy loss budget of the

2020 Census. In fact, because the Hamming distance induced by persons as protection units is smaller

than dpHam, donor individuals receive strictly less protection than prima facie indicated: a donor’s privacy

loss is increased by a factor equal to the number of their recipients, as demonstrated by Proposition 2.4.15

below. The important realization is that dpHam treats the CEF as if it consists of ‘raw’ Census responses; yet

an examination of the data-recording phase belies this misconception. Fundamentally, an input premetric

dX measures changes in data – but, as we discuss extensively in Bailie et al. (2025e), data are accidental

representations of essential information (Robertson Ishii and Atkins, 2023). As such, what really matters

is the information encoded in the data, not the data itself. If a premetric dX allows for the manipulation

of data values without respecting the underlying data-generating process, it contradicts the information

in the data and so cannot encode real-world protection units, but only fictitious ones. As we also saw in

Subsection 2.4.2, there is therefore the potential for a disconnect between DP’s protection of data values
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and the protection of an individual unit’s information. We re-emphasize Subsection 2.4.2’s point of the

necessity of placing the data in the context of its life cycle in order to understand this disconnect and, hence,

to understand the privacy actually afforded by a DPmechanism.

The protection unit is a useful concept for translating the input premetric dX into a measure of real-

world privacy protection. Yet dX cannot always be interpreted in terms of protection units. There are

cases where there are no protection objects x, x′ ∈ X with dX (x, x′) = 1; and there are cases where a

value of dX (x, x′) = 1 is not imbued with any special significance (see Chatzikokolakis et al. (2013) and

(Desfontaines and Pejó, 2020, Section 4.3), as well as the references in Subsection 2.3.2). However, there

is a second, more general, interpretation of the input premetric dX , which is more broadly applicable than

the notion of the protection units: dX is the yardstick (i.e. unit of measurement) against which the rate

of change in output variations is measured. By this statement, we mean that dX serves the role of the de-

nominator in the ‘derivative’ dPxdx . Mathematically, dX specifies which counterfactual input alterations are

permissible – an alteration of x ∈ X is permissible whenever it results in some x′ with dX (x, x′) < ∞

– while also quantifying these alterations according to the corresponding value of dX (x, x′). This quan-

tification is the yardstick of data alterations – “the dx” – against which changes in the output variations –

“the dPx” – are benchmarked.

Moreover, shrinking (or enlarging) this yardstick corresponds to decreasing (or increasing) the granu-

larity of privacy protection. That is, decreasing the value of dX (x, x′) – which intuitively corresponds to

increasing the size of the protection units – translates to protecting larger changes in x. For example, the

data custodian might want household-level data to be the protection units, instead of person-level data.

This would be equivalent to using an input premetric dhX with the property dhX (x, x
′) = 1 whenever x
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and x′ differ on the data belonging to a single household. This household-level premetric dhX is smaller

than the analogous person-level premetric dpX :

dhX ≤ dpX ≤ bdhX ,

where b is anupper boundon thenumber of people in a single household. Hence, a unitwith respect todhX

can correspond to b units with respect to dpX . By decreasing the granularity, more data is being protected

per unit change in the yardstick dX . This results in a stronger DP flavor, as the following proposition

demonstrates:

Proposition 2.4.15. Fix a domainX and let dX , d′X be two input premetrics satisfying

ldX ≤ d′X ≤ udX ,

for some constants 0 < l ≤ u ≤ ∞. Then

M(X ,D , dX ,DPr, εD) ⊂M(X ,D , d′X ,DPr, εD/l),

and

M(X ,D , d′X ,DPr, εD) ⊂M(X ,D , dX ,DPr, uεD).

Thus, the input premetric dX provides a notion of granularity (or resolution) of the protection af-

forded by a DP specification εD-DP(X ,D , dX ,DPr). A specification with lower granularity is stronger:

If dX ≤ d′X , then εD-DP(X ,D , dX ,DPr) is a stricter condition than εD-DP(X ,D , d′X ,DPr). The intu-

itive justification of this result is that εD-DP(X ,D , dX ,DPr) protects more data per unit change in dX

than εD-DP(X ,D , d′X ,DPr).

In addition todX ’s ability to generalize the notion of neighboring datasets (as in the examples presented
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in Subsection 2.3.2), another advantage of using a divergence dX in the definition of DP – instead of the

notion of neighboring datasets – is that it enables the quantification of privacy protection beyond what

is required by the original DP formulation of Dwork et al. (2006b). Comparing Definition 2.3.1 with

Definition 2.4.2, we can see that the former places restrictions only on datasets x and x′ that are neighbors

(that is, only when dX (x, x′) = 1), while the latter holds for all pairs regardless of the value of dX (x, x′).

However, this does not necessarily imply that the latter definition is a more stringent requirement. A

simple way to see this is that we can always define dX (x, x′) = ∞ when x and x′ are not neighbors, in

which case Definition 2.4.2 would be satisfied trivially for any non-neighboring x and x′.

One real value of using dX instead of the notion of neighbors perhaps is best seen by considering what

will happen for datasets x and x′ which differ by k entries, under the original Definition 2.3.1. For sim-

plicity, let’s assume k = 2, and x = {x1, x2, c} ∈ D and x′ = {x′1, x′2, c} ∈ D, where c represents the

common part of x and x′. Let x̃ = {x1, x′2, c} and assume it is also inD (this is not a trivial assumption in

general). Then because x̃ is a neighbor of both x and x′, we have from (2.2) that

∣∣∣∣ln P(T(x,U) = t)
P(T(x′,U) = t)

∣∣∣∣ ≤ ∣∣∣∣ln P(T(x,U) = t)
P(T(x̃,U) = t)

∣∣∣∣+ ∣∣∣∣ln P(T(x̃,U) = t)
P(T(x′,U) = t)

∣∣∣∣ ≤ ε+ ε = 2ε. (2.8)

We can see that the factor 2 corresponds to k = 2, and the above derivation is easily replicatedwith general

k ∈ N. Hence when we adopt the Hamming distance for dX , we see that (2.2) holds for all (legitimate)

pairs, as long as we replace ε by dX (x, x′)ε, which is a special case of (2.3). (This is related to the concept

of group privacy; see Dwork and Roth (2014).) Two other values of using dX instead of neighboring

datasets is 1) in applications where there is no appropriate notion of neighbors, for example, in geospatial

data (Andrés et al., 2013) and 2) when there are invariants (or more generally when there is a non-vacuous

multiverse), because invariants often imply that there are no pairs of datasets x and x′ in the same data
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universeDwith dX (x, x′) = 1 and hence restricting to such datasets would result in a vacuousDP flavor.

In a nutshell, using a premetric dX makes explicit the protection bounds for all pairs of datasets, with-

out losing the intuition of neighbors as the protection units. It also allows us to explicitly write a DP

specification as a Lipschitz condition, thereby explicating that the essence of DP is to limit the change of

variations per unit change in x, where “unit change” is precisely defined by dX taking the unit value – one.

2.4.5 The Standard of Protection: The Output PremetricDPr

Having formulated changes in the input x via dX , we now explicate the measure of change in the output

variations. Output variations are captured by the probability distribution of the data-release mechanism

T given an input x, so we need to measure change in terms of these probability distributions. Pure ε-DP

(Definition 2.3.1) uses themultiplicative distanceDMult (which is also termed themax-divergence in some

contexts) to measure this change:

DMult(P,Q) =


sup
S∈F

∣∣∣∣ln P(S)
Q(S)

∣∣∣∣ if P andQ are on the same measurable space (Ω,F ),

∞ otherwise,

(2.9)

where we define P(S)
Q(S) = 1 when P(S) = Q(S) = 0. (The multiplicative distance is strongly equiva-

lent (in the sense of metrics) to the density-ratio metric (Wasserman, 1992).) For b < ∞, the condition

DMult(P,Q) ≤ b is equivalent to P and Q being mutually absolutely continuous and having densities

(with respect to a common dominating measure μ) whose ratio is μ-a.e. bounded by exp(b) (Bailie and

Gong, 2024). When P and Q are probabilities Px,Px′ for the output of T, this condition translates to

bounding the log-likelihood ratio (or, in other terms, the log-Bayes factor) between x and x′. That is, pure
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ε-DP is equivalent to the condition:

ln
[
L(x | t)
L(x′ | t)

]
≤ εdX (x, x′),

uniformly for almost all t ∈ T and all x, x′ ∈ X , where L(x | t) = px(T = t) is the likelihood func-

tion. (Here px is the density of Px.) The use of the multiplicative distance to formulate a mathematical

formalization of privacy is therefore justified by the law of likelihood (Hacking, 1965), which asserts that

this likelihood ratio L(x | t)/L(x′ | t) is the degree to which the output t supports the hypothesis that the

true input dataset is x rather than x′. By bounding this likelihood ratio, pure ε-DP restricts the degree of

support for x against x′ to at most exp[εdX (x, x′)].

Yet requiring that this property hold for all outputs t – even those t which are highly-improbable – is

a stringent condition. For additive noise, it requires a fat-tailed noise distribution, with density e−O(|x|),

which rules out Gaussian noise for example. This motivates the study of different ways to measure the

change in the output variations. We capture these various different ways with the unifying concept of a

‘probability premetric’:

Definition 2.4.16. Let P(Ω,F ) be the collection of all probability measures on the measurable space

(Ω,F ). Let P =
⋃

(Ω,F ) P(Ω,F ) (where the union is over all measurable spaces (Ω,F )) be the col-

lection of all probability measures. A probability premetric DPr is a functionP × P → [0,∞] satisfying

• DPr(P,Q) = 0 if P = Q; and

• DPr(P,Q) = ∞ if P and Q are on different measurable spaces (that is, P ∈ P(Ω,F ) and Q ∈

P(Ω′,F ′) with (Ω,F ) 6= (Ω′,F ′)).

Most distances and divergences encountered in statistics and probability theory (including the total
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variation distance, the KL-divergence, the Rényi divergences, the Hellinger distance, the χ2-divergence,

the integral probability metrics and theWasserstein distances) are probability premetrics.

Many of the most popular variants of DP simply replace the multiplicative distance DMult for some

other probability premetricDPr. (Note that technically these variants refer to families of DP flavors, since

they leave the other three building blocks unspecified.) For example, approximate (ε, δ)-DP (Dwork et al.,

2006a) uses the δ-approximate multiplicative premetric Dδ
Mult(P,Q) forDPr:

Dδ
Mult(P,Q) = sup

S∈F

{
ln

[P(S)− δ]+

Q(S)
, ln

[Q(S)− δ]+

P(S)
, 0
}
,

for P,Q ∈ P(Ω,F ), where [x]+ = max{x, 0}. (Clearly Dδ
Mult(P,Q) reduces to Mult(P,Q) when

δ = 0, but for δ > 0, it is generally not a metric. Dδ
Mult is the symmetrization of the δ-approximate

max-divergence (Dwork et al., 2010b).) And ρ-zero concentrated differential privacy (ρ-zCDP) (Bun and

Steinke, 2016) uses the normalized Rényi metric DNoR forDPr:

DNoR(P,Q) = sup
α>1

1√
α
max

{√
Dα(P||Q),

√
Dα(Q||P)

}
,

whereDα is the Rényi divergence of order α:

Dα(P||Q) =


1

α−1 ln
∫ [ dP

dQ

]α
dQ, if P is absolutely continuous wrt.Q,

∞ otherwise.

Here dP
dQ is the Radon-Nikodym derivative of Pwith respect toQ. (Note that we reparameterize ρ so that

DNoR is a metric (Bailie et al., 2025a). This is similar to the parameterization of zCDP given in Canonne

et al. (2022). The original parameterization ρ in Bun and Steinke (2016) is equivalent to ρ2 in our formu-

lation of zCDP.)
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Conceivably, when defining a DP specification, any probability premetric DPr could be used, such as

the total variation distance or a Wasserstein distance. But some choices of DPr are more appropriate for

capturing the notion of data privacy than others. For one, DP flavors are commonly required to be well-

behaved, in the sense that 1) the aggregate privacy loss increases smoothly with additional DP data releases;

and that 2) transformations of the released data do not have weaker DP guarantees than the released data

itself. We will show in Subsection 2.5 that these properties of a DP flavor – called ‘closure under composi-

tion’ and ‘immunity to post-processing’ respectively – are consequences of the choice ofDPr. (For example,

a DP flavor with any of the above choices forDPr will always satisfy composition and post-processing.) It

is natural to select a probability premetricDPr which ensures the composition and post-processing axioms

are satisfied. This is one argument for using some probability premetricsDPr over others.

More fundamentally, DP’s goal is to limit a specific type of inferential disclosure and the probability

premetric DPr plays a crucial role in doing so. For example, all of the above probability premetrics are

concerned with the likelihood ratio L(x | t)/L(x′ | t) in some way and hence they limit likelihood-based

inference (such as hypothesis testing and most Bayesian inference). (For specifics, see the references on

DP semantics given in Subsection 2.3.2.) Adopting choices ofDPr that do not involve the likelihood ratio

should require similar justification in terms of their impact on inferential disclosures.

By comparing Px and Px′ , the probability premetric DPr specifies how to measure differences in varia-

tions in the output t. Because inference is derived from the information inherent in these variations,DPr

is the standard of privacy protection afforded by a DP specification.
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2.4.6 Multi-Parameter Budgets

Many existing DP definitions, such as (ε, δ)-DP, have multi-parameter privacy loss budgets. There are

two options for incorporating these definitions into our system. Firstly, all but one parameter may be in-

cluded insideDPr. This is the approach taken in the previous sectionwhenwe showed that the probability

premetricDPr corresponding to (ε, δ)-DP isDδ
Mult.

The second option is to generalize the definition of a probability premetric to have a multidimensional

codomain [0,∞]d, and replace the inequality≤ in the Lipschitz condition (2.3) with the pointwise partial

order on [0,∞]d. (Recall that this partial order is given by x ≼ y if xi ≤ yi for all i.) This is the approach

taken in f-DP (Dong et al., 2022), whereDPr(P,Q) is the tradeoff functionTr(P,Q) ∈ [0, 1][0,1]. (Recall

that the tradeoff function Tr(P,Q) maps α ∈ [0, 1] to the infimum type II error over all level-α tests

of P (the null) versus Q (the alternative).) Under this approach, (ε0, δ0)-DP would correspond to the

probability premetricD·
Mult which maps a pair (P,Q) ∈ P2 to the function δ 7→ Dδ

Mult(P,Q), along

with the privacy loss budget ε(·) ∈ [0,∞][0,1] given by

ε(δ) =


ε0 if δ = δ0,

∞ otherwise.

Using a multidimensional probability premetric does not affect our formulation of DP specifications as

Lipschitz conditions. For simplicity, wewill not considermultidimensional probability premetrics further,

although all ideas in this paper can be naturally extended to account for this generalisation.
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2.5 Post-Processing and Composition

Two common desiderata for a DP flavor are immunity to post-processing and closure under composition.

This subsection will express these two properties using the vocabulary of Section 2.4. We will then show

that these desiderata are consequences of the choice ofDPr (except in trivial edge cases).

Closure under composition means that the overall privacy loss smoothly increases as more DP outputs

are released. For simplicity, we present the case where the increase in privacy loss is linear:

Definition 2.5.1. A DP flavor (X ,D , dX ,DPr) is closed under linear self-composition if the following

statement holds: For all data-release mechanisms

T1 : X × U1 → T1,

T2 : X × U2 → T2,

and all privacy loss budgets ε(1)D , ε(2)D , ifT1 andT2 both satisfy theDP flavor (X ,D , dX ,DPr)with budgets

ε(1)D and ε(2)D respectively, then the composition mechanism (formally defined in Appendix A.5),

(T1,T2) : X × U1 × U2 → T1 × T2,(
x, (u1, u2)

)
7→
(
T(x, u1),T(x, u2)

)
,

also satisfies (X ,D , dX ,DPr), with budget ε(1)D + ε(2)D .

Often aDP flavor is closed under the composition of data-releasemechanismsT1 andT2 only when the

mechanisms’ seedsU1,U2 are independent (Bailie and Drechsler, 2024). When the composition (T1,T2)

satisfies (ε(1)D + ε(2)D )-DP(X ,D , dX ,DPr) forT1 andT2 with independent seeds, we say that the DP flavor

(X ,D , dX ,DPr) is closed under linear, fresh self-composition. (For a discussion of why non-fresh composi-
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tion is important, see Appendix A.5.)

Immunity to post-processing means that any transformation (i.e. post-processing) of a DP output is

also DP, with the same privacy guarantee:

Definition 2.5.2. A DP flavor (X ,D , dX ,DPr) is immune to post-processing if the following statement

holds: For all data-release mechanisms T : X × U → T , all functions f : T → T ′ and all privacy loss

budgets εD, ifT satisfies εD-DP(X ,D , dX ,DPr) then the post-processingmechanism f◦T : X×U → T ′

(formally defined in Appendix A.5) also satisfies εD-DP(X ,D , dX ,DPr).

Post-processing and fresh composition are properties of the output premetricDPr only. That is, (except

for trivial edge cases) whether or not a DP flavor (X ,D , dX ,DPr) is immune to post-processing or closed

under fresh composition depends only onDPr, as illustrated by the following two propositions.

Recall thatP(Ω,F ) is the set of all probability measures defined on the measurable space (Ω,F ).

Proposition 2.5.3. Fix a probability premetric DPr. TheDPflavor (X ,D , dX ,DPr) is closed under linear,

fresh self-composition for all choices ofX ,D and dX if and only if, for all P,Q ∈ P(Ω,F ) and all P′,Q′ ∈

P(Ω′,F ′),

DPr(P× P′,Q× Q′) ≤ DPr(P,Q) +DPr(P
′,Q′). (2.10)

Proposition 2.5.4. Fix a probability premetric DPr. The DP flavor (X ,D , dX ,DPr) is immune to post-

processing for all choices of X ,D and dX if and only if, for all P,Q ∈ P(Ω,F ), and all measurable f :

(Ω,F )→ (Ω′,F ′),

DPr
[
P,Q

]
≥ DPr

[
f⋆(P), f⋆(Q)

]
, (2.11)

where f⋆(P) is the push-forward probability f⋆(P)(S) = P[f−1(S)].
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When f is a randomized function, (2.11) is the data-processing inequality forDPr (Cover and Thomas,

2005). Immunity to post-processing by a random f is implied by non-random post-processing (Defini-

tion 2.5.2) by first composing Twith the random seed of f, which has zero privacy loss since it is constant

in x (see Appendix A.5).

Blackwell’s theorem establishes a connection between post-processing and the tradeoff function Tr,

which is defined as follows: For P,Q ∈ P(Ω,F ), the tradeoff Tr(P,Q)(α) is the supremal power of a

level-α test between P (the null) and Q (the alternative). A recent result of Su (2024) shows that (2.11)

impliesDPr is a function ofTr. We extend this result by proving the converse, thereby establishing another

characterization of post-processing:

Theorem 2.5.5. Fix a probability premetric DPr. The DP flavor (X ,D , dX ,DPr) is immune to (random-

ized) post-processing for all choices of X ,D and dX if and only if DPr = λ ◦ Tr for some non-decreasing

function λ.

It is straightforward to verify thatDPr = DMult satisfies (2.11) and (2.10). Hence, the DP flavor (X ,

D , dX ,DMult) is always immune to post-processing and closed under linear, fresh self-composition. The

DP flavor (X ,D , dX ,DNoR) is also immune to post-processing and closed under fresh self-composition.

However, instead of linear composition ε(1)D + ε(2)D , the privacy loss of (T1,T2) is bounded by
√

ρ21 + ρ22

when Ti satisfies ρi-DP(X ,D , dX ,DNoR) (assuming T1 and T2 have independent seeds).

We leave to other work discussion on the composition of multi-parameter flavors – such as (X ,D , dX ,

Dδ
Mult), which measures its privacy loss budget in terms of ε and δ (Dwork et al., 2010b; Kairouz et al.,

2017; Steinke, 2022) – and the composition of multiple DP flavors (e.g. what flavor does T = (T1,T2)

satisfy for mechanisms T1 and T2 which satisfy different DP flavors?). This second topic is important for
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quantifying the total privacy loss across multiple DP data releases in the likely scenario that these releases

do not all share the same DP flavor. (For example, different preprocessing procedures may be used for the

different data release, so that the DP flavors have different values for their domain X .) In this scenario,

self-composition does not apply and so new results on the composition of multiple flavors will be needed

in order to assess an individual’s aggregate privacy loss.
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3
Invariant-Preserving Deployments of

Differential Privacy for the US Decennial
Census1

3.1 Motivations and Contributions

3.1.1 Data Privacy with Invariant Constraints

In 2018, the United States Census Bureau (USCB) announced an overhaul of its disclosure avoid-

ance system (DAS) (Abowd, 2018). TheDAS for the 1990, 2000 and2010USDecennialCensuses primar-

ily consisted of a data swappingmethod (Dalenius andReiss, 1982; Fienberg andMcIntyre, 2004), which

permuted the geographical data of a randomly selected subset of households (McKenna, 2018). The pro-

tection provided by this statistical disclosure control (SDC) method has traditionally been justified with

1Based on work coauthored with Ruobin Gong and Xiao-Li Meng.
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intuitive arguments. In contrast, the DAS for the 2020 Census would be redesigned from the ground up

with the primary goal of supplying a mathematical guarantee of protection. Moreover, this guarantee, the

USCB decided (Abowd, 2018), must be some type of differential privacy (DP) (Dwork et al., 2006b) –

a large family of technical standards (Desfontaines and Pejó, 2022) which characterize the ‘privacy’ of an

SDCmethod in terms of its sensitivity to counterfactual changes in its input data.

However, therewere other priorities for the 2020Census, some ofwhich complicated a straightforward

adoption of DP. In particular, state population counts are legislatively required to be published exactly as

counted, whereas, DP – at least as originally defined in Dwork et al. (2006b) – requires that these counts

be infused with random noise. The USCB’s TopDown Algorithm (TDA) addresses this conflict by first

adding DP-calibrated noise to all of the 2020 Census data and then removing this noise from a set of key

statistics, called invariants, via a complex optimization procedure (Abowd et al., 2022a). These invariants

include not only the state population totals but also the counts of housing units at the lowest level of Cen-

sus geography, amongst other statistics (see Table 3.4). (More generally, invariants refer to any summaries

of the confidential data that are released without modification.)

A complete and rigorous assessment of TDA’s mathematical guarantee of protection must address the

entire procedure, including both the noise infusion in the first step and the noise removal due to the in-

variant constraints in the second step. A guarantee for the first step is easy to determine, because it follows

an established DP method for adding noise to the confidential counts (Canonne et al., 2022). However,

the second step, as the Census Bureau’s own assessment makes clear (Ashmead et al., 2019), is particularly

challenging to analyze because it does not immediately align with standard formulations of DP, includ-

ing those which the 2020DAS invoked (zero-concentrated DP), referenced (approximate DP), or at some
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point considered (pure DP) (Abowd et al., 2022a).

The issue is that these formulations of DP do not permit consideration of the multiple counterfactual

data universes induced by TDA’s invariants. Yet, as we will see, to spell out these universes is key to ar-

ticulating TDA’s actual guarantee of SDC. This same point also applies to any data swapping algorithm,

which by definition keeps invariant all counts that are unaffected by its swapping operation. However,

these invariants are inevitably much more numerous than the TDA’s – an important observation when

comparingdata swappingwith theTDAbecause, as thenumber of invariants increases, their impact ranges

fromnegligible to completely nullifying any supposed guarantee of protection. Nevertheless, conceptually

andmathematically, all invariants can be handled in a unified way, making it possible to compare different

invariant-preserving SDCmethods within the same theoretical system.

3.1.2 A System of DP Specifications

Intuitively speaking, the impact of invariants on SDC is similar to conditioning in statistical inference, that

is, constraining the possible states of the confidential data by known or assumed information. Indeed, the

procedure for infusing invariants into aDP formulation parallels the process of disintegrating a probability

into a collection of conditional probabilities. The overall mathematical notion of probability (or of DP)

remains the same; the difference is that now there aremultiple probabilities (orDP formulations) – one for

each possible value of the conditioning random variable (or invariant) – each living on a restricted space.

Even setting aside the adjustments required for invariants, the plethora of existing DP formulations

differ across several other dimensions (Desfontaines and Pejó, 2022). As such, DP can vary widely in form

and spirit (Dwork et al., 2019), making it difficult to 1) understand what it means for an SDC method

to be DP and 2) objectively compare different DP deployments in a systematic way – two tasks which are
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central to the goals of this paper. Our own confusion regarding this state of affairsmotivated us to explicate

a system ofDP specifications, which we describe in a companion article titled “ARefreshment Stirred, Not

Shaken (I): Five Building Blocks of Differential Privacy” (Bailie et al., 2025b). (We will refer to this article

as Part I hereafter.)

The phrase, “a refreshment stirred, not shaken,” is intended to emphasize that the system described in

Part I is not new, but simply a synthesis of existing literature. Indeed, this system is in essence the formal-

ization of three principles which we believe are widely accepted in the DP community. The first principle

states that a DP formulation is a technical standard which requires the rate of change, or ‘derivative,’ of

an SDC method to be controlled (hence the epithet ‘differential’). The second principle asserts that the

rate of change of an SDC method is defined as the change in the probability distribution of the method’s

output, per unit change in its input data. And the third principle observes that different DP formulations

correspond to different choices for how and where to measure these changes, as well as howmuch to con-

trol the associated rate of change. We call these choices the building blocks of DP. Part I identifies five such

building blocks:

• TheDomainX : a set of datasets x;

• TheMultiverse D ⊂ 2X : a set of universesD ⊂ X ;

• The Input Premetric dX : a dissimilarity measure onX ;

• TheOutput Premetric DPr: a dissimilarity measure between probability distributions; and

• The Privacy-Loss Budget εD: a functionD → [0,∞].
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A thesis of the system developed in Part I is that formulating DP requires instantiating choices for each

of these five building blocks. A collection of such choices is called aDP specification, while choices for the

first four building blocks define aDP flavor.

Definition 3.1.1 (Definition 2.4.4). A data-release mechanism (aka SDC method) T : X × U → T

satisfies the DP specification εD-DP(X ,D , dX ,DPr) if, for all universesD ∈ D and all x, x′ ∈ D,

DPr

[
P
(
T(x,U) ∈ ·

)
,P
(
T(x′,U) ∈ ·

)]
≤ εDdX

(
x, x′
)
, (3.1)

where P is the probability distribution induced by the random seedU ∈ U , taking x or x′ as fixed.

From the perspective provided by the system of DP specifications, there are two possible ways that in-

variants can naturally be integrated with DP. Firstly, one can set dX (x, x′) =∞ if x and x′ disagree on the

invariants. (This shows that the formulations ofDPwhich use theHamming distance dHam have as invari-

ant the dataset size because dHam(x, x′) =∞whenever x and x′ have a different number of records.) The

second approach for encoding invariants into a DP specification is through the multiverseD . Specifically,

for invariant statistics c : X → Rk, define the invariant-induced universe function

Dc(x) = {x′ ∈ X : c(x) = c(x′)}, (3.2)

and the invariant-inducedmultiverseDc = {Dc(x) : x ∈ X}. Either of these twoapproaches has the same

result: it ensures that the Lipschitz condition (3.1) only bounds the dissimilarity betweenP
(
T(x,U) ∈ ·

)
and P

(
T(x′,U) ∈ ·

)
when x and x′ agree on the invariants. Intuitively, this is the same as conditioning

on the invariants, except that a-priori we do not know the realized value of the invariants and hence the

DP specification must account for all possible values through the multiverseDc, rather than conditioning

on any one particular universe Dc(x). As a concrete example, a DP specification for the TDA should
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guarantee SDC regardless of what the actual value of the US total population count turns out to be. As

such, requiring theLipschitz condition (3.1) to hold for anyparticular universewouldbe insufficient, since

each universe corresponds to a specific total population count, along with specific values for the TDA’s

other invariants. Ensuring the Lipschitz condition (3.1) holds for all possible population counts is a key

rationale for the concept of the multiverseD , over and above that of a single universeD.

3.1.3 Paper Contributions andOrganization

Section 3.2 introduces data swapping and determines the invariants induced by it. It formally defines

the Permutation Swapping Algorithm (PSA), which is a data swapping method with similarities to the

2010 Census DAS.We prove that the PSA satisfies a DP specification (Theorem 3.2.4), and we show how

its privacy loss is determined by the swap rate and the maximal size of the swapping strata. The PSA’s

DP specification is stated formally in Subsection 3.2.3, after we first define some necessary notation, but

intuitively it can be thought of as ‘ε-DP (Dwork et al., 2006b) subject to the invariants inducedby the PSA.’

While this means the PSA’s specification differs from conventional formulations of DP, this specification

nevertheless provides a mathematical description of the SDC provided by the PSA. As such, this result

adds to a growing body of literature showing that – even though they were designed without DP in mind

– traditional SDCmethods can still be fruitfully analyzed from the perspective of DP (Rinott et al., 2018;

Bailie and Chien, 2019; Chien and Sadeghi, 2024; Neunhoeffer et al., 2024).

In Section 3.3, we move to the 2020 Census and subject zero-concentrated DP (zCDP) (Bun and

Steinke, 2016) to the TDA’s invariants, thereby deriving a DP specification for the TDA. Theorem 3.3.1

proves that the TDA satisfies this DP specification, while also showing that this specification is tight in the

sense that the TDA can only satisfy DP subject to its invariants.
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Broadening our scope, Section 3.4 compiles DP specifications for all the primary 2020 Census data

products, which we aggregate into a single specification covering the 2020 Census as a whole. This spec-

ification describes the SDC protection afforded to the 2020 Census data across all major 2020 releases.

Naturally, this begs comparison to the counterfactual scenario in which the PSA was used for protecting

the 2020 Census. As such, we also supply a DP specification for this counterfactual scenario.

Other contributions of this paper include: an application of the PSA to the 1940 Census (Subsec-

tion 3.2.4); an estimate of theDP specification associatedwith the 2010Census under the assumption that

the PSAwas used as the 2010DAS (Subsection 3.2.5); a summary of the mechanics of the TDA, focusing

on aspects which are salient to SDC (Section 3.3); a determination of the protection (or privacy) units for

the 2020 Census as ‘post-imputation persons’ with a discussion of why this matters (Subsection 3.4.4);

and an exposition of the 2010 DAS through a comprehensive review of publicly-available information

(Appendix B.6), along with a comparison between the 2010 DAS and the PSA (Subsection B.6.1) and a

discussion of ways the PSA could be modified to further align with the 2010 DAS while still preserving

its DP flavor (Subsection B.6.2). Background on data swapping and other related work are provided in

Appendices B.1 and B.2 respectively.

3.2 A DP Analysis of Data Swapping

3.2.1 Data Swapping

Given a dataset x, partition its set of variablesV into two non-empty subsets: the swapping variables VSwap

and the holding variables VHold. A data swapping algorithm randomly selects some records of x and inter-

changes the values of their swapping variables VSwap. (The values of their holding variables VHold remain

the same.) This creates a new dataset consisting of individual records whose VHold values are as originally
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observed and whose VSwap values are possibly different. The exact procedure for selecting records and

interchanging theirVSwap values varies between different data swapping methods.

Sometimes, swapping is restricted to records which share the same values on a subset of the holding

variables VHold, called the matching variables VMatch. Also referred to as the swap key (McKenna, 2018;

Abowd and Hawes, 2023), the matching variables are often important characteristics of the data popu-

lation, as swapping records with different VMatch values is prohibited. Whenever VMatch is nonempty,

records are partitioned into strata according to theirVMatch values and data swapping is repeated indepen-

dently within each stratum.

Example 3.2.1. This example is a simplification of the disclosure avoidance system (DAS) for the 2010US

Decennial Census. Represent the 2010Census data as a list of household records, whose variables include

all the household’s characteristics, as well as the questionnaire responses from each individual associated

with that household. The matching variables VMatch (i.e., swap key) include both the number of voting

age persons and the total number of persons in the household. VMatch also includes a geographic vari-

able Vg (see US Census Bureau (2021e)), either the Census tract, county or state of the household. (The

exact choice of Vg has never been made public by the USCB.) VSwap are the geographic variables nested

underneath Vg. For example if Vg is the county, then VSwap is the block and tract of the household. All

other variables belong to VHold – in particular, the household and person characteristics. One can imag-

ine the 2010 DAS as digging up pairs of houses of the same size in the same geographic area and swapping

their locations but not changing the houses and their occupants. In the 2010 DAS, each household is

assigned a risk score based on the USCB’s assessment of how unique the household is within its neigh-

bourhood. These risk scores are used to compute each household’s probability of being swapped. Every
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(non-imputed) household has a non-zero swap probability. Selected households are then swapped with

one of their neighbours. (See Appendix B.6 for a detailed description of the 2010 DAS and references for

this information.)

3.2.2 What Invariants Does Swapping Preserve?

Swapping is, very loosely, a synthetic data generation mechanism. Given a dataset x as input, swapping

produces a ‘privacy enhanced’ version Z of x. Both x and Z contain the same variables as well as the same

number of records. Hence, the invariants of swapping are determined by examining what swapping does,

and does not, change in the data.

Consider the dataset x as a matrix whose rows correspond to the records of x and whose columns cor-

respond to the variables V of x. Without loss of generality, the holding variables are ordered before the

swapping variables so that x can be partitioned as [xHold, xSwap]. A swapping algorithm randomly selects a

permutation σof the rowsof x and interchanges the rowsof thematrix xSwap according to σ. This operation

yields xσSwap, whose ith row is given by the σ(i)-th row of xSwap. This defines the swapped dataset Z as the

matrix [xHold, xσSwap], and the swapping mechanism releases as its output the fully-saturated contingency

table generated by Z.

One can see that after swapping, any statistic generated by only the matrix xHold is invariant. Moreover,

since VMatch is identical among swapped records, any statistic generated by only xMatch and xSwap is also

preserved by swapping. Only statistics that dependnontrivially onboth variablesVSwap andVHold\VMatch

can be altered by swapping.

Proposition 1. Suppose that VHold \VMatch and VSwap are non-empty. Then, without loss of generality, we

may assume that each of VMatch,VSwap and VHold \ VMatch are univariate. Denote a value of the matching

102



variable VMatch by m. Similarly, let h and s be values of VHold \ VMatch and VSwap respectively.

Disregarding the ordering of records, the dataset x can be represented as a 3-dimensional contingency table

H(x) = [nxmhs] of counts in each combination of possible values for m, h and s. (We will omit the superscript x

when it is clear from the context.) In general, interior cell counts nmhs are not preserved under swapping and

neither are the margins n·hs =
∑

m nmhs. But swapping does keep nm·s =
∑

h nmhs and nmh· =
∑

s nmhs

invariant.

Proof. First we justify why we can assume that VMatch,VSwap and VHold \ VMatch are univariate (i.e. that

these variable sets are singletons). If VMatch is empty, replace it with a set consisting of a new variable

taking the same value on every record. And if either of VMatch, VSwap or VHold \ VMatch has more than

one variable, then cross-classify these variables into a single variable. Neither of these two operations will

change the behavior of a swappingmethod, sowemayuse them to ensureVMatch,VSwap andVHold\VMatch

are univariate.

Since every permutation σ can be written as the composition of swaps (i.e. 2-cycles), it suffices to show

that all possible swaps preserve nm·s and nmh· but not necessarily n·hs. A swap pairs a record a in categories

mhswith a record b inmh′s′. It moves a tomh′s and b tomhs′. The matching categorym is the same in a

and b by construction. Unlessm = m′ or s = s′, after the swap nmhs and nmh′s′ decrease by one, and nmh′s

and nmhs′ increase by one. Hence, nm·s and nmh· remain unchanged but n·hs changes whenever h 6= h′ and

s 6= s′.

Example 3.2.1 (continued). In the 2010USCensus DAS, the number of adults, children and households

in each block are invariant. (This is the nm·s margin.) The counts of all the person and household charac-

teristics inside each Vg are also invariant. (This is the nmh· margin.) For example, if Vg is the county, then
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the aggregate characteristics at the county level remain unchanged by swapping, but these aggregates at the

block and tract level are perturbed.

Definition 3.2.2. Under the setup of Proposition 1, define the swapping invariants cSwap(x) for a given

choice of VMatch,VSwap and VHold as the vector of all margins nmh· and nm·s, for all possible values of

m, h and s. For example, ifVMatch,VHold \VMatch andVSwap take values in {1, . . . ,M}, {1, . . . ,H} and

{1, . . . ,S} respectively, then

cSwap(x) =
[
n11· n12· · · · nMH· n1·1 n1·2 · · · nM·S

]T
.

As the following example illustrates, we do not have complete flexibility in choosing the invariants of

swapping.

Example 3.2.3. In the 2020 TDA, there are three invariants: 1) the number of people in each state; 2)

the number of housing units in each block; and 3) the count of each type of occupied group quarters

(e.g. residence halls, nursing facilities, prisons) in each block (US Census Bureau, 2021d). We cannot

design a swapping algorithm which preserves these – and only these – invariants. In other words, the

2020USCensus invariants do not correspond to any swapping invariants cSwap, regardless of the choice of

VMatch,VSwap andVHold. Why? Swapping always preserves the one-dimensional marginals: nm··, n·h· and

n··s; but the 2020 US Census DAS does not. For example, the number of 25-34 year old people in the US

is not invariant under the 2020 TDA, but it must necessarily be invariant under any swapping algorithm.

3.2.3 Permutation Swapping Satisfies ε-DP Subject to Its Invariants

In this section, we design a specific data swapping algorithm – called the Permutation Swapping Algo-

rithm (PSA) to distinguish it fromother data swappingmethods –which satisfies theDPflavor (X ,DcSwap ,
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drHamS,DMult). HereX denotes any set of datasets which all have the same common set of variables, and

drHam denotes theHamming distance (formally defined in (A.3))) at the resolution r of the PSA’s swapping

procedure. For example, if the PSA swapped records which correspond to individual persons, then the in-

put premetric of the PSA’s DP flavor would be the Hamming distance dpHamS on person-records. Alterna-

tively, the PSA could swap household-records, in which case its input premetric would be the Hamming

distance dhhHamS at the resolution of households. (This distinction will become important when we com-

pare the PSA with the TDA.) The output premetric of the PSA’s DP flavor is the multiplicative distance,

which underlies pure ε-DP (Dwork et al., 2006b) and is defined as:

DMult(P,Q) = sup
E∈F

∣∣∣∣ln P(E)
Q(E)

∣∣∣∣, (3.3)

for two probabilities P andQ on the measurable space T with σ-algebraF .

While the PSAwas not used in 2010, a specific instantiation of it does reflect the essential features of the

2010 DAS’s data swapping algorithm (Subsection 3.2.5). However, certain aspects of the PSAwere made

with the specific goal of satisfying DP. For example, a swapping method cannot satisfy (X ,DcSwap , drHamS,

DMult)if the number of swaps itmakes is fixed. (To be clear, based on the available public information, we

do not believe the 2010 DAS fixes the number of swaps, although it does appear to control this number

to some degree.) To see this, suppose that a possible output dataset z differs from x ∈ D0 by m swaps

and from x′ ∈ D0 bym + 1 swaps. If the swapping methods allows a maximum ofm swaps, then z has

non-zero probability given x as input but zero probability given x′, thereby violating εD-DP(X ,DcSwap ,

drHamS,DMult) for any finite εD0 . More generally, a necessary condition for a swapping method to satisfy

εD-DP(X ,DcSwap , drHamS,DMult) for finite εD0 is that, given input x ∈ D0, any dataset x′ ∈ D0 has a

non-zero probability of being outputted (up to reordering of the rows of x′).
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To ensure this condition, rather than swapping rows of xSwap in the same matching category m, the

PSA instead randomly permutes these rows, a type of data swappingmethod introduced inDePersio et al.

(2012). Since we do not want to permute every row of xSwap, rows are randomly selected, independently

with probability p, and only these selected rows are shuffled. Or, more accurately, after selecting rows of

xSwap with matching valuem, the PSA samples uniformly at random a permutation σm : {1, . . . , n···} →

{1, . . . , n···}which fixes nonselected rows (i.e. σm(i) = i for all nonselected i), and deranges selected rows

(i.e. σm(i) 6= i for all selected i). This process is repeated for all values ofm so that the final dataset, after

all permutations have been applied, is given by Z = [xHold, xσSwap], where σ is defined by σ(i) = σm(i) for

record iwith matching categorym. In the case that only one record was selected, there are no possible σm

and so records are re-selected. Hence, the probability that a record with matching categorym is swapped

is p
∑nm··−1

j=1
(nm··−1

j
)
pj(1 − p)nm··−1−j. When nm·· � 1, the expected fraction of records which will have

their swapping variables interchanged is approximately p. For this reason, we call p the swap rate.

Pseudocode for the PSA is provided in Algorithm 3.2.1. The output is a fully-saturated contingency

table C(Z) = [nZmhs] (i.e. a 3-way tensor) computed on the swapped dataset Z. When VMatch,VHold \

VMatch andVSwap all take a finite number of values,C(Z) = [nZmhs] is a collection ofMmatricesCm(Z) =

[nZmhs], for m = 1, . . . ,M, each of which has dimension H × S . This contingency table C(Z) fully

determines Z up to re-ordering of the rows of Z.

Theorem 3.2.4. SupposeX is such that every dataset x ∈ X shares the same common set V of variables which

is partitioned into VSwap and VHold. Let VMatch ⊂ VHold be the (possibly empty) set of matching variables

and

b = max{0, nm·· | there are two records with different values in matching stratumm}.
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Suppose that the PSA (Algorithm 3.2.1) permutes records of resolution r. Then it satisfies εD-DP(X ,DcSwap ,

drHamS,DMult) with

εD =



0 if b = 0,

ln(b+ 1)− ln o if 0 < p ≤
√
b+1√

b+1+1 and b > 0,

ln o if
√
b+1√

b+1+1 ≤ p < 1 and b > 0,

∞ if p ∈ {0, 1} and b > 0,

(3.4)

where o = p/(1− p).

It is worth noting that the monotonic increase of εD with bmay seem counter intuitive, until one real-

izes that the privacy loss budget quantified inTheorem3.2.4 does not include the loss due to the invariants

themselves. In other words, the more invariants the PSA imposes – which tends to lead to smaller b – the

less information there is left for the PSA to protect, and hence it is easier to achieve smaller εD. This phe-

nomenon is not unique to the PSA, but reflects the fundamentally relative nature of DP. See Section 3.5

and Part III (Bailie et al., 2025d) for more discussions, especially regarding how this relative nature of DP

provides a perverse way of achieving seemingly low privacy loss budget while increasing disclosure risk.

A proof of Theorem 3.2.4 is presented in Appendix B.3. Here we give a broad sketch for the case

0 < p ≤ 0.5 and b > 0. Because
√
b+ 1/(

√
b+ 1 + 1) > 0.5, we need to show, for fixed datasets x, x′

and z in the same universeD ∈ DcSwap , that the budget εD = ln(b+ 1)− ln o satisfies the inequality

P[C([xHold, xσSwap]) = C(z)] ≤ exp(kεD)P[C([x′Hold, x
′σ′
Swap]) = C(z)], (3.5)

where k = drHamS(x, x′). The probabilities in (3.5) are over the random sampling of the permutations σ
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Algorithm 3.2.1:The Permutation Swapping Algorithm (PSA)
Input: A dataset x ∈ X whose variable setVwhich is partitioned intoVHold andVSwap,
and a setVMatch ⊂ VHold of matching variables which define the matching strata.
1: Set Z← x
2: for allmatching stratam do
3: if nm·· = 0 or nm·· = 1 then
4: continue
5: end if
6: for record i in stratumm do
7: Select iwith probability p
8: end for
9: if 0 records selected then

10: continue
11: else if exactly 1 record selected then
12: Deselect all records
13: go to line 6
14: end if
15: Sample uniformly at random a permutation σm which fixes the unselected records and

deranges the selected records
16: /* Permute the swapping variables according to σm: */
17: Z← [ZHold,Zσm

Swap]
18: Deselect all records
19: end for
20: return fully-saturated contingency table C(Z)

and σ′ in Algorithm 3.2.1. We can show that there exists a derangement ρ of k records such that C(x) =

C([x′Hold, x
′ρ
Swap]) (Lemma B.3.4). (A derangement is a permutation which does not fix any rows.) More-

over, there is a bijection between the possible σ and σ′ given by σ′ = σ ◦ ρ. Hence, if kσ is the number of

records deranged by σ, we have

kσ − k ≤ kσ′ ≤ kσ + k. (3.6)

For such pairs of possible σ and σ′, the ratio P(σ)/P(σ′) can be bounded in terms of okσ−kσ′ and the ratio

between the number of derangements of size kσ′ and of size kσ. For o ≤ 1, this can in turn be bounded by
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(b+ 1)ko−k using the inequality (3.6). Hence εD = ln(b+ 1)− ln o does indeed satisfy (3.5).

In Appendix B.4, we prove that the privacy-loss budget εD for the PSA given in Theorem 3.2.4 is tight

in the weak sense that under some mild assumptions the difference between the right and left sides of the

inequality (3.5) is arbitrarily close to zero for some choice of x, x′ and z.

Remark 3.2.5. Since nj·· is an invariant, nxj·· = nx′j·· for all x and x′ in the same universe. Thus, b is a

function ofD and hence so is the privacy-loss budget εD given in (3.4). In the context of the PSA, we will

use ε to denote the value of εDcSwap (x∗) under the universeDcSwap(x∗) corresponding to the realized data x∗.

Wewill also report the PSA’s privacy loss budget in terms of this value ε and omit the values of εD for other

universesD. Even though it is a function of the realized data x∗, the value of ε can still be publicly reported

under the PSA’s DP specification without additional privacy loss (Corollary A.2.2).

3.2.4 ANumerical Demonstration: The 1940 Census Full Count Data

We demonstrate the PSA using the 1940 US Decennial Census full count data, obtained from IPUMS

USA Ancestry Full Count Database (Ruggles et al., 2021). For the 1940 Census, the smallest geography

level is county, hence swapping is performed among household units across counties within each state,

where each household’s county indicator is set to be VSwap. The matching variables (or swap key) VMatch

are the number of persons per household and the household’s state. Our analysis is focused on the owner-

ship status of household dwellings, an indicator variable taking value of either owned (including on loan)

or rented. This is our VHold \ VMatch. The invariants cSwap induced by this swapping scheme include 1)

the total number of owned versus rented dwellings at each of the household sizes at the state level, and 2)

the total number of dwellings at each of the household sizes at the county level. In our notation, these are

the nm·s’s and the nmh·’s, respectively.
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county owned rented total owned rented total
(swapped) (swapped) (swapped)

Barnstable 7461 3825 11286 5907 5379 11286
Berkshire 14736 18417 33153 13770 19383 33153
Bristol 33747 63931 97678 35537 62141 97678
Dukes 1207 534 1741 946 795 1741
Essex 53936 81300 135236 52631 82605 135236
Franklin 7433 6442 13875 6337 7538 13875
Hampden 30597 58166 88763 32267 56496 88763
Hampshire 9427 8630 18057 8145 9912 18057
Middlesex 104144 147687 251831 100372 151459 251831
Nantucket 593 432 1025 471 554 1025
Norfolk 44885 40285 85170 38566 46604 85170
Plymouth 24857 23882 48739 21549 27190 48739
Suffolk 49656 176553 226209 67357 158852 226209
Worcester 53126 78535 131661 51950 79711 131661

total 435805 708619 1144424 435805 708619 1144424

Table 3.1: A comparison of two-way tabulations of dwelling ownership by county based on the 1940 Census full count for the

state of Massachusetts (left) and one instantiation of the PSA at p = 50% (right). Total dwellings per county, as well as total

owned versus rented units per state, are invariant. All invariants induced by the PSA are not shown.

We restrict our illustration to the state ofMassachusetts. Table 3.1 compares the two-way tabulations of

dwelling ownershipby countybasedon the original data andone instantiationof the swappingmechanism

using a high swap rate of p = 50%. The rowmargin of either table is the county-level total dwellings and

is invariant due to n·h· =
∑

m nmh·. The column margin is the total number of owned versus rented

dwellings in Massachusetts and is invariant due to n··s =
∑

m nm·s.

Table 3.2 supplies the conversion between different swap rates to the privacy loss ε of the PSA. Under

the current swapping scheme, the largest stratum size delineated by VMatch is b = 264, 331, consisting

of all two-person households of Massachusetts. Therefore by (3.4), we see that a low swap rate of 1%

corresponds to ε = 17.08, whereas a high swap rate of 50% corresponds to ε = 12.48. It is worth noting
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p 0.01 0.05 0.10 0.50
ε 17.08 15.43 14.68 12.48

Table 3.2: Conversion of (expected) swap rate p to privacy loss ε. Under this swapping scheme, the largest stratum size is b =
264, 331, the number of all two-person households ofMassachusetts.

that since the invariants cSwap are fixed in this analysis, the different values of ε presented in this table can be

directly interpreted as SDC guarantees of different quantified strengths. On the other hand, as we alluded

to earlier, the privacy losses corresponding to different invariants cSwap are not directly comparable – see

the discussion in Section 3.5.

We also examine the accuracy of the two-way tabulation as a function of swap rate. Figure 3.1 shows

the mean absolute percentage error (MAPE) in the two-way tabulation induced by swapping at different

swap rates from 1% to 50%. The variability across runs is small: each boxplot reflects 20 independent runs

of the PSA.

Here, themean absolute percentage error of a swapped table from its true table is defined as the cell-wise

average of the ratio between their absolute differences and the true table values. The MAPE in Figure 3.1

is with respect to the contingency table of county by dwelling ownership in Massachusetts and is defined

in the notation of Proposition 1 as

1
HS

∑
h,s

∣∣nx·hs − nZ·hs
∣∣

nx·hs
,

where x is the true table, Z is the swapped table, h is the county indicator and s whether the house was

rented or owned.

The accuracy assessment we demonstrate here is highly limited. The analysis above assesses only cell-

wise departures of the swapped two-way marginal table from its confidential counterpart. It does not cap-

ture potential loss of data utility in terms of multivariate relational structures. It is well understood in the
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Figure 3.1: Mean absolute percentage error (MAPE) in the two-way tabulation of dwelling ownership by county induced by the

PSAapplied to the1940Census full count data ofMassachusetts, at different swap rates from 1% to50%. Eachboxplot reflects

20 independent runs of the PSA at that swap rate.

literature that swapping erodes the correlation between VSwap and VHold \ VMatch; see e.g. Slavković and

Lee (2010); Drechsler andReiter (2010);Mitra andReiter (2006). For the current example, thismeans the

county-wide characteristics of household dwellings (other than their size) are not preserved, but othermul-

tivariate relationships are. While an in-depth investigation into the utility of swapping is out of scope of

this paper, we return to the subject of data utility in Part III (Bailie et al., 2025d) to discuss the implication

this work may have on that line of inquiry.

3.2.5 Estimating the DP Specification of the 2010 DAS

Ifwe entertain the assumption that the 2010DAS implemented thePSA,we couldobtain a crude sketchof

the SDCguarantee afforded to the 2010Census data. (We examine the validity of this assumption in detail

in Appendix B.6.1.) As detailed in Example 3.2.1, the 2010 DAS swapped household records. Therefore,

the DP flavor for the 2010DASwould be (XCEF,DcSwap , dhhHamS,DMult). Here the domainXCEF is the set
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of all possible Census Edited Files, where the term Census Edited File (CEF) refers to the dataset which is

inputted into the USCB’s DAS and consists of the Census data after editing and imputation.

The 2010 DAS utilized a swap key which included household size as well as household voting age pop-

ulation and some geography (either tract, county or state). As we are unable to locate 2010 Census data

products that allows for the precise calculation of b pertaining to this particular swapping scheme, the

swap key we consider here is coarser as it does not accounting for the household count of voting age per-

sons. However, settingVMatch to be ‘state× household size’ would imply b = 3.65 million, which serves

as an upper bound for the actual b for the 2010 Census. Combined with a purported swap rate p between

2-4% (boyd and Sarathy, 2022) we arrive at (an overestimate of) the nominal ε to be between 18.29 and 19.

We emphasize that this value of ε does not necessarily reflect the privacy loss budget of the 2010 DAS, but

rather the privacy loss of the PSA when we choose its parameters to reflect what we know about the 2010

DAS.

As is always the case, this privacy loss budget must be interpreted within the context of its DP flavor.

Crucially, the DP flavor (XCEF,DcSwap , dhhHamS,DMult) for the above instantiation of the PSA includes the

invariantsVHold andVSwap×VMatch (Proposition 1). Under the 2010 parameter choices, these invariants

are the counts of households by number of occupants at the block level, and all cross-classifications of

non-geographical variables at the state level. The values of ε provided above are modulo any SDC leakage

caused by the release of these invariants.

3.3 A DP Analysis of the TopDownAlgorithm

This section provides a DP specification for the TopDown Algorithm (TDA) (US Census Bureau, 2023l;

Abowd et al., 2022a). The TDA was used to produce the P.L. 94-171 Redistricting Summary File (PL)
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(USCensus Bureau, 2021a,b) and theDemographic andHousingCharacteristics File (DHC) (USCensus

Bureau, 2023c) for the 2020Census. Four other products – theDemographic Profile (USCensus Bureau,

2023e), the Privacy-ProtectedMicrodata Files (PPMF) (USCensus Bureau, 2024b), theRedistricting and

DHCNoisy Measurement Files (NMF) (US Census Bureau, 2023h,b) and 118th Congressional District

Summary File (USCensus Bureau, 2023a) – were also derived during the production of the PL andDHC

files. Hence the publication of these four additional data products do not contribute to additional privacy

loss, and our SDC guarantees for the PL and DHC files automatically extend to cover the release of all six

products.

We prove in Theorem 3.3.1 that the TDA satisfies zero concentrated DP (zCDP) (Bun and Steinke,

2016) subject to its invariants. Specifically, the TDA satisfies the DP flavor (XCEF,DcTDA , d
p
HamS,DNoR),

where DNoR is the normalized Rényi metric (Section 2.4.5) and DcTDA is the multiverse induced by the

TDA’s invariants: the state population totals; the total number of housing units in each census block; and

the count of each type of occupied group quarters in each block. By proving that the TDA cannot satisfy

ρ-zCDP (with input premetric dpHamS) for any finite ρ without conditioning on these invariants, we will

also show that the TDA’s DP flavor must haveDcTDA (or a refinement of DcTDA) as its multiverse.

The TDA, summarized in Algorithm 3.3.1, was run twice for the 2020 Census – once to produce the

PL file and then a second time for the DHC file. It is a two step procedure: The first step (called the

“measurement phase” in Abowd et al. (2022a)) produces the NMF Tp(xp) and Th(xhh). Here xp and xhh

denote the representations of the Census Edited File at the person and household levels respectively. The

NMF are privacy-enhanced versions of tabular summaries Qp(xp), at the person level, and Qh(xhh), at

the household level, respectively. (In this section, we will include group quarters as households for the
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purposes of conciseness.) The tabular summaries Qp(xp) and Qh(xhh) are different for the PL and DHC

files, but, roughly, they are the statistics (without privacy noise) that the US Census Bureau would like to

include in each of these files. For example, when releasing the PL file,Qp(xp) andQh(xhh) are the statistics

in this file, but aggregated directly from the Census microdata without any privacy protection. (However,

to improve accuracy, theUSCB adds some additional statistics toQp(xp) andQh(xhh)which do not appear

in the PL file.) Discrete Gaussian noise is added toQp(xp) andQh(xhh) to produce the NMFs Tp(xp) and

Th(xhh).

ρ2 ε (with δ = 10−10)

PL Household 0.07 2.70
Person 2.56 17.90

DHC Household 7.70 34.33
Person 4.96 26.34

Total 15.29 52.83

Table 3.3: The privacy loss budgets of the mechanisms Tp (person) and Th (household) used in the first step of the TDA to

produce the 2020 Census Redistricting Data (P.L. 94-171) Summary File (PL) and the Demographic and Housing Characteris-

tics File (DHC). Source: US Census Bureau (2023i). Note here for each row, the value of ε is computed using the conversion
ε = ρ2 + 2ρ

√
− ln δ given in Bun and Steinke (2016) and adopted by the USCB. (Hence the aggregate loss of 52.83 is not the

sum of the individual ε’s.) We follow the USCB’s choice of δ = 10−10.

In the second step (called the “estimation phase” in Abowd et al. (2022a)), the PPMF Zp and Zh are

produced by solving a complex optimisation problem. (The PPMF is also called theMicrodata Detail File

byAbowd et al. (2022a).) The PPMFZp andZh agree with theCensus Edited File xp, xhh on the invariants

cTDA. In addition, the PPMF Zp and Zh for the DHC are consistent with related statistics in the PL file

(US Census Bureau, 2023n). To enforce this consistency, the PL file P is passed as input into the TDA

when producing the DHC and a constraintH(Zp,Zh) = P is added to the optimization problem. (The

input P is not used by the TDA in producing the PL file.)
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ThePL andDHCfiles are tabulations of the PPMFdatasetsZp andZh. In addition to thePL andDHC

files, the USCB released the NMF Tp(xp) and Th(xhh) produced for the PL and DHC files (US Census

Bureau, 2023r) and the PPMFZp andZh for theDHCfile (USCensus Bureau, 2023j). TheDemographic

Profile and the 118th Congressional District Summary File are retabulations of the DHCfile (USCensus

Bureau, 2023d,a).

Algorithm 3.3.1:Overview of the TopDownAlgorithm (Abowd et al., 2022a), focus-
ing on aspects salient to SDC.
Input:

ACEF x ∈ XCEF with representations xp and xhh at the person and household levels
respectively
Person and household queriesQp andQh
Privacy noise scalesDp andDh
Constraints c+TDA (including invariants cTDA, edit constraints and structural zeroes)
(Optional) previously released statistics P along with an aggregation functionHwhich
specifies the relationship between P and the Privacy-ProtectedMicrodata Files Zp and Zh

1: Step 1: Noise Infusion
2: Sample discrete Gaussian noise (Canonne et al., 2022):
3: Wp ∼ NZ(0,Dp)
4: Wh ∼ NZ(0,Dh)
5: Compute Noisy Measurement Files:
6: Tp(xp)← Qp(xp) +Wp

7: Th(xhh)← Qh(xhh) +Wh
8: Step 2: Post-Processing
9: Compute Privacy-ProtectedMicrodata Files Zp and Zh as a solution to the optimization

problem:
10: Minimize loss between [Tp(xp),Th(xhh)] and [Qp(Zp),Qh(Zh)]

11: subject to constraints c+TDA(Zp,Zh) = c+TDA(xp, xhh) andH(Zp,Zh) = P.
Output:

Privacy-ProtectedMicrodata Files Zp and Zh;
Noisy Measurement Files Tp(xp) and Th(xhh) at the person and household levels.

Theorem 3.3.1. The TDA satisfies the DP specification ρ-DP(XCEF,DcTDA , d
p
HamS,DNoR) with privacy-
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loss budget ρ2 = 2.63 for the PL file and ρ2 = 15.29 for the DHC file. (Note that these budgets do not vary

with the universeD ∈ DcTDA .)

In the opposite direction, let c′ be any proper subset of TDA’s invariants. Then TDA does not satisfy ρ-

DP(XCEF,Dc′ , d
p
HamS,DNoR) with any finite budget ρ.

A proof of Theorem 3.3.1 is given in Appendix B.5.

Remark 3.3.2. Because the standard parametrization of zCDP’s privacy loss budget is equal to the square

of our parametrization (see Section 2.4.5), throughout this paper we report zCDP budgets in terms of ρ2

to maintain consistency with the values reported in existing publications.

3.4 Comparisons between the PSA and the 2020 DAS

This section compares theDP specification of the PSAwith the specification of theDASused for the 2020

USDecennial Census. Specifically, we examine the PSA’s DP specification in the counterfactual situation

it was deployed as the 2020 DAS. This provides a comparison between the actual SDC guarantees for the

2020 Census and the hypothetical guarantees that would have been provided by the PSA.

These comparisons are presented in Table 3.4. Explanatory notes to this table are listen in Subsec-

tion 3.4.1. Subsection 3.4.2 provides necessary context to the first five rows of Table 3.4 by describing

the 2020 DAS and its data products. Subsection 3.4.3 derives the DP specification presented in the final,

sixth row of Table 3.4 by applying the PSA to the 2020 Census. Lastly, Subsection 3.4.4 describes the

protection units associated with each of the DP specifications given in Table 3.4.

3.4.1 Explanatory Notes to Table 3.4

1. In addition to invariants, the TopDown Algorithm also enforces that the PPMF Zp and Zh satisfy
edit constraints and structural zeroes (Abowd et al., 2022a). But, because every possible x ∈ XCEF
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DPr dX (Resolution) Invariants1 Privacy Loss Budget2

TopDown

DNoR

dpHamS (person)

Population (state) P.L. 94-171 &DHC:
Total housing units (block) ρ2 = 15.29
Occupied group quarters (ε = 52.83, δ = 10−10)

by type (block) See Table 3.3

SafeTab-P Total housing units (block) DDHC-A: ρ2 = 19.776

SafeTab-H dhhHamS (household)
DDHC-B: ρ2 = 17.79

PHSafe ≥ 1 housing unit (block)3 S-DHC: ρ2 = 2.515

Overall (to date) DNoR dpHamS (person) Same as TopDown ρ2 = 55.371
2020 DAS4 (ε = 126.78, δ = 10−10)

Swapping (PSA) DMult dhhHamS (household)
Varies but much greater ε between6 8.42-19.36than TopDown5

Table 3.4: TheDP specifications of the TDA (USCensus Bureau, 2023l; Abowd et al., 2022a), the SafeTabAlgorithms (USCensus

Bureau, 2023m, 2024e; Tumult Labs, 2022), the PHSafe Algorithm (US Census Bureau, 2024f), and of the hypothetical applica-

tion of the PSA to the 2020 Decennial Census. For each DP specification, the protection domain is the setXCEF of all possible

CEFs and themultiverse is induced by the listed invariants. dpHamS anddhhHamS denote theHamming distance at the resolution of

person- and household-records respectively (Subsection 2.4.4);DNoR the normalized Rényi metric (Subsection 2.4.5), which is

theoutput premetric underlyingρ-zCDP (BunandSteinke, 2016); andDMult themultiplicative distance (equation (3.3)), which
is pure ε-DP’s output premetric (Dwork et al., 2006b).
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satisfies these constraints by construction, these requirements need not be included as invariants
(Proposition A.2.1).

2. We report zCDP budgets in terms of ρ2 (rather than ρ) to be consistent with other literature on
the 2020 DAS (see Remark 3.3.2). Moreover, following the USCB, we use the formula ε = ρ2 +
2ρ
√
− ln δ to convert from ρ-zCDP to (ε, δ)-DP (Bun and Steinke, 2016) with δ = 10−10.

3. The PHSafe has inequality invariants (see equation (2.6))). Specifically, its invariant function c(x)
is the vector of indicators for whether each Census block has at least one housing unit or not.

4. This DP specification covers all of the primary 2020 Census data products (US Census Bureau,
2024d) (which are listed in Subsection 3.4.2) but not other data products which are derived from
the 2020 Census Edited File, such as the 2020 DAS accuracy metrics (US Census Bureau, 2023g),
the Population and Housing Unit Estimates (US Census Bureau, 2023q) and the National Popu-
lation Projections (US Census Bureau, 2023p). We were unable to locate information on the DP
specifications associated with these data products. Nevertheless, as with any data release, they nec-
essarily increase the total privacy-loss budget associated with the 2020 Census. They could also
possibly weaken the 2020 Census’s DP flavor by increasing the invariants, weakening the output
premetric, or increasing the resolution of the input premetric. Moreover, the USCB may make
additional releases in the future, such as the Surname File (US Census Bureau, 2016) or research
papers generated with access to Census microdata (Hawes, 2021a). These releases would further
weaken theDP specification for the 2020Census. In comparison, under data swapping, the privacy
loss budget and DP flavor covers all data releases (Subsection 3.4.3).

5. Depending on the swap key VMatch and the swapping variables VSwap, invariants induced by the
PSA are all (multivariate) household characteristics at either the state, county or block group lev-
els, and optionally the household size at the corresponding geography one level lower. See Subsec-
tion 3.4.3 for details.

6. The exact privacy loss budget ε depends on the swap rate p and the swap key VMatch, with the
combination of a higher swap rate and finer geography-household strata giving rise to the lower
range and vice versa (Table 3.5).

3.4.2 Overview of the 2020 DAS

The USBC has published three groups of privacy-protected data products for the 2020 Census. Group 1

encompasses the two principal data products of the 2020 Census that we have already discussed, namely
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the PL and DHS. (The Demographic Profile is also included in Group 1 but as it is simply a subset of

DHC’s tabulations, we do not consider it as a stand-alone product.) As detailed in the previous section,

both the PL and the DHC Files were protected using the TDA (US Census Bureau, 2023l; Abowd et al.,

2022a).

Group 2 encompasses theDetailedDHC-A (USCensus Bureau, 2023f) andDetailedDHC-B files (US

Census Bureau, 2024a), respectively protected using the SafeTab-P and SafeTab-H Algorithms (US Cen-

sus Bureau, 2023m, 2024e; Tumult Labs, 2022) (where “-P” and “-H” stands for “persons” and “house-

holds”). It also includes the Supplemental DHC (S-DHC) file (US Census Bureau, 2024c), protected

using the PHSafe Algorithm (US Census Bureau, 2024f).

Group3contains the additional products derived fromthe2020Censusdata,mostnotably thePPMF(US

Census Bureau, 2024b), the 118thCongressional District Summary File (USCensus Bureau, 2023a), and

NMFs (US Census Bureau, 2023h,b). As explained in the previous section, because these data products

are derived either from the Group 1 products or the privacy-protected intermediate outputs pertaining to

those products, their production does not contribute to the overall 2020 Decennial Census privacy loss

budget. As a result, we need not consider these Group 3 products in our analysis. Other Group 3 data

releases, such as publications from researchers with access to Census microdata, may be released in the fu-

ture (Hawes, 2021a). The results presented in Table 3.4 do not account for these releases – or for products

derived from 2020 Census data which are not listed in this subsection.

3.4.3 What if the 2020 Census Used Swapping?

In this subsection we ask the counterfactual question: what if the PSAwas applied to the 2020 Decennial

Census? In particular, what would the SDC guarantee look like under different choices for the swapping

120



schemes and swap rates?

Table 3.5 shows the total nominal privacy loss ε that would be achieved by applying PSA to the 2020

Decennial Census for a variety of possible parameter choices. For the purpose of illustration, we stipulate

the swapping variable VSwap to be the block, tract, or county membership of each household, and the

matching variableVMatch to be the geography one level higher thanVSwap, either alone or crossed with the

household size variable. From the top to bottom rows of Table 3.5, theVSwap levels are ordered according

to increasing granularity of geography. Within each level ofVSwap, the twoVMatch levels are nested, in the

sense that the swapping scheme represented in the latter row (i.e. crossed with household size) induces a

logically stronger and more constrained set of invariants than the former one. TheseVMatch×VSwap level

combinations result in largest strata of varying sizes, as can be seen from b ranging from as large as 13.47

million (the total number of households in California) to as small as 4, 549 (the total number of 2-person

households in a Florida block group).

VMatch VSwap b Total ε Total ε Largest Stratum
p = 5% p = 50%

State county 13,475,623 19.36 16.42 California
State× household size county 3,948,028 18.13 15.19 California, 2-household
County tract 3,420,628 17.99 15.05 LA County
County× household size tract 939,185 16.70 13.75 LA County, 2-household
Block group block 6,204 11.68 8.73 a CA block group
Block group× household size block 4,549 11.37 8.42 a FL block group, 2-household

Table 3.5: The total nominal privacy loss ε for the PSA applied to the 2020Decennial Census for a variety ofVMatch,VSwap, and

swap rate choices. The column b is the number of households in the largest stratum, obtained from the DHC. (The CA and FL

block groups identified in rows 5 and 6 have 2020 Census GEOIDs 060730187001 and 121199114024 respectively.)

This analysis highlights an important, yet perhaps counterintuitive, observation: When the swap rate

p is fixed, including more invariants decreases the nominal privacy loss ε of the PSA. As Table 3.5 shows,
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when swaps are performed freely across counties in a state, even a high swap rate of 50% renders a nomi-

nal ε that is much larger than that pertaining to swaps among households of the same size within a block

group at a low swap rate of 5% (ε = 16.42 and 11.37 respectively). If these nominal ε’s are taken at face

value, one may be tempted to conclude that swapping schemes with finer invariants should be preferred

from a privacy standpoint. Furthermore, onemay find it convenient to also recognize that finer invariants

are desirable from a data utility standpoint, for the obvious reason that more exact statistics about the

confidential are made known. However, as we warned right after presenting Theorem 3.2.4, such a con-

clusion – that finer invariants should benefit both utility and privacy – would be dangerously mistaken,

for it overlooks the privacy leakage, in an ordinary sense of the phrase, due to the invariants alone. This

highlights the importance of interpreting εwithin the context of its DP flavor, and the necessity of treating

the invariants as an integral part of the SDC guarantee.

Note that if the PSA were applied to the 2020 Decennial Census, the nominal ε reported in Table 3.5

would be the total privacy loss budget across all data products derived from the swapped dataset Z, in-

cluding the PL, DHC, DDHC and S-DHC files, for both persons and household product types. This

is because swapping is performed on the full microdata file, and hence produces a synthetic version of it

fromwhich all data products can be generated. Therefore, when comparing the ε values in Table 3.5 with

those reported for the 2020 DAS in Table 3.4, it should be understood that the privacy loss for the PSA

covers all the 2020 data products. This characteristic of swapping leads to an additional desirable property

that is not necessarily enjoyed by mechanisms based on output noise infusion (such as those used in the

2020 DAS): the logical consistency between, and within, multiple data products is automatically preserved

under swapping without the need for post-processing.
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3.4.4 The Protection Units for the 2020 DAS and for the PSA

As detailed in Section 2.4.4, the protection units (aka privacy units) of a DP specification are the basic

entitieswhich are protected under thatDP specification. More exactly, a specification’s privacy loss budget

restricts how much a mechanism can change when a single protection unit’s data changes. One might

imagine that the protection units of a DP specification correspond to the resolution of its input premetric

dX – and this is true in simplistic examples. Here by ‘the resolution of dX ’, wemean the size of the change

between x and x′ when dX (x, x′) = 1. For example, if dX (x, x′) = 1 whenever x and x′ differ on a person-

record, then the resolution of dX is a person. Common resolutions, in order from high to low, are: single

transactions or interactions, persons, households and businesses.

However, data preprocessing can create complications, so that the protection units of a specification are

not always given by the resolution of dX . In the case of the US Census, an individual respondent’s data

can be used formultiple records in the CEF x ∈ XCEF because the USCB’s imputation procedure replaces

missing records with copies of non-missing records. As such, the protection units of (XCEF,D , dX ,DPr)

do not correspond to the resolution of dX . Rather, the protection units of the 2020 DAS are ‘post-

imputation persons,’ – i.e. those (fictional) entities with data that is exactly one record in the CEF. Simi-

larly, the PSA’s protection units are the ‘post-imputation households’ rather than actual households.

This point is not simply a matter of semantics. From the perspective of a data respondent, the resolu-

tion of dX is not particularly informative in determining the SDC protection provided to them, because

the respondent’s actual privacy loss – in terms of ρ – is given by the nominal privacy loss multiplied by

the number of person-records the respondent contribute to. For example, if the 2020 imputation process

duplicates a respondent’s record once, then their actual privacy loss is ρ2 ≥ 221.48 (or ε ≥ 364.31 with
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δ = 10−10), rather than ρ2 ≥ 55.37 - since doubling ρ quadruples ρ2 (Bun and Steinke, 2016, Proposi-

tion 27). (We write ≥ rather than = because the privacy loss will increase due to data releases which we

have not accounted for – see note 4 in Subsection 3.4.1.) In general, the conversion from aDP flavor with

post-imputation persons as units to a DP flavor with persons as units requires an inflation of the privacy

loss budget (ε or ρ) by a factor equal to the maximum number of times a record can be duplicated (Propo-

sition 2.4.15). To avoid this complication, we have reported post-imputation budgets in Table 3.4, but we

caveat this with the important observation that these budgets correspond to unusual protection units.

3.5 Discussion

This paper continues an existing line of research (Rinott et al., 2018; Bailie and Chien, 2019; Chien and

Sadeghi, 2024; Neunhoeffer et al., 2024) examining traditional SDC methods – which are typically re-

garded as ad-hoc and are motivated by intuitive notions of protection or specific attacker models – under

the light of DP. By proving that data swapping can be studied theoretically via the lens of DP, we hope

to inspire further formal analyses of other traditional SDC methods. This type of analysis improves our

understanding of such methods by supplying mathematical descriptions of the level and substance (or, in

our terminology, the intensity and flavor) of themethods’ SDC. Such descriptions are important: they can

provide assurance to data providers and custodians that their data is adequately protected; or, conversely,

they can reveal inadequate SDC and spur additional protection.

However, it can be challenging to assess whether a given DP specification provides an adequate level of

protection. To do so, wemust understand how choices for each of the five building block can affect SDC–

both individually and in conjunction with choices for the other building blocks. This requires answering

a range of difficult socio-technical questions. For instance, taking the other four building blocks as fixed,
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what privacy-loss budget (if any) is sufficient for adequate SDC, adequate for whom, and who should

decide the adequacy? Also, what is the practical impact of the protection units being post-imputation

persons? And, most relevant for this paper, what is the effect of invariants on SDC?

Whilewe know that increasing the invariants strictlyweakens theDP specification (Proposition 2.4.11),

it is more difficult to determine how they affect an attacker’s ability to make disclosures. Ashmead et al.

(2019) have investigated the effect of the 2020 DAS invariants, but there is a need for future work which

studies the effect of invariants at the scale of those induced by data swapping. In addition to building

technical understanding – and parallel to studies that survey preferences on appropriate settings for the

privacy loss budget, protection domain and input and output premetrics – it could be beneficial to gauge

public opinion on the acceptability of specific invariants.

Nevertheless, by providing DP specifications for both the PSA and the TDA, we demonstrate the feasi-

bility ofmathematically comparing on fair grounds traditional SDCmethodswithDP-basedmechanisms.

With these two algorithms as prime examples, the paper points to the possibility of similar comparative

analyses between other SDCmethods, both those that were explicitly inspired by DP and those that were

designed and motivated from non-DP perspectives. By explicating the five building blocks for the PSA

and the TDA, we hope to promote nuanced assessments of DP deployments which go beyond discussion

of the privacy loss budget ε.

We end this paperwith discussions on twomain results of this paper – the PSA’s privacy loss budget and

the comparison between the DP specifications for the 2020 DAS and the PSA, as presented in Table 3.4.

125



0.00

0.25

0.50

0.75

1.00

0 5 10 15 20

ε

sw
ap

ra
te

p

b (largest stratum size)

2

10

100

1000

105

106

Privacy Loss Budget (Nominal) to Swap Rate Conversion

Figure 3.2: Conversion between the nominal privacy loss budget (ε) and the swap rate (p) for the PSA. Color and line type encode
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different values of b are not immediately comparable).
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3.5.1 What Does the PSA’s Budget Look Like?

Figure 3.2 provides a visual illustration of Theorem 3.2.4, connecting the privacy loss budget ε to the

swap rate p, for a number of choices of b. Three observations are worth noting. First, for each b, there

exists a smallest ε, call it ε(b), below which no swap rate p ∈ [0, 1] can attain. The minimum budget

ε(b) = ln(b + 1)/2 is achieved by the swap rate p(b) =
√
b+ 1/(

√
b+ 1 + 1). For each b in Figure 3.2,

this quantity ε(b) ismarked by an outlined diamond. Importantly, the larger the b, the larger theminimum

possible budget ε(b). For example, when b = 10, ε(b) is 1.20 (attained at p(b) = 77%); whereas when

b = 106, ε(b) is 6.91 (at p(b) = 99.9%).

That some privacy-loss budgets are not attainable for a fixed b follows from the fact that the ratioP(z |

x)/P(z | x′) of probabilities of a swapped dataset z from two different input datasets x and x′ depends

not just on the swap rate p but also the ratio r of the number of derangements of size dhhHamS(x, z) to the

number of derangements of size dhhHamS(x′, z). (This is because the PSA selects dhhHamS(x, z) records and

then samples derangements of size dhhHamS(x, z) uniformly at random.) This ratio r is upper bounded by

(b+ 1)dhhHamS(x,x
′) which means εmust be at least ln(b+ 1)− ln p+ ln(1− p).

Second, for every b and every budget ε > ε(b), two different swap rates can achieve that budget ε, with

the higher one often being very close to 100%. For example at b = 10, a swap rate of either 35.4% or

95.2% achieves the nominal budget of ε = 3. The mathematical reason behind this is that, for large p

(i.e. p > p(b)) the ratio r is dominated by the odds o = p/(1 − p), in which case [lnP(z | x) − lnP(z |

x′)]/dhhHamS(x, x′) is maximised when dhhHamS(x′, z) is as small as possible. This results in ε = ln o, while, as

explained in the previous paragraph, ε = ln(b + 1) − ln o for p ≤ p(b). Since the former ε is monotone

increasing in p and the lattermonotonedecreasing, there are two swap rates p corresponding to any ε > ε(b).
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This is akin to the behavior of the randomized response mechanism, where a large probability pRR > 0.5

of flipping the binary confidential answer inadvertently preserves statistical information, thereby achieving

the same budget ε = |ln oRR| as 1− pRR.

Third andmost importantly, we emphasize that the budgets visualized in Figure 3.2 are nominal in the

sense that the SDC guarantee they afford must be understood with respect to the full context as outlined

by the PSA’s DP specification. An aspect of this context is b, the size of the largest stratum ofVMatch, and

as a result, the same value of ε across different b’s should not be equated to be the same SDC guarantee.

Indeed, the ordering of the b curves in the figure suggests a seemingly peculiar fact that, for a larger b,

a higher p is needed to achieve the same ε. This apparent contradiction is explained by a point we have

repeatedly made: for a fixed dataset, a change in the value of b requires that the swapping invariants, and

hence the PSA’s SDC guarantee, also change.

3.5.2 HowDoes the 2020 DAS Compare with Swapping?

TheDP specifications inTable 3.4 allow for epistemicallymeaningful comparisons between the 2020DAS

and the counterfactual scenario in which the PSA was used. A side-by-side examination of these specifi-

cations’ building blocks elucidates the similarities and differences between the SDC provided by the PSA

and the 2020 DAS.

Firstly, both the 2020 DAS and the PSA have the same protection domain: the set of all possible CEFs

XCEF. This means that the PSA and the 2020 DAS protect the data x ∈ XCEF as it exists after collection,

coding, editing and imputation, rather than as it exists at other stages in its life cycle. As such, it is not the

respondents’ data (i.e. their ‘raw’ Census responses) which are directly protected, but rather it is the edited

and imputed data (i.e. the CEF) which receives the DP guarantee.
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Secondly, because both the 2020 DAS and the PSA have invariants, each of their DP specifications

partition the protection domainXCEF into multiple universes. This operation constrains the scope of the

2020 DAS and the PSA’s SDC protection to datasets which agree on their invariants. Therefore, for the

same reasons that the 2020DAS cannot satisfy the original specification of zCDPgiven inBun and Steinke

(2016), data swapping cannot satisfy the original pure ε-DP specification of Dwork et al. (2006b). In this

sense, both the 2020 DAS and the PSA are DP only in so far as their invariants allow.

To varying degrees, all of the SDCmethods used in 2020 have invariants. However, the PSA has many

more invariants than any of thesemethods and, as such, placesmore restrictions on the scope of protection.

Unfortunately, the 2020 Census data products carry a set of invariants that cannot be induced by data

swapping. That is, the invariants induced by the TDA do not accord to any choice of VSwap, VMatch, and

VHold (as shown in Example 3.2.3). Therefore, we cannot design a swapping algorithmwhich respects the

2020 invariants, and only those invariants. On the other hand, while swapping almost always has stricter

invariants for most variables, it does not necessarily have the TDA’s group quarter invariants. Therefore,

the 2020 DAS DP flavor is not strictly stronger than the PSA’s flavor, nor visa versa – although the 2020

DASplaces less restrictions on the scope of protection, these are not nestedwithin the restrictions induced

by the PSA’s invariants.

Thirdly, the input premetrics for the PSA and the 2020 DAS are both Hamming distances, although

with differing resolutions – household-records for the PSA and person-records for the 2020 DAS. This

means the protection units are post-imputation households and post-imputation persons respectively.

Since the input premetric the yardstick for measuring change in the input data (Subsection 2.4.4), using

a lower resolution like household-records provides more protection than a higher resolution like person-
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records (all else being equal). That is, a household-level distance is a stronger notion than a person-level

distance, since if the record of a single household changes part of its value, the multiple persons residing in

a same household may all change their records.

Fourthly, the PSA’s output premetric is also stronger than the 2020 DAS’s. The PSA uses the multi-

plicative distanceDMult – as used in pure ε-DP (Dwork et al., 2006b) – while the 2020 DAS uses the nor-

malized Rényi metricDNoR – as used in zero-concentrated-DP (zCDP) (Bun and Steinke, 2016). There

exist probabilities P andQ withDNoR(P,Q) arbitrarily small butDMult(P,Q) = ∞. As such,DMult

ensures a greater level of SDC protection thanDNoR (again, assuming that all else is equal).

Fifthly, and finally, the privacy-loss budget of the PSA and of the 2020DAS are not directly comparable

because a budget’s ‘unit of measurement’ is determined by its DP flavor. That is to say, a privacy-loss bud-

get is a nominalmeasure of SDCprotection,which is always relative to– andhence canonly beunderstood

within the context of – the four other building blocks. The DP flavors for the PSA and the 2020 DAS are

different and so their budgets have different units of measurement. Nonetheless, following the USCB, we

can convert the 2020 DAS zCDP budget ρ2 = 55.371 to the approximate DP budget of ε = 126.78 with

δ = 10−10, which is more comparable with an ε-DP budget. Under this crude comparison, the privacy

loss of the 2020 DAS is an order of magnitude larger than that of the PSA.

However, even when converting to (ε, δ)-DP, the budgets are still not directly comparable because the

DP flavors for the PSA and the 2020 DAS also have different invariants and input premetrics. While the

2020DAS’s budget would substantially increase under a household-level input premetric (Appendix B.5),

removing even one invariant from the PSA’s DP specification would result in a budget ε = ∞. This is

because, if an invariant statistic is included in theDPflavor, then it does not contribute to themeasurement

of privacy loss under that flavor. As we havementioned repeatedly, the PSA hasmanymore invariants and
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so many more statistics are removed from consideration when calculating its budget.

Yet, releasing a statistic under a large privacy loss budget is pragmatically equivalent to making that

statistic an invariant. Hence in principle it should be possible to effectively tradeoff invariants with large

budgets, thus making the comparison between the PSA and the 2020 DAS’s budget more tractable. We

leave this as an open research question.
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4
Can Swapping Be Differentially Private?1

4.1 WhatMotivated This Stirred-Not-Shaken Trio?

Since its conceptualization twodecades ago byDwork et al. (2006b), differential privacy (DP)

has received a tremendous amount of attention in research and practice. Theoretically, it aims to provide

a tractable, mathematical framework to quantify and operationalize the evasive concept of privacy within

the context of sharing (or releasing) statistical data. Yet, driven by a myriad of constraints (e.g., challenges

in establishing theoretical guarantees or in practical implementation), attempts to alter, enhance, and relax

the original, so-called pure ε-DP definition have led to a plethora of ‘impure’ DP formulations. Today, DP

has evolved into an umbrella term encompassing a broad class of technical standards conceptualizing what

it means for a data release algorithm to be ‘private’ (see Desfontaines and Pejó (2020) for a dizzying but

still partial enumeration of this class), and there now exists a vast and burgeoning body of work supplying

1Based on work coauthored with Ruobin Gong and Xiao-Li Meng.
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algorithms which satisfy these technical standards.

From a practical perspective, the interest in DP, and subsequent explosion of different formulations,

is easy to understand. General concerns of privacy breaches have increased substantially as our society

adventures deeper into the digital age. Organizations in all sectors and at all levels are compelled to expend

effort addressing the issue of data privacy, whether for noble reasons or for fear of liability; yet each entity

is faced with its own unique set of concerns, necessitating its own custom solution (Schneider et al., 2025).

The adoption of a form ofDP by theUnited States Census Bureau (USCB) for its 2020Decennial Census

of Population and Housing is a shining example of organizational effort—one that has generated much

theoretical contemplation and methodological advances, as well as controversies and emotions ranging

from excitement to frustration (see the special issue of the Harvard Data Science Review, “Differential

privacy for the 2020 US Census: Can we make data both private and useful?” Gong et al. (2022)).

Indeed, this trio of articles owes its existence to the bureau’s adoption of DP. Because data privacy has

been a central concern for the census since its inception, seeing the USCB’s recent development of the

DP-inspired TopDown Algorithm (TDA) (Abowd et al., 2022a) for its 2020 Census, one naturally may

wonder in what ways it improves upon their past methods for statistical disclosure control (SDC). In par-

ticular, the data swapping strategy used in 2010, just like the TDA, involves injecting artificial randomness

into the published census tables. So could it be a form of DP as well, which would then make it easier to

compare both methods within a single, unified framework?

Those who adhere to the definition of pure ε-DP may immediately declare that any form of swap-

ping cannot satisfy DP because swapping leaves some aggregations of the data unaltered, and hence some

statistics—termed its invariants—will be released without any artificial noise injected. By the same to-

ken, neither can the TDA satisfy DP because it is designed to maintain various total counts (e.g., state
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population counts) in order to comply with mandates set by the US Constitution. Yet, such a strict ad-

herence to a narrow perspective not only greatly limits the applicability of DP, but also fundamentally

misperceives its essence. (Besides which, DP has accommodated invariants from its very inception: the

number of records in the dataset can be released exactly undermanyDP definitions, including pure ε-DP.)

After all, DP is not concerned with protecting absolute privacy—no data release method can (Kifer and

Machanavajjhala, 2011). Rather, it concerns the protection of information that can be revealed by an in-

dividual’s confidential data but is otherwise unavailable. The constitutional mandates reveal information

that cannot be protected, and hence any adoption of DP—or any other data protection methodology for

that matter—must take that into account.

For the case of swapping, the matter becomes muddier as its invariants are not externally mandated

but instead are inherent to its design. One can see immediately the potential complications with, and de-

bates about, different designs and their resulting invariants. Confusions may easily result from comparing

SDC methods that are based on different postulates of what is already known or considered not to need

protection, akin to the trouble of comparing two distributions when they’re conditioned on by different

variables.

Such a problem is only one of many nuanced issues we have had to deal with as we seek precise and

contextual answers to the question in this article’s title, as an impetus for a deep study of DP to reveal

its statistical essence and to contemplate its practical complications. Consequently, it should come with

little surprise that our investigation took considerably more time, and pages, than initially expected. This

third part of a trio of papers therefore will first provide an intuitive summary and explanation of both

preceding parts (Bailie et al., 2025b,c) before elaborating on their broader and deeper implications, and
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discussing the more nuanced or subtle issues that tend to invite misunderstanding, misuse, andmisplaced

expectations of DP.

Integrating the three parts together, this triptych reflects our triple ambition: firstly, to leverage the

merits of DP, including its mathematical assurances and algorithmic transparency, without sidelining the

advantages of classical SDC; secondly, to unveil the nuances and potential pitfalls in employing DP as a

theoretical yardstick for SDC procedures; and thirdly, to build connections between social and technical

conceptualizations of data privacy by outlining real-world considerations behind the five building blocks,

as demonstrated by comparing data swapping and the TDA in the context of the USDecennial Censuses.

4.2 Highlights of Part I: Five Building Blocks of DP

ADPspecification, as explained inPart I, consists of fivebuildingblocks, addressingfive related, but distinct

questions about a data release mechanism (also referred to as an SDC method, a data sharing algorithm,

or similar). As we will review shortly, the core idea behind any DP definition is that the relative change

in the mechanism’s likelihood function with respect to changes in individual data points is deliberately

controlled. Indeed, this narrow, mathematical formulation of data privacy in terms of a rate of change

highlightsDP’s core idea of bounding the derivative of themechanism, as is alluded to by its nomenclature

“differential.”

A technically oriented reader may immediately ask a host of questions. On what space is the likelihood

function defined? How is the relative change metricized? What constitutes an “individual data point”?

What does control mean? And so on. Indeed these questions are key to formalizing the above idea of DP

intomathematical definition, and theirmany possible answers are reflected by the numerous formulations

of DP found in the literature.
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A DP specification answers all these questions, thereby providing a complete, self-contained and well-

defined standard against which a data release mechanism can be assessed.

TheDP specification framework starts with themost basic question: who is eligible for SDC protection?

which is addressed by specifying the actual, potential or counterfactual datasets that are to be protected.

The collection of all such datasets is called the data space, or the domain, and is denoted by X . Because

setting down all the possible counterfactual datasets requires situating the actual dataset x in the context

of its lifecycle—not just specifying the mathematical structure and schema of x—the domainX provides

the meaning of who x’s data subjects are and how x represents them.

Based on the actual, confidential dataset x, some output statistics are computed and published via the

data-release mechanism, which is a random function of x. (It is worthwhile to emphasize that in this

setup, the randomness is not in x, but rather artificially injected into the output statistics to reduce their

information content.) From an attacker’s perspective, the confidential dataset x—which always belongs

toX by design—is the unknown ‘parameter’ to be inferred from the output statistics, hence the choice of

X is conceptually analogous to the choice of a parameter space in standard statistical inference.

Explicating X , however, is only the first step. The next question is to where does the protection extend?

which can be answered by specifying a multiverse D , which is a collection of the possible data universes

D, be they actual or hypothetical. The need for—and the distinction between—the data multiverse and

the actual data universe is well illustrated by the application of DP to the US Decennial Census. Suppose

the enumerated US population sizeNUS is 330 million. Then, in order to comply with the constitutional

mandate that the state population totals must be released exactly as enumerated, any hypothetical census

dataset that does not yield NUS = 330,000,000 will not be within the scope of protection, since any

attacker can easily rule out such data sets. In this instance, ifNUS is the only aggregation that must be dis-
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closed as it is, then the corresponding data universe is simply all datasets inX such that the corresponding

NUS = 330,000,000.

However, it would be rather unwise to design a mechanism that works only when NUS is exactly 330

million. The enumerated US total population count varies from census to census, and indeed it varies

within each census due to corrective adjustments (e.g., for reducing the impact of under-counting). While

it is essential for any data release mechanism to respect constitutional mandates—i.e., to disclose the total

state enumerations—the actual value of the disclosed NUS is rather accidental. A sensible design should

work regardless of the value ofNUS, at least for values within a reasonable range (e.g., one may argue that

it is insensible to require a mechanism to work for implausible values, such asNUS = 330 billion). A data

multiverse, therefore collects all data universe within each of which the countNUS is a constant, so that all

datasets inX are protected—but only within the scope of their respective universes.

Next is the question, what is the granularity of protection? which can be a source of confusion, as well

as an opportunity for manipulation in capable but malicious hands. Recalling that a DP formulation is a

bound on amechanism’s rate of change, the granularity of protection is understood by considering the en-

tities whose data is counterfactually altered whenmeasuring this rate of change. These entities are termed

the protection units (or, elsewhere in the literature, the privacy units). Individual persons or business en-

tities are common choices for the protection units, but they are not the only ones. For example, for the

SDC protection of electronic communications, the unit may be defined as a single message sent by a per-

son, rather than the sender herself. As an individual may send many messages a day, such a fine-grained

protection unit allows a social media platform to declare a nominal level of DP protection which appears

impressively high, even though the actual risks to the sender remain exponentially large.

Mathematically, the granularity ofprotection is formally conceptualized via apremetricdX (x, x′), which
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is a measure of the difference (or ‘distance’) between two datasets x and x′ inX . Furthermore, the protec-

tion units correspond conceptually to unit differences in dX—i.e. the differences between neighboring (or

adjacent) datasets, which are pairs of counterfactual datasets x, x′ ∈ X with dX (x, x′) = 1. More exactly,

a protection unit is what differs during the generating processes of two neighboring datasets. While neigh-

boring datasets could differ by the deletion of one record, or the alteration of a single attribute, to properly

define the protection units requires an appreciation of what a unit difference in dX actually represents in

the real world. This in turn necessitates placing xwithin the context of its data pipeline, highlighting once

again the importance of the domain X ’s contextual definition, over and above a purely mathematical or

technical description of it.

Aswe have repeatedly emphasized, DP quantifies SDCprotection as the rate of change in the variations

of a data release mechanism’s output. For each specification of DP, this rate of change is calculated with

respect to the specification’s premetric dX on the data spaceX , but how is the change in output variations

measured? A premetric DPr is also used for this, except in this case DPr(Px,Px′) is a measure of the dif-

ference between probability distributions Px and Px′ . Here, Px denotes the likelihood function—i.e. the

probability distribution of the released statistics, as a function of the confidential data x, where the ran-

domness in Px is introduced solely by the data-release mechanism. This is a sensible approach to SDC: as

all statistical information is created by variations in the data, by limiting the relative changes in the output

distributions, we limit the changes in variations due to the change from x to x′ as measured by dX (x, x′).

This brings us to the fifth and final question of a DP specification , how much protection is afforded,

which, for eachdatauniverseD ∈ D , is answeredby thequantity εD. The valueof εD is a boundon the rate

of change (asmeasured bydX andDPr)within the universeD. Smaller values of εD aremore restrictive and
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hence supply higher levels of protection. As explained in Part I, we propose the term protection loss budget

for εD instead of the commonly-used “privacy loss budget” (although wemaintain the same abbreviation,

PLB) because we believe that the former more accurately captures the narrow question DP is addressing

(Seeman and Susser, 2023). Indeed, amid an environment of myriad and varied privacy concerns, our

choice of terminology—SDC and protection in place of privacy—reflects our desire to avoid running the

risk of misrepresenting DP as a solution to the broad gamut of data privacy issues (Nissenbaum, 2010;

Bailie and Gong, 2023b).

We allow ε to vary between universes so that different protection loss for different universes, whichmay

be desirablewhen, for utility reasons or otherwise, some entities or attributes should receive less protection.

As shown in Part I, most common DP definitions, including the classic pure ε-DP, approximate (ε, δ)-

DP, and zero-concentrated ρ-DP (zCDP), are all special cases of the general formulation:

DPr(Px,Px′)

dX (x, x′)
≤ ε, for all x, x′ ∈ D, and for allD ∈ D , (4.1)

or more generally,

DPr(Px,Px′) ≤ εdX (x, x′), for all x, x′ ∈ D, and for allD ∈ D , (4.2)

but with different choices for X ,D ,DPr, dX and ε. We provide two expressions here because the first

one resembles the familiar notation of taking derivative, and hence the term “differential privacy”; while

the second shows that mathematically a DP specification is simply a Lipschitz continuity condition onPx

as a function of the input data x. (Informally speaking, Lipschitz continuity is simply a generalization of

differentiation.)

Taken together, these five answers form the building blocks of a differential privacy specification:
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1. The protection domain (who is eligible for protection?), as defined by the setX .

2. The scope of protection (where does the protection extend to?), as instantiated by the multiverse
D , which is a collection of universesD ⊂ X .

3. The protection unit (what is the granularity of protection?), as conceptualized by the input diver-
gence dX on the domainX .

4. The standard of protection (how to measure change in output variations?), as captured by the out-
put divergenceDPr on the released data’s possible probability distributions.

5. The intensity of protection (how much protection is afforded?), as quantified by the protection-
loss budget εD for each data universeD (where smaller budgets correspond to a higher intensity of
protection).

In the current literature and practice, PLB has been treated largely as the sole measure of the strength

of a privacy guarantee, as is often the case in balancing the privacy-utility tradeoff (see e.g. Abowd and

Schmutte, 2016). However, the five-building-block framework reveals that εD can be meaningfully de-

fined only after the DP flavor, that is, the collection of the first four building blocks, has been declared.

To make an analogy, different DP flavors are to the PLB as different sovereigns are to their currencies. Ex-

change rates exist wherever trade relationships exist. Nevertheless, at the end of the day it is not currencies,

but purchasing power, thatmatters. If today Japan announces that starting from tomorrow their currency

would be denominated by “centiyen” which is equal to 100 yens, it would change the US-Japan exchange

rate by 100 fold, but it would not change how many Macbooks each Japanese person could afford. Cur-

rencies are arbitrary proxies to purchasing power which are determined by economic-political features of a

sovereign that are hard tomeasure, just like PLBs are arbitrary proxies to that ephemeral notionof “privacy”

that resists definition.

Lessons learned from studying the swapping algorithm , as presented in the following section, show

how onemay spend apparently less PLB, all the while without addingmore noise to the privacy-protected
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Figure 4.1: Schematic of a differential privacy specification εD-DP(X ,D , dX ,DPr). The domain X is the set of all possible

datasets (be they actual, potential or counterfactual). We denote two arbitrary datasets by x and x′; other possible datasets are
depicted by gray circles. ThemultiverseD = {D1,D2,D3,D4,D5} is a collection of sets of datasets – these sets are called
universes. (In this schematic,D partitions the domainX , as would happenwhenD encodes invariants. In general, this need not

be the case. In fact, often the universes may be overlapping.) A data release mechanismT transforms a dataset x to a random
outputT(x), which is a draw from the probability distributionPx. Intuitively, differential privacy requires that similar datasets x
and x′ have similar output distributionsPx andPx′ . This is formalized by the Lipschitz conditionDPr(Px,Px′) ≤ εD1dX (x, x′),
which states that the ‘distance’DPr(Px,Px′)between theoutputdistributions is atmost a constantmultipleεD1 of the ‘distance’

dX (x, x′) between the corresponding input datasets. Here, similarity (or ‘distance’) between datasets is measured by the DP
specification’s input premetric dX , visualized above as a caliper, and similarity between probability distributions of the output

under different inputs is measured by the DP specification’s output premetricDPr (the tape measure). For simplicity, we depict

the output space T as one dimensional, although in practice it is frequently a high-dimensional space, or even a union of many

different probability spaces (as is the case for local DP). (The PLB above, εD1 , has the subscriptD1 because the Lipschitz condi-

tion is applied to the datasets x and x′ , which are members of the universeD1, and because the PLB is allowed to vary between

universes, potentially taking five different values, εD1 , εD2 , . . . , εD5 .)
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data product, because one can manipulate other building blocks. These are not merely mathematical pos-

sibilities or pathological cases, but rather consequences of taking the value of εD nominally and out of

context, leading us down a slippery slope.

4.3 How to Reduce ‘Privacy Loss’ Without Adding More Noise:
A Perverse Guide

This section discusses some of the ways to ‘cheat,’ i.e. to reduce the PLB without adding more noise.

The mathematical feasibility of this can be explained rather simply. In order to alter one component of a

differential privacy specification—in this case the PLB—one can maneuver the other components (X ,D ,

dX orDPr), or parameters of the data release mechanism to that end. Some such maneuvers may be valid,

especially if the data custodian is transparent about the resultingDP specification, but others canbeused to

corruptly promote a high nominal level of protection (small PLB), while hiding shortcomings in the other

building blocks. Needless to say, our intention is not to encourage unscrupulous behavior, but rather to

expose the inherent weaknesses that are open for exploitation in what might appear to be an objective and

mathematically absolute framework for privacy protection. Thesewarningsmaybeparticularly relevant to

commercial implementations ofDP,where conflicts of interest are commonplace (see e.g.Waldman, 2021).

For example, when the data custodian and data user are the same entity (such as a tech company collecting

data about their customers), it can easily be tempted to cut some differentially-private corners—or engage

in some privacy theatrics (Smart et al., 2022)—due to a desire to improve data utility while maintaining

prima facie privacy protection to assuage its data contributors.

We start with the first ingredient of the DP flavor, the protection domain, X . The less to protect, the

less protection budget needs to be spent. Therefore, choosing or interpreting X more restrictively may
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lead to a smaller PLB, even without actually adding more noise to the data. This potentially perverse in-

centive should receive more scrutiny, because in most practice, the choice of X is a conscious one on the

data custodian’s part, and is indispensable to the interpretation of the DP specification. The domain X

frames the variables that are contained in the dataset and thus depends upon the socio-cultural sensitivity

of these variables (Nissenbaum, 2010). More generally, every choice of X encodes a data conceptualiza-

tion (Leonelli, 2019)—a representation by the data of the individuals who contributed their information.

Viewing the data releasemechanism as a constituent phase in a data life cycle,X specifies the starting point

of that cycle. The impact of this choice permeates through other phases in the cycle, notably before data

privatization including coding, cleaning, imputation, (sub-)sampling, and so on (Meng, 2021). Restric-

tions imposed by each of these steps may impact X before the privatization step, thus affecting the PLB.

Take the concrete example of topcoding and clamping, often performed as a data pre-processing step (see

e.g. Kamath et al., 2023). By rounding or projection, the operation forces data to take value in anX that

has a bounded range, effectively reducing the sensitivity of any subsequent data release mechanism, allow-

ing for a smaller declared PLB for the same magnitude of noise introduced.

The second way to apparently spend less PLB without adding more noise is to change the multiverse

D , the second ingredient of the DP flavor. Piling on more invariants, i.e., summaries of data that will

be published exactly by the data-release mechanism, is one of such examples, because it creates a more

shattered data multiverse D . (A multiverse D is a shattering (or refinement) of another multiverse D ′ if

everyD ∈ D is a subset of someD′ ∈ D .) For those who appreciateDP as a framework for protecting the

relative privacy or information, this possibility is rather obvious. Themore one discloses via the invariants,

the less information left in the data that require protection, and hence a smaller PLB is incurred. Take
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swapping as a concrete case: as shown in Part II and briefly recapped in Subsection 4.4.1, the PLB ε of

the Permutation Swapping Algorithm is determined by the swap rate p and the largest stratum size b. To

decrease the nominal value of ε, one can either increase p (up to a point) or decrease b. When the dataset

has a fixed size, the simplest way to decrease b is to define the stratifying variables at a finer resolution,

resulting in smaller strata within which swapping is confined. As illustrated in Part II, the various choices

of the stratifying variables at different levels of geography, with or without crossing with the household

size variable, result in b ranging from as small as 11.7 thousand to as large as 13.7 million, and a nominal ε

from 12.31 to 19.38 (respectively) at p = 5%.

A third way to achieve a nominal reduction of the PLB is to redefine the protection units—as captured

by the third ingredient ofDPflavor,dX—at afiner granularity. With all else being equal, aDP specification

with coarser protection units packs more weight in its PLB; it offers a stronger protection guarantee at the

same nominal budget than a specificationwith on finer protection units. In the opposite direction, when a

more expansive protection unit is supplanted by a narrower one, the input premetric dX becomes inflated

in that a unit of change in the former sense may amount to multiple units of change in the latter sense,

“watering down” the PLB by the same amount.

This maneuver has been recognized, and to some extent utilized, by the literature in privacy mecha-

nism design for complex data structures. For example, the choice of neighbors is particularly important

for network data – are neighbors defined by removing a node or an edge from the network, that is, are

privacy units edges or nodes (Raskhodnikova and Smith, 2016)? For business databases, does a company

constitute a unit, or should units be employees, or both (Haney et al., 2017; Schmutte, 2016; He et al.,

2014)? Or should they be the company’s transactions? Similarly for large personal databases in commer-
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cial settings, should an individual constitute a unit, or should each of their interactions with the platform

(such as a post or a ‘like’) be privacy units, or should units be the set of a user’s interactions within a given

time period (e.g. a single day) (Kenthapadi and Tran, 2018; Messing et al., 2020b; Desfontaines, 2023)?

Finally, when publishing social statistics, do households deserve privacy protection above and beyond the

protection afforded to their individual members (Machanavajjhala, 2022)?

A fourth way to gain nominal PLB out of thin air is to artificially introduce an output divergenceDPr

that systematically assesses two distributions to be closer. Technically speaking, the relaxation from ε-DP

to (ε, δ)-approximateDP (ADP) (Dwork et al., 2006a) can be understood as amaneuver of this type. (This

is not to say that ε, δ)-ADP is never a valid choice—in certain situations the gains to data utility may legit-

imately outweigh the loss to SDC of adopting (ε, δ)-DP. However, often there are other choices which

allow for the same gains in utility while requiring that a data releasemechanism ‘fail gracefully’ rather than

allowing a non-zero probability of ‘catastrophic failure’ (see e.g. Near andAbuah, 2025, Chapter 7).) This

can be seen by writing out the multiplicative divergence for (ε, δ)-approximate DP, as in Part I:

Dδ
Mult(P,Q) = sup

S∈F

{
ln

[P(S)− δ]+

Q(S)
, ln

[Q(S)− δ]+

P(S)
, 0
}
, (4.3)

where [x]+ = max{x, 0}, P and Q are two probability measures on the same output space of the data-

release mechanism T, and F is a collection of events of T that are of interests and that permit logically

coherent probabilistic assignment and operation, technically known as σ-algebra. But clearly, for any δ >

0,Dδ
Mult(P,Q) < supS∈F |lnP(S)− lnQ(S)]|, which is the output premetric for pure ε-DP.Hence, we

have reduced the PLB without changing the actual data release mechanism.

Because the PLB is used to bound theworst-cast rate of change, as seen in (4.1), any strategy of reducing

the extremeness of the worst-case will permit a smaller PLB without injecting any additional noise. This
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opens doors for manipulation or misuse. Specifically, we can reduce the σ-algebra F , by pretending that

we are interested in fewer events for the outcomeT . This can be seen clearly in (4.3), where the right-hand

side is the largest possible value over all events inF (denotedby S ∈ F ). Ifwe reduceF to a sub-σ-algebra,

then this extreme value will deflate, affording us with a smaller PLB.

The concept of subspace differential privacy (Gao et al., 2022) reflects a maneuver of this type, for it

requires control over the output divergence for every set in the Borel σ-algebra generated by a linear sub-

space of the ambient space. Coarsening the σ-algebra associated with the output space signifies a weaker

standard against which the data release mechanism is held, and does not compel the mechanism to be

non-measurable with respect to another richer σ-algebra. Therefore, for subspace differential privacy, the

mechanism could still take values in the ambient space. This is also different from the requirement of

invariants, which operates on the input space rather than the output space of the data release mechanism

T.

To emphasize further the importance of understanding the vulnerability and subtlety of DP, consider

the case where we use a constant data release mechanism, that is T(x) = C, where C does not change

with x. Clearly such a data release mechanism has zero PLB because it is completely insensitive to any

manipulation of the input data x. But what if the data curator chooses C to be the same value as the very

data or query we try to protect? Surely that means PLB=∞, since the actual query or data is disclosed.

Whereas this may appear to be a pathological case, it carries a critical message: the design of the data release

mechanism cannot be permitted to depend on the confidential data set itself. This is the very reason that

for 2020 Census, the US Census Bureau used the original data from 2010 Census, in its construction of

the 2020 TopDown Algorithm, instead of from the 2020 Census itself (Abowd and Hawes, 2023).

What has been discussed thus far does not nearly exhaust all perverse means to game the PLB. How-
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ever, our message is the opposite of perverse: the privacy loss budget is contextual in nature. Its context

in the narrowest sense encompasses the choice of parameter in a privacy specification and a data release

mechanism. These aspects of a DP guarantee deserve proper recognition.

4.4 Highlights of Part II: The US Census’s Evolving Data Pro-
tection

TheDecennialCensus of Population andHousing is a critical piece ofUS infrastructure. It determines the

apportionment of seats in theHouse ofRepresentatives; it is reliedupon for allocating trillions of dollars in

federal funding each year; and it informs the decision-making of businesses, urban planners and hospitals,

amongst many others (Villa Ross, 2023; Reamer, 2019; National Research Council, 1995). Safeguarding

such an important data source requires robust SDC, a task that the US Census Bureau has long taken

seriously. In fact, the bureau has been managing the risk of indirect disclosure in the Decennial Census

from 1940 onward (US Census Bureau, 2019b). In the 1990 Census, protections were strengthened and

a new SDCmethodwas introduced: data swapping (McKenna, 2018; Dalenius andReiss, 1982; Fienberg

andMcIntyre, 2004).

Data swapping (or record swapping) is a general concept that encompasses a broad class of algorithms.

These algorithms select a set of records and then shuffle the values of certain variables among these records.

We call the variables whose values are shuffled the swapping variables; all other variables are called the hold-

ing variables. Usually, records are partitioned into groups (or strata) according to the values they take on

a subset of the holding variables we call thematching variables; and records are only shuffled within their

matching group.

Theprimary SDCmethods used in the 1990, 2000 and2010Censuseswere forms of data swapping, the
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full technical details of which have not been made public due to confidentiality concerns. We know how-

ever that the bureau swapped entire households, rather than shuffling person-level data between house-

holds; that the swapping variable was geographic (e.g. block group, tract, or county); and that the match-

ing variables included broader levels of geographies (i.e. tract, county or state) as well as the household’s

total counts of adults and children. Furthermore, unique or unusual households that the bureau believed

had higher disclosure risk had a higher chance of being swapped.

In the 2010s, spurred by an increasing awareness of privacy risks in statistical products (Dinur and

Nissim, 2003), the US Census Bureau conducted a reconstruction attack on the 2010 Census. Using

published tables, and publicly-available information on the relationships between these tables, they were

able to determinewith a high degree of confidencemuchof the underlying post-swappedmicrodatawhich

produced these tables (Abowd et al., 2023). This lead to a revolution at the bureau – the 2020 Census

would not be protected by using data swapping, as was the case for the previous three decades, but rather

by brand new SDC methods which were explicitly designed to satisfy DP (Abowd, 2018). Yet, does the

USCB’s official adoption of DP, on its own, truly represent a sea change in how it protects the census?

What if, in fact, the census was already protected in 2010 by a DPmethod – or at least by a method which

is very similar to a DP one?

4.4.1 A DP Guarantee for the 2010 Census?

While data swapping was not originally invented with DP in mind, it may still be possible for it to satisfy

someDPspecification. However, it is effectively amethod for addingnoise only to the relationshipbetween

the swapping and holding variables within each matching group. As such, the marginal distributions of

these three sets of variables are invariant under swapping, as is the joint distribution of the swapping and
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matching variables. Data swapping can therefore only be DP subject to the invariants it induces – i.e. it

can satisfy aDP specification only if the specification’s datamultiverse respects its invariants. This limiting

of the scope of protection greatly reduces the SDC guarantee provided by DP, as we discuss extensively in

the following section.

Moreover, some of the technical implementation details of the 2010 swapping procedure preclude it

from satisfying a pure ε-DP specification (i.e. a specificationwhose output premetricDPr is the same as the

one used in the original DP specification of Dwork et al. (2006b)). Nevertheless, the Permutation Swap-

ping Algorithm (PSA) –which keeps to the spirit of the 2010 procedure, if not the exact implementation2

– does satisfy pure ε-DP subject to the invariants it induces.

The PSA is very simple to describe: It selects records independently with probability p (the ‘swap rate’)

and then permutes the values of those records’ swapping variables. Incidentally, this idea (under the name

n-Cycle swapping) was under active investigation by the USCB up until the bureau redirected its research

efforts towards DP (McKenna and Haubach, 2019).

The following statement is an informal version of the main result of Part II, which proves that the PSA

satisfies a DP specification.

Theorem II.1 (informally). Subject to the invariants induced by it, the PSA is ε-differentially private, with

ε ≤


ln(b+ 1)− ln o if 0 < p ≤ 0.5,

max
{
ln o, ln(b+ 1)− ln o

}
if 0.5 < p < 1,

where o = p/(1− p), and b is the size of the largest matching group.

To contextualize the protection loss budget ε in Theorem II.1, we briefly describe in non-technical

2We point the interested reader to Part II for a detailed comparison between the PSA and the 2010 swapping
procedure.
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terms the first four building blocks of the PSA’s DP specification. Firstly, the protection domain X is

any set of datasets which all share the same variables. Secondly, what “subject to the invariants” means is

that among all possible datasets in X , the only ones that carry the protection guarantee are the ones that

share the same invariant values with the actualized, confidential dataset. This is because other datasets will

be excluded from consideration by any competent attacker due to the fact that their invariant values are

different to those published. Mathematically, the invariants partition the data spaceX into data universes,

with all datasets in each universe sharing the same invariant values. By subjecting DP to the PSA’s invari-

ants, we mean that DP’s Lipschitz condition (2.1)) is restricted to datasets in the same universe. Hence,

comparisons between datasets with different values on the invariants are excluded from consideration.

Thirdly, the granularity of the PSA’s DP specification is equal to the resolution of the PSA’s swaps.

For example, if the PSA swaps person records, then the granularity of protection is person records. More

technically, wemean that the PSA’s input premetric dX is theHamming distance on person records. Thus,

if a number n of person records are changed, the distribution of the PSA’s output will change by at most

εn units, as measured by the standard of protection for the PSA’s DP specification (assuming that the

changes to these records do not result in a change in the invariants). (Fourthly) this standard of protection

is captured by the maximum likelihood ratio – that is, the maximum value, over all possible outputs t,

of the relative likelihood of observing output t, under input dataset x as compared to under the some

alternative input x′.

In order to get an (approximate) description of the 2010 Census’s SDC protection, we instantiate the

PSA’s parameters to align as closely as possible with what we know about the 2010 swapping procedure.

This gives us a concrete DP specification for the 2010Census (unlike the above specification, which gener-

150



ically applies to all instantiations of the PSA), under the counterfactual scenario that this census was pro-

tected by the PSA. We emphasize that this does not provide a DP guarantee for the actual 2010 Census

since such a guarantee must reckon with the exact implementation details of the 2010 SDCmethods, not

the PSA. However, because we believe the PSA can closely parallel the 2010 swapping procedure by ap-

propriately choosing its implementation parameters, the resultingDP specification is nevertheless a useful

perspective on the protection provided to the 2010 Census.

Our choices for the PSA’s implementation parameters are as follows. To integrate the PSA into the

2010 Census data pipeline, we place it after all imputation and editing processes. This means the PSA’s

protection domain is the setXCEF of all possible Census Edited Files – i.e. all hypothetical outputs result-

ing from the first stages of the Census data pipeline through to the imputation and editing processes. This

has important implications on what data is actually being protected by the PSA: the edited and imputed

records, not the ‘raw’ Census responses. Moreover, because XCEF determines what it means to counter-

factually alter data, it also has implications on what the protection unit in 2010 was. Indeed, mirroring

the 2010 swapping procedure, we set the PSA to swap household-level records, so that its input premetric

dX is theHamming distance on household records; yet this does not imply the 2010 protection units were

households – because a change in a single record of the Census Edited File does not always correspond to a

singe household changing theirCensus responses. Instead, the 2010 protection units are ‘post-imputation

households’ – imaginary entities which can alter their own records in theCensus Edited File freelywithout

affecting other, imputed records. (See Part II for an explanation of how the PLBmust be inflated in order

to have households as the protection unit.)

We set the PSA’s matching variables to be the household’s state and size, and its swapping variables to
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be the household’s county. This results in a multiverse D2010 where all statistics at the state and national

levels are invariant, as well as the counts of households by size at the block level. Finally, we set the swap

rate p to be 2-4%, as boyd and Sarathy (2022) states was used in 2010. This results in a PLB ε between 18.29

and 19.

Since the 2010 swapping procedure also included the number of voting-aged people as a matching vari-

able, 18.29-19 is an upper bound for 2010’s approximate PLB. (We cannot compute the PLB when the

number of adults is invariant because the necessary statistic—the value of b in Theorem II.1—is not pub-

licly available.) However, this also implies thatD2010 gives a lower bound on the invariants: in addition to

the statistics reported above, the block-level breakdown of households by the number of adult occupants

(and hence also by the number of children occupants) were invariant.

4.4.2 The DP Guarantee of the 2020 Census

Having established that the 2010 Census may be analyzed from the perspective of DP, it is fruitful to

compare it with theDP specification of the 2020Census. Wewill start this comparison by examining each

of the five DP building blocks in turn. As in 2010, the 2020 disclosure avoidance system (DAS) also took

the Census Edited File as input. Hence the protection domain remains constant across the two census;

in both cases it is the set of all possible Census Edited FilesXCEF. Secondly, the granularity of protection

in 2020 was person-level records. All other components being equal, this would imply weaker protection

than in2010,whichprotectedhousehold-level records; but, aswewill see, the three remaining components

are not equal.

Most importantly, the 2020DAShas far fewer invariants thanwas the case in 2010. The 2020 invariants

were carefully considered and minimized to those required by operational and constitutional mandates.
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These invariants are the state populations as well as the counts at the block level of housing units and of

each type of occupied group quarters. As we will discuss in Section 4.6, initial analysis suggests that these

invariants have minimal effect on SDC; the same cannot be said about 2010’s invariants (Abowd et al.,

2023).

The standardof protectionused in 2020 iswhatwe call thenormalizedRényimetric; this is the choice of

output premetric corresponding to zero-concentrated DP (zCDP) (Bun and Steinke, 2016). Under these

settings for the first four components, the 2020 Census’s PLB is given by ρ2 = 55.371. (We follow the

standard convention of using ρ to denote the PLB in the casewhere the standard of protection corresponds

to zCDP.) Additionally, we may translate from zCDP to (ε, δ)-DP and thereby also express the 2020 PLB

by ε = 126.78 with δ = 10−10. (To be clear, in this translation across DP specifications, the first three

building blocks stay the same, while the output premetric changes from the normalized Rényi metric to

the δ-approximate multiplicative divergence.)

It is worth noting that the above DP specification only assesses the disclosure risk associated with the

primary 2020 Census products (namely, the P.L. 94-171 Redistricting Summary File (US Census Bureau,

2021a,b), the Demographic and Housing Characteristics (DHC) File (US Census Bureau, 2023c), the

Detailed DHC-A and -B Files (US Census Bureau, 2023f, 2024a), the Supplemental DHC (US Census

Bureau, 2024c) and related auxiliary products—see Part II). As of the time of writing, there have already

been additional releases, and there will be future releases which rely on the 2020 Census data (e.g., the

annual Population andHousingUnit Estimates and theNational Population Projections (USCensus Bu-

reau, 2023q,p)). While we have not been able to obtain information on their SDC, these releases will at

a minimum increase the 2020 PLB. They may also possibly weaken the other components of the 2020
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DP specification. This would not happen for data swapping; the 2010 DP specification from the previ-

ous subsection would cover all Census products because they were all generated from the post-swapped

microdata (see Subsection 4.5.2).

Beyond the core details of the 2020 DP specification explained above, several other aspects merit atten-

tion. Firstly, as for 2010, setting the protection domain to be XCEF in 2020 has important implications:

The 2020 Census does not have “end-to-end” DP protection (c.f. Hu et al., 2024); its protection units

are ‘post-imputation persons’ and as such does not provide protection to individuals’ Census responses

directly. Secondly, a more nuanced perspective on the 2020 DAS would examine its per-attribute PLBs

(Ashmead et al., 2019). A per-attribute analysis considers a DP specification in which only one variable

(i.e. attribute) is allowed to vary within each data universe. This allows for a more fine-grained assessment

of SDC, rather than assuming the worst-case possibility of complete dependence between variables when

composing the per-attribute budgets into a single total budget. Apart from the following twoobservations,

we leave this important discussion to future work: The per-attribute budgets are much smaller than the

overall 2020 PLB. And a per-attribute analysis is not applicable to data swapping since its DP specification

does not rely on the composition theorem of DP.

4.5 What Does ItMean If Swapping Is Differentially Private?

4.5.1 Differential Privacy Bestows Advantages

The PSA’s DP specification gives a precise, mathematical formulation of the SDC it provides. It delimits

the information the PSA does not protect (its invariants) and the extent to which it protects the remaining

information. It describes the granularity at which attackers are limited in learning about aspects of the

confidential data that are not disclosed by the invariants alone, and the standard againstwhich this learning
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ismeasured. In short, the PSA’sDP specification answers the ‘who’, ‘where’, ‘what’, ‘how’ and ‘howmuch’

questions of SDC – a precursor for determining whether the PSA is appropriate for a given data release,

and, if so, for choosing its implementation parameters.

DP is not just a descriptive framework. It also provides a calculus for reasoning about how protection

loss accumulates across multiple data products, a tool which is becoming increasingly more valuable as

national statistical offices (NSOs) diversify their offerings (Kitchin, 2015). Moreover, adopting aDPflavor

as the yardstick for measuring SDC permits complete transparency of the data release mechanism, since

DP guarantees do not degrade with the attacker’s knowledge of the mechanism (in contrast, degradation

can occur with the attacker’s knowledge of the relationships among the data subjects). For example, even

when armedwith the complete knowledge of the PSA’s implementation details (including the values of all

its parameters, such as the swap rate or swap key, but excluding, of course, the value of its random seed),

it is still impossible for an attacker to thwart the SDC protections, as measured by its DP specification.

While transparency does not assist attackers in breaking DP’s protection guarantees, it is important to

legitimate data users as an essential prerequisite for valid statistical analysis of privacy-protecteddata (Gong,

2022b). Indeed, by allowing quantitative analysts such as statisticians and social scientists to correct for

the statistical errors induced by SDC protection, transparency increases data utility and supports robust

research findings.

As Section 4.6 will discuss in more detail, the claim that the details of a DP-compliant method can be

disseminated at no cost to privacy rests on two assumptions. Barring this complication, transparency – as

provided by recasting SDC techniques as DP –will be a major development because the details and imple-

mentation parameters of SDC algorithms have traditionally been kept secret. For example, the currently
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available public documentation on the 2010 DAS is deliberately deficient, stymieing researchers’ ability

to appropriately account for the noise it injects into Census data (Kenny et al., 2024). Our work provides

the necessary framework to justify the publication of a comprehensive description of the 2010 DAS swap-

ping procedure, without further degrading its protection beyond the loss attributable to the invariants

(which have, by and large, already been made public; see e.g. Abowd and Hawes (2023)). Assuming that

the knowledge of what published 2010 statistics are invariant is not itself a disclosure risk, the transparent

knowledge of the 2010 DAS will not only provide crucial retrospective insight into its quality (and the

quality of other data products subject to similar SDC protection protocols), but will also further an open

discourse regarding the optimal SDC standards of official statistical agencies, including design parameters

for the disclosure avoidance system of future data products.

Swapping mechanisms in particular have received criticism since they have been shown theoretically to

introduce bias into the published data (e.g. Drechsler and Reiter, 2010). But the level and nature of this

bias depends on the particular swapping algorithm used and its implementation parameters. Only with

transparency of the 2010 swapping algorithm—as enabled by a formal privacy analysis—can the extent of

this bias be quantified. Thiswould provide belated yet crucial insight into the quality of the pastDecennial

Census data treated with swapping, above and beyond what the current theoretical understanding can

provide.

4.5.2 A Differentially Private Method With Some of the Benefits of Tradi-
tional SDC?

Traditional SDC techniques also have their own value, with data swapping in particular enjoying advan-

tages that most DP methods do not. For example, swapping maintains facial validity—the 2010 Census

outputs all look ‘reasonable’ in the sense that there are no negative or fractional counts, nor are there im-
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plausibly large or small reported values. More generally, the 2010 publications pass the sanity checks an

observant reader might make, which is useful for building trust in the census among the general public.

From the opposite perspective, a lack of facial validity is an important concern for statistical agencies like

theUSCB. It presents an issue for data users who are confused and disinclined to use seemingly-erroneous

data; it erodes the public image of the agency; and it hampers efforts to improve differential response rates

amongdisadvantaged communities (boyd andSarathy, 2022;Drechsler, 2023;Oberski andKreuter, 2020).

(Related, but distinct, to facial validity is the concept of face privacy, which is the requirement that the data

release mechanism produce output which appears to the casual observer to offer privacy protection (Hod

and Canetti, 2025). In contrast, facial validity requires that the output is a plausible representation of the

real world, even to a data user who is unaware that artificial noise was added for SDC protection.)

Logical consistency is another advantageous property of data swapping, as it ensures all statistics pro-

duced from the 2010 Census align with one another. For example, in any contingency table released in

2010, the sum of cells in a singe row or column always matches the marginal total. Likewise, reported

values for the same count remain consistent across different publications. Additionally, the 2010 Census

outputs respect the structural zeroes and edit constraints present in the underlying confidential microdata.

In contrast, many of the 2020 Census outputs will not be consistent across publications and even within

the same publication, row- and column-sums will not match the reported totals. (However, the outputs

produced by theTDA—the PL andDHSfiles—are logically consistent, although aswewill see, this comes

at a cost.)

Like facial validity, logical consistency is important for users and advocates of census data (boyd and

Sarathy, 2022; Hotz and Salvo, 2022; Ruggles et al., 2019). Yet, many DP methods do not maintain fa-
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cial validity nor logical consistency, and others, such as the TopDown Algorithm, cannot satisfy these

properties without partially destroying statistical transparency.3 This is because the majority of DP meth-

ods rely on optimization-based post-processing to restore facial validity and logical consistency (e.g. Barak

et al., 2007; Hay et al., 2010). Optimization-based post-processing can be algorithmically transparent but

in most cases it destroys the statistical transparency of the resulting two-step privacy mechanism – a cru-

cial requirement for principled statistical analysis (Gong, 2022b). The recent proposal by Dharangutte

et al. (2023) does away the need for post-processing when the noise infusion is additive. However, it re-

lies on MCMC sampling and hence is non-trivial to implement for large-scale data products. In contrast,

swapping achieves facial validity and logical consistency automatically without the need for additional

computation.

Furthermore, data swapping—like other traditional SDC techniques but unlike many DP methods

(such as those used in 2020)—is easy to communicate and understand at a high level by a broad, non-

technical audience. This is important for building trust and maintaining the buy-in of data providers,

custodians and other stakeholders. Swapping is also easily implementable and amenable to the types of

data collected by government agencies, as evidenced by its use in the US, the UK and the EU (McKenna,

2018; Office for National Statistics, 2023; de Vries et al., 2023).

Finally, as a pre-tabular perturbation method, swapping also has the advantage of producing a ‘syn-

thetic’ dataset that serves as the source for all census publications. This simplifies the data release process as

all outputs are derived from this ‘post-swapped’ data without requiring additional SDC treatment. This

3A data-release mechanism T is statistically (or probabilistically) transparent if the conditional probability dis-
tributions Px(T ∈ ·) are public knowledge (Gong, 2022b). Statistical transparency is distinct to algorithmic trans-
parency, which requires that the source code of the mechanism T is disseminated. For all practical purposes, statis-
tical transparency is a stronger requirement than algorithmic transparency since T’s source code may be so complex
that it is practically impossible to derive the conditional distribution it induces.
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also explains why the 2010 publications maintain logical consistency; because no further noise is intro-

duced, all outputs are consistent with the post-swapped data and hence also with each other. Moreover,

this approach ensures that releasing additional data products does not degrade the PSA’s DP specification.

As long as all products are based on the same post-swapped microdata, they are all covered under this

specification by DP’s post-processing theorem. In this way, data swapping allows the statistical agency to

publish a single DP specification which encompasses all existing and future publications. As mentioned

in Subsection 4.4.2, this stands in contrast to the 2020 Census. There, each publication has its own DP

specification, and to understand the SDCprovided to the census data as a whole, onemust aggregate these

DP specifications into a single comprehensive one – a process whichmust be repeated with each new pub-

lication. And, because every release introduces additional disclosure risk, the overall 2020DP specification

weakens each time, in comparison to the single, upfront DP specification associated with data swapping.

4.6 Invariants, Transparency andData Utility

A concrete benefit of the new perspective we provide is that it sheds light on debates concerning swapping.

In what follows, we review and provide our comments on three current discussions. We will argue that

most of these contentious issues are tangential to the fundamental nature of swapping andDP noise infu-

sion as mechanisms for data privacy protection. Our work provides a level playing field that allows for a

much needed, informed, and fair comparison.

4.6.1 Understanding the Impact of Invariants on Disclosure Risk.

A major criticism of the swapping method implemented in the 2010 Census is that it induces too many

invariants. One salient consequence of the plurality of invariants is that the permissible values for the

confidential data are severely constrained. As a result, it can be impossible to simultaneously maintain
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a low degree of data disruption and control the risk of identification via swapping. The most damning

source of identification risk pertains to the population uniques which, if exist, can be directly revealed as

logical consequences of the invariants. As an extreme example , any swap-key stratumwith only duplicate

records would result in an exact reconstruction of that stratum. As Abowd and Hawes (2023) discuss,

the invariants in the 2010 Census swapped data elevate disclosure risk, because 1) total and voting age

populations at the block level constitute information at very fine granularity, and 2) the existence of a high

fraction of unique persons within blocks (57%) further facilitates reidentification via record linkage.

The bureau carried out a suite of simulated reconstruction attacks against the 2010 Census and ob-

served high rates of reidentification (Abowd et al., 2023). Generally speaking, reconstruction attacks work

by collating many aggregate statistics about the confidential (unknown) microdata and then constructing

a database which agrees with these statistics. This database is a plausible guess for the confidential micro-

data, since it generates identical statistics to the ones generated by themicrodata. The larger the number of

such statistics and the more accurate they are, the more heavily they constrain the possible configurations

of the reconstructed database, and hence the more likely this reconstruction is to agree with the true con-

fidential microdata. As a result, it is easier to create reconstructed databases with a high chance of leading

to the reidentification of units via linking to external data sources. The experiments further suggest that

the rate of swapping must be significantly increased to achieve what can be deemed as an acceptable level

of protection for the population uniques (Abowd and Hawes, 2023). It is from these observations the

bureau concluded an urgent need to revamp swapping-based SDC. However, the question remains open:

in what ways does a specific set of invariants impact the disclosure risk of the resulting data product, and

the effective privacy guarantee it can afford?
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Before we remark on how the above conjectures and empirical evidence may implicate the relationship

between invariants and disclosure risk, two things are worth noting at the outset. First, the degree of

vulnerability of a privacy-protected data product against a class of reconstruction attacks is a measure of

its absolute disclosure risk (Duncan and Lambert, 1986; Reiter, 2005), defined as the extent of certainty

with which an agent can make inferences about the confidential information from the data product. It is

well understood that unless strong assumptions about the agent’s prior knowledge are made, differential

privacy does not directly translate into any quantifiable degree of control over the absolute disclosure risk;

see e.g. Dwork (2006);McClure andReiter (2012); Kenny et al. (2021);Hotz and Salvo (2020). Therefore,

the success of reconstruction attacks against a data release mechanism, regardless of the privacy guarantee

they bear (or not bear), should be taken as indirect evidence if it is to be contrasted with the result against

a differentially private mechanism characterized by its design parameters.

Second, invariants are not a proprietary consequence of swapping. Whether the data custodian imple-

ments swapping or another privacy protection mechanism, to maintain some invariants in the data prod-

uct is unavoidable. The production settings of the TopDown Algorithm employed invariants as specified

in Subsection 4.4.2. Notably, the Census Bureau arrived at this final list of invariants through an itera-

tive process. For example, among the bureau’s previously considered invariants are block-level population

invariants; see Ashmead et al. (2019); Kifer (2019). The often iterative process of determining invariants

illustrates that it is often a part of many privacy mechanism designs and parameter choices.

Notwithstanding the caveats, it is worthwhile to inquire, to the extent possible, about the impact of

invariants on disclosure risk through the lens of DP. Such an inquiry can be challenging within the clas-

sic differential privacy paradigm, because invariants are not captured by the privacy loss budget, the sole
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measure of privacy guarantee. By contrast, the DP specification that we lay out in this work is more dex-

terous. Specifically, Definition 2.4.2 reveals that invariants are captured by the data multiverse D . Under

this specification, an analysis of the impact of invariants on disclosure risk amounts to a five-dimensional

comparison between alternative privacy specifications that differ on D and potentially on other elements

as well. A comprehensive description of the five-way dynamics remains open for future research, though

investigationswith a restricted scope can already be informative if concrete and feasible alternatives are con-

trasted. For example, it canbe shown that reconstruction attacks canbe increasingly successful if applied to

DP data whenmore invariants are imposed on them (Protivash et al., 2022). Our analysis of Section 3.4.3

also indicates that the granularity of invariants has a larger numerical impact on the privacy loss budget ε,

more so than the swap rate for a given set of invariants, suggesting that a reduction of the invariants may

have a larger impact compared to an increase of swap rate.

4.6.2 Mitigating the Impact of Invariants on Disclosure Risk.

Because of the omnipresence of invariants and their potential adverse impact on disclosure risk, the mod-

ern data custodian are entitled to methodologies that allow for the specification of invariants in a flexible

and precise manner, in order to design a tailored solution that balances privacy and accuracy targets. To

this end, swapping – instantiated either as in the previousDecennial Censuses or as in this work – does not

suffice. In addition to comparative investigations discussed previously that may instruct the trade-off of

invariants with other dimensions of the DP specification, several tangible remedies may directly mitigate

the impact of hard invariants and are worthy of exploration.

As part of its comparative analysis between swapping and TopDown, the Census Bureau considered

methods to override the hard invariants due to swapping. One suchmethod is probabilistic unit matching.
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Instead of usingVMatch to formhard strata that confine swapping, allow, with a small probability, for units

across different strata to be swapped. The probability could be inversely proportional to some distance

metric on the strata. As a demonstration, take the 1940 Census full count example from Section 3.2.4,

where VMatch is the state indicator and size of the household and VSwap is the county indicator. Suppose

for some α > 0, a household chosen for swapping would have a (1− α)% chance of being swapped with

another household of the same size, but an α% chance of being swappedwith a differently-sized household.

Doing so retains the county-wide household counts as invariant, but the county-wide total populations

are no longer invariant.

Another pair of approaches to remove invariants in swapping is pre-swap perturbation and post-swap

perturbation. As their names suggest, the former infuses noise into the confidential record prior to ap-

plying swapping (Hawes and Rodríguez, 2021, p. 23), whereas the latter perturbs an intermediate data

product after applying swapping. Notably, data swapping followed by tabular perturbation is a common

SDC strategy, as it is the approach taken by the Office of National Statistics (ONS) for the protection

of the 2021 UK Census (Office for National Statistics, 2023). There, the cell key method (CKM) is em-

ployed to perturb the cells of contingency tables after targeted recording swapping has been applied to the

underlying microdata (Fraser andWooton, 2005; Thompson et al., 2013; Marley and Leaver, 2011). No-

tably, theCKMprocedure has been analyzed through the lens ofDP (Rinott et al., 2018; Bailie andChien,

2019; Chien and Sadeghi, 2024). In addition to its use at the ONS, applying swapping and then CKM

perturbation is also recommended by Eurostat’s Centre of Excellence on Statistical Disclosure Control for

EU censuses (Glessing and Schulte Nordholt, 2017).

We leave to future work the investigation of the full theoretical guarantees of probabilistic matching
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as well as pre-swap and post-swap perturbation. Note that compared to classic swapping alone, all of the

above procedures induce strictly more auxiliary randomness into the data product. Therefore, it would

be reasonable to expect the resulting algorithms to enjoy DP guarantees while supplying fewer and more

flexible choices of invariants. One particularly salient question for this line of research is to determine

the DP specification for the sequential composition of two mechanisms, when both mechanisms satisfy

(possibly different) DP specifications.

4.6.3 Data Utility Under Transparent Privacy

The argument that the details of DP methods can be disseminated at no cost to privacy rests on two un-

derlying assumptions. The first assumption, which we will discuss further later in this section, is that the

epistemic uncertainty of a SDCmethod is not a legitimate formof privacy protection. The second assump-

tion,whichwewill discuss inmore detail later, is that it is safe to disseminate themethod’sDP specification,

a non-trivial judgement when there are invariants involved. Barring these complications, transparency – as

provided by recasting SDC techniques as DP –will be a major development because the details and imple-

mentation parameters of SDC algorithms have traditionally been kept secret. For example, the currently-

available public documentation on the 2010DAS is deliberately deficient, stymieing researchers’ ability to

appropriately account for the noise it injects into Census data (Kenny et al., 2024). Yet our work suggests

that publishing a complete description of the 2010 DAS swapping procedure (including its source code)

will not degrade its privacy protection beyond the decrease associated with knowing the 2010 invariants

(which have, by and large, already beenmade public). Transparency in this case would provide belated yet

crucial insight into the quality of existing data products whichwere protected using theUSCB’s swapping

methods and would contribute to resolving the on-going debate between the 2010 and the 2020 DAS.
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Publishing the USCB’s swapping methods will also help to dispel the “statistical illusions” (boyd and

Sarathy, 2022) associatedwithUS censuses before 2020. It is easier to argue that census data contain errors

due to privacy protection when one can point precisely to how these errors were introduced and quantify

their distribution exactly. Transparency enables concrete statements like, ‘the expected error due to pri-

vacy protection is X%’, in place of vague expressions such as, ‘these counts may have some error as their

contributing households could have been swapped’. Raising awareness of the census data’s long-existing

privacy errors by publicly documenting the DAS methods is a step towards “shifting the statistical imagi-

nary to account for uncertainty” (boyd and Sarathy, 2022) and thereby improving the USCB’s legitimacy.

Lastly, transparency counters a common principle in traditional SDC: privacy through obscurity. This

principle, which states that a data custodian should not fully reveal the implementation details of their

SDC method, is based on the rationale that these details could be used by an attacker to unpick the

method’s privacy protection (see Slavković and Seeman (2023) and references therein). Therefore, SDC’s

privacy protections are not solely due to the aleatoric uncertainty introduced by random noise injection,

but also due to the epistemic (aka structural) uncertainty in the attacker’s knowledge of the protection

method. There is protection provided directly by the SDC method and then – according to this line of

reasoning – there is protection provided by plausible deniability in exactly how the method was imple-

mented. Epistemic uncertainty is, unfortunately, much harder than aleatoric uncertainty to model and

reason about (see, for example, the extensive literature on imprecise probabilities (Shafer, 1976; Walley,

1991; Augustin et al., 2014)). Consequently, the privacy protection provided by the epistemic uncertainty

of an SDCmethod is difficult to describe with mathematical privacy guarantees and, as far as the authors

are aware, has not been systemically studied. Nevertheless, the principle of privacy through obscurity is
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frequently invoked by NSOs in reference to their SDC methods (McKenna, 2018; UK Statistics Author-

ity, 2021; Chipperfield et al., 2016). On the other hand, DP follows a long tradition in cryptography,

dismissing epistemic uncertainty as a brittle form of protection which depends on a watertight security

system to safeguard a privacy method’s implementation details. Since epistemic uncertainty’s protection

can changewidelywith an attacker’s backgroundknowledge and assumptions,DP’s privacy guarantees are

derived solely from a mechanism’s aleatoric uncertainty, justifying DP’s tenet of ‘transparency for free’.

Our last point of discussion re-emphasizes another importantmotivation for this work, whichwas only

mentioned briefly earlier. By casting swapping as DP, we can theoretically allow its algorithmic specifica-

tion to bemade public. As themain SDCmethod for theDecennial Census of the previous three decades,

a peek into the technical specification of swapping can bring tremendous utility to data users and privacy

researchers alike.

Data users who conduct statistical modeling with official data products criticize swapping because it

negatively affects the quality of downstream data analyses. It has been well understood in the literature

that swapping inflicts themost utility damage to the relationships between swapping andholding variables.

Mitra and Reiter (2006) and Drechsler and Reiter (2010) demonstrate that even low swap rates (e.g. 5%)

can substantially reduce the effective coverage of confidence intervals for the regression coefficient between

such variables.

We surmise that the deterioration in coverage is in part due to performing a naïve regression analysis

on processed data, without accounting for the privacy mechanism itself. As Gong (2022b) demonstrates,

performing naïve regression analyses on data protected via DP noise-infusion results in similar types of

coverage deterioration, and further that this deterioration can be restored once the privatization process is

statistically modeled (at the expense of wider, though valid, intervals). However, the analyst cannot pos-
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sibly be blamed for performing the naïve analyses on swapped data when the swapping procedure is not

public. Unfortunately, swapping by tradition has not been a transparent SDC technique. The explicit

statement of swapping’s privacy guarantees provides theoretical justification to publish the implementa-

tion details of the swapping procedure. This would allow the swapping mechanism to be appropriately

accounted for via statistical modeling.

Note that the justification for transparency relies on the privacy guarantee being public. In the case

of swapping (or for any DP specification whose data multiverse partitions the data space), publishing the

privacy guarantee necessitates the release of its invariants. However, as we repeatedly emphasize through-

out this work, there is danger of privacy leakage associated with the knowledge of invariants in and of

themselves. For example, a plurality of invariants supply the adversary with confidence in their efforts to

reconstruct themicrodata and reidentify individual records. Therefore, careful deliberation has to be prac-

tised in weighing the cost of making public the invariants against the benefits of algorithmic transparency

this allows.
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5
General Inferential Limits Under Differential

and Pufferfish Privacy1

5.1 Introduction

The world today is witnessing an explosive growth of large-scale datasets containing personal in-

formation. Demographic and economic surveys, biomedical studies and massive online service platforms

facilitate understanding of human biological functions and socio-behavioural environments. At the same

time, they pose the risk of exposing confidential information about data contributors. Breaches of pri-

vacy can happen counter-intuitively and without malice. For example, Homer et al. (2008) demonstrated

that even coarsely aggregated SNP (single-nucleotide polymorphisms (Kim and Misra, 2007)) data from

genome-wide association studies (GWAS) can still reliably reveal individual participants. This unsettling

revelation led to the decision by the U.S. National Institute of Health to remove aggregate SNP data from

1Based on work coauthored with Ruobin Gong.
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open-access databases (Yu, 2013). This incident, and similar occurrences across science, government and

industry Narayanan and Shmatikov (2008); Dwork et al. (2017); Culnane et al. (2019); Sweeney (2000),

have attracted public attention and sparked debate about privacy-preserving data curation and dissemina-

tion.

Commensurate with the increasing risk of privacy breaches, the recent decades have also seen rapid

advances in formal approaches to statistical disclosure limitation (SDL). These methodologies supply a

solid mathematical foundation for endeavors that enhance confidentiality protection without undue sac-

rifice to data quality. Notably, differential privacy (DP) (Dwork et al., 2006b; Bun and Steinke, 2016;

Kifer and Machanavajjhala, 2014) puts forth a class of rigorous and practical standards for assessing the

level of privacy provided by a data release. Many large IT companies, including Google (Erlingsson et al.,

2014), Apple (Apple Inc., 2017), andMicrosoft (Ding et al., 2017), have been early adopters of DP.More

recently, the U.S. Census Bureau deployed DP to protect the data publications of the 2020 Decennial

Census (Abowd et al., 2022b). The U.S. Internal Revenue Service is also exploring differentially private

synthetic data methods for the publication of individual tax data (Bowen et al., 2022). These decisions by

statistical agencies and corporations showcase the growing popularity of DP among major data curators.

Innovations in privacy protection methods have prompted quantitative researchers to confront a new

reality, as existingmodes, practices and expectations of data access are subject to renewal. We highlight two

points of tension in this development. First, DP promises transparency, in the sense that the design details

about the protectionmethod can bemade public without degradingDP’smathematical assessment of the

level of privacy protection. Transparency is one of the advantages of DP over traditional SDL methods

since it supports valid statistical inference by providing the analyst with the ability to model the privacy
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noise. However, this promise often falls short in practice, leaving the statistician with tied hands Gong

(2022b). Second, following the high-profile adoption of DP by the U.S. Census Bureau, a debate ensued

concerning its interpretation, or its semantics, as well as its reconciliation with other notions of statistical

disclosure risk; see e.g. Kenny et al. (2021);Hotz et al. (2022); Kifer et al. (2022); Jarmin et al. (2023); boyd

and Sarathy (2022); Francis (2022); Muralidhar and Domingo-Ferrer (2023); Garfinkel (2023); Sánchez

et al. (2023); Keller and Abowd (2023). These issues motivate theoretical investigations that may shed

light on the pragmatic translation between rigorous privacy standards and usable statistical advice.

The current work takes multiple steps toward the resolution of these debates by examining DP via the

lens of imprecise probabilities (IP). Our focus is restricted to two important flavors of DP: 1) the clas-

sic notion of pure ε-differential privacy (ε-DP) Dwork et al. (2006b), and 2) Pufferfish privacy Kifer and

Machanavajjhala (2014), a conceptually-distinct variant of ε-DP that is showing semantic promise (see

e.g. Jarmin et al. (2023)). We begin by describing ε-DP as a Lipschitz continuity condition (Section 5.2).

This description enables the interpretation of ε-DP as an interval of measures (DeRobertis and Hartigan,

1981) induced by the data-release mechanism (Section 5.3). From here, we derive some implications of

this interpretation on the problem of statistical inference using privacy-protected data releases. These re-

sults concern the probability model of the observable privatised data (Section 5.4), as well as frequentist

hypothesis testing (Section 5.5) and Bayesian posterior inference (Section 5.6) using these data. Next we

turn to address Pufferfish privacy (Section 5.7) – showing that it too can be described as a Lipschitz con-

tinuity condition – and discuss its semantic interpretation as limits to frequentist and Bayesian inferences

in an analogous manner (Section 5.8). Further, we link Pufferfish to another IP object: the density ratio

neighbourhood (Theorem 5.8.4). The results in Sections 5.4-5.8 establish bounds on key inferential ob-
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jects while having general validity under mild assumptions about the data model, the privacy mechanism,

and (when applicable) the analyst’s prior. Section 5.9 demonstrates that these results are optimal in the

sense that the bounds we obtain are pointwise tight. Section 5.10 concludes the paper with a discussion.

Throughout this work, we demonstrate that various objects from the imprecise probability literature

naturally arise when studying differential privacy. Specifically, definitions of DP often invoke distortion

models: neighbourhoods of precise probabilities defined as closed balls with respect to some metric – or,

more correctly, some distorting functionMontes et al. (2020a,b). Moreover, the choice of the distortion

model (partially) determines the flavor of the resulting privacy guarantee Bailie et al. (2025b). In the fol-

lowing sections, we will outline the appropriate distortion models formulations as they arise.

DP objects are naturally amenable to IP analysis. Indeed, the rich vocabulary of IP can help to articu-

late the properties of a DP object in a precise yet general manner. Within the current literature onDP, the

study of data privacy protection using IP is a nascent endeavour. Komarova and Nekipelov (2020) exam-

ines the issue of partial identification in inference from privacy-protected data, where in certain situations

the identification set can be describedwith a belief function. In Li et al. (2022), the authors formulate local

differential privacy definitions for belief functions, a proposal that amounts to a set-valued SDL mecha-

nism whose probability distribution is given by the mass function associated with a belief function. Liu

et al. (2023) examines constraints on DP mechanisms in terms of belief revision and updating. On the

matter of using IP to explore mathematical formalisations of data privacy, we will return and remark on a

few concrete potential future directions in the discussion (Section 5.10).

173



5.2 Pure ε-Differential Privacy

Define the data universeX as the set of all theoretically-possible observable datasets. Let d be a metric on

X .2 Given confidential data x ∈ X , consider releasing some (potentially randomised) summary statistic

T ∈ T of x. To formalise this, equip the set T with a σ-algebraF and define a data-release mechanism as

a functionM : X × [0, 1] → T whose inputs are the confidential data x and a random seed U ∈ [0, 1],

andwhose output is the summary statisticT. (We require thatM(x, ·) is (B[0, 1],F )-measurable for each

x ∈ X , where B[0, 1] denotes the Borel σ-algebra on [0, 1].)

A distribution on the seed U induces a probability on the summary statistic T = M(x,U). Without

loss of generality, wemay takeU ∼ Unif[0, 1]. Denote by Px the probability measure ofM(x,U) induced

byU, taking x as fixed:

Px(M(x,U) ∈ S) = λ
(
{u ∈ [0, 1] : M(x, u) ∈ S}

)
, (5.1)

where λ is the Lebesgue measure on [0, 1].

The realised value of the seedU and the observed dataset x are assumed to remain secret, while all other

details of M (including the distribution of U) may – and should – be made public (Gong, 2022b). An

attacker is taskedwith inferring x (or some summary h(x) of x) based on observing a drawT = M(x,U) ∼

Px. This set-up is analogous to fiducial inference Hannig et al. (2016), with x taking the role of the param-

eters, T the data, andM the data-generating process.

Pure ε-DP is a Lipschitz condition onM:

Definition 5.2.1. Given a data universeX equipped with a metric d, a data-release mechanismM : X ×

2Throughout this work, we allow metrics to have codomain [0,∞] rather than the more standard [0,∞). We
precisely define a metric in Definition C.3.1 of Appendix C.3.
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[0, 1]→ T satisfies (pure) ε-differential privacy if, for all x, x′ ∈ X ,

DMult(Px,Px′) ≤ εd(x, x′), (5.2)

where

DMult(μ, ν) = sup
S∈F

∣∣∣∣ln μ(S)
ν(S)

∣∣∣∣,
is themultiplicative distance3 between measures μ, ν on (T ,F ).

The smallest Lipschitz constant ε ≥ 0 which satisfies (5.2) is called the privacy loss associated with

releasing T. Larger ε intuitively corresponds to less privacy; smaller ε gives stronger privacy protection.

A tenet of DP (in contrast with many other statistical disclosure risk frameworks) is that dependence of

M(x,U) on x implies non-negligible privacy loss ε > 0: Since DMult(μ, ν) = 0 if and only if μ = ν,

complete privacy (ε = 0) is only possible by releasing pure noise – or, more exactly, by releasing T ∼ Px

where Px is a function of x only through its connected component [x] = {x′ ∈ X | d(x, x′) < ∞} (see

Definition 5.3.2 below). (This statement is formalised in Proposition 15.)

In the ideal case, the data custodian decides upon a maximum value of ε which is acceptable when

considering the sensitivity of the data x and the privacy protection they deserve. The data custodian then

designs a data-releasemechanismwhich satisfies ε-DP, for this chosen value of ε. From this perspective, the

maximum acceptable value of ε is called the privacy loss budget.

3In defining DMult we set 0/0 = ∞/∞ = 1; and on the RHS of (5.2), we set 0 × ∞ = ∞. On the space
of probability measures,DMult is strongly equivalent (Definition C.3.2 in Appendix C.3) to the density ratio metric
dDR (Wasserman, 1992) (Definition 5.8.3 below). Namely,

DMult(P,Q) ≤ dDR(P,Q) ≤ 2DMult(P,Q), (5.3)

for probabilitymeasures P,Q on (T ,F ), so that ε-DP can be defined with dDR in place of DMult, up to rescaling
of ε. Equation (5.3) is proven in Proposition 13.
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Two common choices of the metric d onX are:

A) the Hamming distance

dHam(x, x′) =

{∑n
i=1 1xi ̸=x′i if |x| = |x′| = n,

∞ otherwise,

where the data x = (x1, x2, . . . , xn) are vectors and |x| is the size of x; and

B) the symmetric difference metric

d△(x, x′) =
∣∣x \ x′∣∣+ ∣∣x′ \ x∣∣,

where the data x, x′ ∈ X are multisets and x \ x′ is the (multi-)set difference.4

Equation (5.2) with d the Hamming distance is referred to as bounded DP and with the symmetric

difference as unboundedDP.

The intuition behind differential privacy considers each record xi in the data x as representing a single

distinct individual. A distance d(x, x′) = 1 then implies that x and x′ differ according to the change in

behaviour of a single individual – a change in the individual’s response, for the Hamming distance; or

a change in whether the individual responds or not, for the symmetric difference metric. Specifically, ε-

DP implies that a single individual can change the summary statistic T = M(x,U) by at most ε, where

“change” is interpreted probabilistically in terms of the multiplicative distance.

Under the mild assumption that d is a graph distance with unit edges (Assumption 5.3.3, given below

in Section 5.3), the converse implication also holds. That is, ε-DP is equivalent to the Lipschitz condition

(5.2) holding when d(x, x′) = 1. (This follows by the triangle inequality; for details see the proof of

Theorem 5.3.5.) From herein, we restrict our attention to the set of such metrics, which includes dHam

and d△.

4We formally define a multiset S to be a non-negative-integer-valued function cS, where cS(a) is the number of
times the element a appears in S. Themultiset difference S\S′ is defined as the function cS\S′(a) = max{0, cS(a)−
cS′(a)} and the multiset cardinality is defined as |S| =

∑
a cS(a).
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Since DP controls the change in t due to perturbations in the data x, it can naturally be understood

as a robustness property (Dwork and Lei, 2009; Avella-Medina, 2020, 2021; Asi et al., 2023; Hopkins

et al., 2023). Measuring the “change in t” by the multiplicative distanceDMult – in place of more-familiar

metrics typically seen in the robustness literature, such as the Kolmogorov distance or the total variation

distance – is motivated by the strong notion of privacy as indistinguishability. The formulations of both

pure ε-DP and Pufferfish as intervals ofmeasure (whichwe describe in later sections)make thismotivation

clear; we therefore postpone further discussion of indistinguishability to Remarks 5.3.7 and 5.8.2.

This link to robustness hints at the connection between DP and IP. As we will soon see in Section 5.3,

the multiplicative distanceDMult is a distorting functionMontes et al. (2020a), and consequently pure ε-

DP canbe characterised in terms of a distortionmodel, a pointwe expandon later inRemark 5.3.6. Indeed,

DMult satisfies many of the common desiderata for distorting functions: it is positive definite, symmetric

and quasi-convex, and it satisfies the triangle inequality. Additionally, DMult(μ, ν) is continuous with

respect to the supremum norm if and only if T has finite cardinality and μ and ν have support T . See

Appendix C.4 for details on these desiderata.

Example 5.2.2 (Laplace mechanism (Dwork et al., 2006b)). Consider the problem of releasing a sanitised

version of a deterministic summary statistic q : X → Rk. (The terms ‘sanitised,’ ‘privatised,’ ‘privacy-

protected,’ and ‘privacy-preserving’ are synonymous in the DP literature.) The Laplace mechanism adds

noise with standard deviation proportional to the global ℓ1-sensitivity of q:

Δ(q) = sup
x,x′∈X
d(x,x′)=1

∥∥q(x)− q(x′)
∥∥
1. (5.4)

Specifically, defineM(x,L) = q(x) + bL, where b =
Δ(q)
ε and L (the seed) is a k-vector of i.i.d. Laplace
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Figure 5.1: An illustration of the Laplacemechanism (Example 5.2.2). Here px(t) and px′(t) are probability densities for the Laplace
mechanism’s outputT. The datasetsx andx′ are chosen so thatd(x, x′) = 1 andq(x′)−q(x) = Δ(q) = 1. The annotations
0.05 and 0.05 exp(ε) are demonstrative of the property: px(t) = eεpx′(t) for all t ≤ q(x) and px(t) = e−εpx′(t) for all
t ≥ q(x′). (In this illustration, ε = 2 and k = 1.)

random variables with density f(z) = 0.5 exp(−|z|). (See Figure 5.1.) When d(x, x′) = 1,

Px(S1 × . . .× Sk) =
k∏

i=1

[
0.5b−1

∫
Si
exp
(
−|z− qi(x)|

b
dz
)]

≥ exp
(
−Δ(q)

b

) k∏
i=1

[
0.5b−1

∫
Si
exp
(
−|z− qi(x′)|

b
dz
)]

= exp(−ε)Px′(S1 × . . .× Sk).

Wewill see in Theorem 5.3.5 that this suffices to prove thatM is ε-DP.

Example 5.2.3 (randomised response (Warner, 1965)). Taking X =
⋃

n∈N{0, 1}n as the data universe,
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the randomised responsemechanismM flips each bit xi with probability p = (exp ε+ 1)−1. That is, given

a binary n-vector x as input, M outputs another binary n-vector T with i-th component Ti = xi + Bi

mod 2 where B1,B2, . . .
iid∼ Bernoulli(p). This mechanism is ε-DP when d = dHam.

Moreover,M conforms with the localmodel of DP (Kasiviswanathan et al., 2011; Duchi et al., 2018),

since each data point can be independently infused with noise by the data respondents themselves. (For

example, the i-th respondent can flip their own coin Bi and report their noisy answer Ti.) Local DP mod-

els are typically used when data are collected by an untrusted entity (such as an IT company), since these

models require that the privacy protection is applied to each record before data collection. In the non-

interactive setting, this requirement implies thatPx(T ∈ ·)must factor as aproductmeasure
∏n

i=1 Pxi(Ti ∈

·), where n = |x| is the number of records in x. (In contrast, the local interactive model of DP has the

weaker condition that the distribution of user i’s response Ti cannot depend on xj for j 6= i (like in the

non-interactive setting) but that this distribution can depend on the previous users’ responsesTj for j < i.)

The local privacy model contrasts with the central privacy model, under which the raw data x can be ag-

gregated by a central, trusted authority (such as a national statistical office) before privacy protection is

applied. (And hence, the probability Px of a central privacy mechanism need not be factorizable.)

5.3 Pure ε-Differential Privacy as an Interval ofMeasures

We introduce the definition of an interval of measures (IoM), due to DeRobertis and Hartigan (1981):

Definition 5.3.1. For measures μ and ν on the measurable space (T ,F ), write μ ≤ ν to denote that

μ(S) ≤ ν(S) for all S ∈ F .

Given measures L,U on (T ,F )with L ≤ U, the convex set of measures

I(L,U) = {μ a measure on (T ,F ) | L ≤ μ ≤ U}
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is called an interval of measures. L andU are called the lower and upper measures of I(L,U).

Let Ω be the collection of all σ-finite measures on (T ,F ) and Ω1 = {P ∈ Ω | P(T ) = 1} be

the collection of all probability measures on (T ,F ). In the vast majority of cases we encounter (and

indeed all the practically meaningful ones), the upper measure U of an IoM I(L,U) is σ-finite and hence

I(L,U) ⊂ Ω. The restriction I1(L,U) = I(L,U) ∩ Ω1 of an IoM I(L,U) to its probabilities forms a

convex credal set Levi (1980).5 This set I1(L,U) – which has previously been studied in the IP literature

when |T | is finite under the name probability interval (PI) de Campos et al. (1994) – is the fundamental

object of analysis throughout this paper.

As a direct consequence ofDefinition 5.3.1, the oddsP(A)/P(B)– for anyP ∈ I(L,U) and anyA,B ∈

F – are bounded between L(A)/U(B) andU(A)/L(B), whenever these ratios are well-defined. An IoM

can also be expressed as a density bounded class, which is defined as follows: Fix some ν ∈ Ω and pick

ν-densities l ≤ u. The density bounded class I(l, u) consists of ν-densities f satisfying l ≤ f ≤ u. (This is

equivalent toDefinition 5.3.1 whenU ∈ Ω since every μ ∈ I(L,U) is absolutely continuous with respect

toU and sowill always have a ν-densitywhen ν = U. See Proposition 14 inAppendixC.5 formore details.)

Density bounded class, or the closely-related density ratio classes, are often used as prior neighbourhoods

in robust Bayesian analysis due to their attractive properties; see e.g. Berger (1990); Lavine (1991a);Wasser-

man (1992); Seidenfeld and Wasserman (1993) and especially Wasserman and Kadane (1992). Moreover,

IoMs have also been used to represent neighbourhoods of sampling distributions (Lavine, 1991b). When

used in conjunction with prior neighbourhoods they augment Bayesian robustness beyond prior robust-

ness without resorting to trivial posterior bounds. In fact, a neighbourhood of sampling distributions

5A credal set is simply a set of probabilities.
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must have densities bounded away from zero and infinity – as is the case for a density bounded class I(l, u)

(with 0 < l and u < ∞), but is not so for other popular neighbourhood models – to ensure that the

resulting posterior neighbourhood have non-trivial extrema (Lavine, 1991b, Example 1), a point which is

closely connected to the necessity of DMult for encoding the notion of “privacy as indistinguishability”

(see Remark 5.3.7).

Here and elsewhere in this article, the term “density” is used in the broad sense of the Radon-Nikodym

derivative dμ
dν of a measure μ ∈ Ω with respect to a dominating measure ν ∈ Ω. Among other examples,

this usage encompasses both probability density functions (PDFs) of continuous real-valued random vari-

ables (where the dominating measure is the Lebesgue measure) and probability mass functions (PMFs) of

discrete random variables (where the dominating measure is the counting measure).

Theorem 5.3.5 establishes an equivalence between the ε-DP property of a data-release mechanism M

and the interval of measuresM induces.

Definition 5.3.2. Twodatasets x, x′ ∈ X are connected–ormoreprecisely,d-connected– ifd(x, x′) <∞.

In this case, we say that x is a connection of x′, and that the probability measures Px and Px′ are connected.

More generally, S ⊂ X is connected if all x, x′ ∈ S are.

The data universe X is partitioned into connected components [x] = {x′ ∈ X | d(x, x′) < ∞}. More

generally, for S ⊂ X , define

[S] = {x ∈ X | ∃x′ ∈ S s.t. d(x, x′) <∞}.

Since the Lipschitz condition (5.2) is vacuous when d(x, x′) = ∞, DP only constrains a mechanism

M to act similarly on connected datasets x, x′; it makes no (explicit) restrictions between outputsM(x,U)

andM(x′,U) for unconnected x, x′. That is, there is no privacy guarantee of indistinguishability between
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unconnected datasets (although restrictions between outputs for connected x, x′ may induce restrictions

between outputs for unconnected x, x′).

When d = dHam, any dataset x, x′ of different dimension (i.e. x, x′ such that |x| 6= |x′|) are uncon-

nected. Hence, ε-DP with d = dHam does not protect against, for example, an attacker determining |x|.

Unconnected datasets also arise in the presence of invariants (Gong andMeng, 2020; Bailie et al., 2025b).

Assumption 5.3.3. d(x, x′) is equal to the length of a shortest path between x and x′ in a graph onX with

unit-length edges.

When d(x, x′) > 1, the Lipschitz condition (5.2) is called group privacy. This terminology comes from

the following intuition: When each xi represents an individual, condition (5.2) with dHam(x, x′) > 1 (or

d△(x, x′) > 1) is protectingmultiple individuals’ privacy simultaneously. We prove inTheorem5.3.5 that

Assumption 5.3.3 and individual-only privacy (i.e. condition (5.2) for x, x′ with d(x, x′) = 1) together

imply group privacy.

The following lemma is useful for Theorem 5.3.5 and subsequent discussions.

Lemma 5.3.4. For any μ, ν ∈ Ω and ε > 0, we have ν ∈ I(e−εμ, eεμ) if and only if

DMult(μ, ν) ≤ ε.

Hence, for any μ, ν ∈ Ω and 0 < a ≤ 1 ≤ b <∞,

1. ν ∈ I(aμ, bμ) implies DMult(μ, ν) ≤ max(− ln a, ln b); and

2. DMult(μ, ν) ≤ min(− ln a, ln b) implies ν ∈ I(aμ, bμ).
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The proof of Lemma 5.3.4 is given in Appendix C.6, which also contains all other proofs which have

been omitted from the main body of this paper.

Theorem 5.3.5. Let M : X × [0, 1] → T be a data-release mechanism with the seed U ∼ Unif[0, 1]

inducing a probability Px onM(x,U) (where x is taken as fixed).

For 0 ≤ ε <∞, the following statements are equivalent given Assumption 5.3.3:

I M is ε-differentially private.

II Px′(S) ≤ eεPx(S) for all S ∈ F and all x, x′ ∈ X with d(x, x′) = 1.

III For all δ ∈ N and all x, x′ ∈ X with d(x, x′) = δ,

Px′ ∈ I1
(
Lx,δε,Ux,δε

)
,

where Lx,δε = e−δεPx and Ux,δε = eδεPx.

IV For all x ∈ X and all measures ν ∈ Ω, if Px has a density px with respect to ν, then every d-connected
x′ ∈ [x] also has a density px′ (with respect to ν) satisfying

px′(t) ∈ px(t) exp
[
±εd(x, x′)

]
, (5.5)

for all t ∈ T .

In (5.5), the notation a ∈ exp(±b) is shorthand for

exp(−b) ≤ a ≤ exp(b).

II is the standard definition of pure ε-DP (Dwork et al., 2006b) and is listed here to justify our novel

formulation given in Definition 5.2.1. Without Assumption 5.3.3, group privacy is not implied by II.

Hence Assumption 5.3.3 is needed only to extend II to provide group privacy; the equivalences between I,

III and IV are automatic. Without Assumption 5.3.3 (which almost always holds in practice, such as for

d = dHam or d△), our definition of ε-DP would be more stringent than the standard formulation.
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Proof. (sketch) “I ⇔ II”: Since d is a graph distance, there is a path x = x0, . . . , xn = x′ such that

d(x, x′) = n and d(xi, xi+1) = 1. By the triangle inequality,

DMult(Px,Px′) ≤
n−1∑
i=0

DMult(Pxi ,Pxi+1).

Hence ε-DP is equivalent to the Lipschitz condition (5.2) holding only when d(x, x′) = 1. The equiva-

lence between I and II then follows by an application of Lemma 5.3.4: e−εPx(S) ≤ Px′(S) ≤ eεPx(S) for

all S ∈ F if and only ifDMult(Px,Px′) ≤ ε. “I⇔ III” is immediate by Lemma 5.3.4.

“III⇔ IV”: The direction⇒ is straightforward since the densities in an interval of measure I(L,U)

are bounded by the densities of L and U. In the other direction⇐, Px is always absolutely continuous

with respect to itself, hence taking Px to be the dominating measure ν, we have that (5.5) implies Px′ ∈

I1
(
Lx,δε,Ux,δε

)
.

Remark 5.3.6. A distorting function ddist can be thought of as a generalised notion of distance between

two probabilities or measures. (See Appendix C.4 for a precise definition.) Given a distorting function

ddist and adistortion parameter r > 0, thedistortionmodel on a probabilityP is the closed ballBrddist(P) =

{Q ∈ Ω1 | ddist(Q,P) ≤ r} centred at Pwith radius rMontes et al. (2020a).

Given a probabilityP, the symmetric probability interval I1(e−εP, eεP) is a distortionmodel because, by

Lemma 5.3.4, I(e−εP, eεP) is the closed ε-multiplicative-distance-ball:

I
(
e−εP, eεP

)
= BεDMult(P) = {μ ∈ Ω | DMult(μ,P) ≤ ε}.

Since the multiplicative distance DMult is used in defining the ball BεDMult
(P), it serves the role of the

distorting function of the distortion model I1(e−εP, eεP); and the radius ε is the distortion parameter.

It is straightforward to verify that the credal set I1(L,U) is convex. InAppendix C.4, we also prove that
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it is closed with respect to the supremum norm, when restricting to the setting of Montes et al. (2020a).

That is, I1(L,U) ∩ Ω∗
1 is a closed subset of Ω∗

1 = {P ∈ Ω1 | P({t}) > 0 ∀t ∈ T } (where closure is

respect to the supremum norm), provided that the space T has finite cardinality.

In general, a PI I1(L,U) does not satisfy the definition of a distortion model. In fact, I1(L,U) is a dis-

tortionmodel only when I(L,U) is symmetric in the sense that the lower and upper measures are equidis-

tant from a central (‘nucleus’) probabilityP. This is the case for the PI I1(e−εPx, eεPx) induced by an ε-DP

mechanismM.

Asproven inTheorem5.3.5, pure ε-DP is the requirement thatP′x lies in theneighbourhoodBδεDMult
(Px),

where δ = d(x, x′). Manyof the variants of ε-DP– such as (ε, δ)-DP (Dwork et al., 2006a), zero-concentrated

DP (Dwork and Rothblum, 2016; Bun and Steinke, 2016) and Rényi DP (Mironov, 2017) – replace the

multiplicative distance DMult with another distorting function ddist. Consequently, these variants can

also be characterised as distortion models: each of them is the requirement that Px′ lies in the neighbour-

hood Bδεddist(Px), for the appropriate choice of distorting function ddist. (See Bailie et al. (2025b) for the

choices of ddist corresponding to (ε, δ)-DP, zero-concentrated DP and Rényi DP, and see Desfontaines

and Pejó (2020) for a catalogue of variants of DP.)

Remark 5.3.7. IV of Theorem 5.3.5 is a strong property. It provides an quantification of the “indistin-

guishability” between data x, x′ ∈ X : if x, x′ have densities px, px′ satisfying (5.5), then they are indistin-

guishable at the level ε. (Equation (5.5) is termed ε-indistinguishability in the literature, see e.g. Dwork

et al. (2006b); Dwork and Roth (2014); Vadhan (2017)). More fundamentally, IV provides a categorical

notion of indistinguishability: It implies that, for an ε-DP mechanism, all connected Px are mutually ab-

solutely continuous. Further, for all connected x, x′ ∈ X and all t ∈ T , either px(t) and px′(t) are both
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zero or both non-zero. In intuitive terms, this means that if any x is plausible after observing T = t (i.e.

px(t) > 0) then all its connections x′ ∈ [x] are also plausible. This is a strong notion of privacy: regardless

of the output T = M(x,U), it’s impossible for an attacker to distinguish between connected x, x′ with

certainty. In other words, the fiducial distribution for x is never degenerate (assuming that every x has at

least one connection).

This notion of privacy is themotivation forDMult in place ofmore standard concepts in the robustness

literature such as total variation distance or ε-contamination classes. Indeed, this categorical notion of

indistinguishability requires that px(t)/px′(t) is bounded away from zero and infinity, which is equivalent

to Px′ ∈ I(aPx, bPx) for some 0 < a ≤ 1 ≤ b <∞. Yet Lemma 5.3.4 states that Px′ ∈ I(aPx, bPx) only

if DMult(Px,Px′) ≤ max(− ln a, ln b). Therefore, using the multiplicative distance DMult is necessary

to encode the idea of privacy as indistinguishability between connected x, x′.

This argument demonstrates that the Lipschitz condition (5.2) with another distorting function ddist

in place ofDMult will not ensure indistinguishability (except in the trivial case where αddist ≥ DMult for

some constant α). This is why common variants of pure ε-DP – such as (ε, δ)-DP (Dwork et al., 2006a),

zero-concentrated DP (Dwork and Rothblum, 2016; Bun and Steinke, 2016) and Rényi DP (Mironov,

2017) (which, as described in Remark 5.3.6, all replace DMult with another distorting function ddist) –

do not guarantee this strong notion of privacy, even though theymay be preferred over pure ε-DP for data

utility reasons.

The observations of Theorem 5.3.5, specifically the equivalent characterization of ε-DP via intervals

of measures established by III and IV, bear important consequences for statistical inference from privacy-

protected data. Notably, they impose meaningful bounds on both the probability of the privatised query
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and on relevant quantities in the frequentist and Bayesian inference from the privatised queries. These

bounds are valid under arbitrary statistical models for the unknown confidential database, assuming only

mild conditions on the models’ support. The next three sections explore these consequences in detail.

5.4 Bounds on the Privatised Data Probability

Consider the situation of statistical inference, where a data analyst supplies a parametric modelP = {Pθ |

θ ∈ Θ} of data-generating distributions Pθ. Nature generates data X ∼ Pθ according to some unknown

θ ∈ Θ. (We use capital X to emphasise that the dataset is now random, whereas in the previous sections,

it was considered fixed.) In the typical non-private setting, the data analyst observes X directly. In the

private setting, the data analyst only sees the summary statistic T = M(X,U) ∼ PX outputted from a

privacy-preserving data-releasemechanismM. (We now require that the data universeX is equippedwith

a σ-algebra G and that every data-release mechanismM is (G ⊗ B[0, 1],F )-measurable, where B[0, 1] is

the Borel σ-algebra on [0, 1].)

The relevant vehicle for inference in the private setting is the marginal probability of the observed data

T:

P(T ∈ S | θ) =
∫
X
Px(S)dPθ(x). (5.6)

We call P(T ∈ S | θ) the privatised data probability. (Proposition 17 proves that it is well-defined.)

Viewed as a function of θ, P(T ∈ S | θ) is themarginal likelihood of θ. When the data observed by the

analyst is privacy-protected, all frequentist procedures compliant with likelihood theory and all Bayesian

inference hinge on this function Berger and Wolpert (1988). The crucial role of (5.6) for inference from

privacy-protected data was first recognized in the differential privacy literature byWilliams andMcSherry
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(2010), and has since been utilized extensively to derive likelihood and Bayesianmethodologies (e.g. Awan

and Slavković, 2018, 2020; Bernstein and Sheldon, 2018, 2019; Gong, 2022a; Ju et al., 2022).

When M is ε-DP and the support supp(Pθ) of Pθ is d-connected, the existence of a density p(t | θ)

for P(T ∈ S | θ) is implied by Theorem 5.3.5. The following result proves this density always exists –

as long as one restricts to a subspace of T and assumes that (informally) the support of “P(x | t0, θ)” is

d-connected for some given t0 ∈ T . Other than this weak assumption, the following results hold for

arbitrary data-generating models {Pθ | θ ∈ Θ} and ε-DP mechanismsM.

To state this assumption more precisely, define supp(x | t, θ) as the set of databases x ∈ X which

could both generate t and be generated by Pθ. That is, supp(x | t, θ) is informally the intersection of

supp(Pθ) ≈ {x | pθ(x) > 0} and {x | px(t) > 0} ≈ {x | t ∈ supp(Px)}. See Appendix C.1 for an exact

definition.

Theorem 5.4.1. Let M be an ε-DP mechanism. Fix some t0 ∈ T and suppose that supp(x | t0, θ) is d-

connected. Define T0 = {t ∈ T | supp(x | t, θ) ⊂ supp(x | t0, θ)}. Then, there exist measures Lθ,ε and

Uθ,ε on (T ,F ) with densities lθ,ε and uθ,ε satisfying

lθ,ε(t) = ess sup
x∗∈supp(x|t0,θ)

exp(−εd∗)px∗(t), and uθ,ε(t) = ess inf
x∗∈supp(x|t0,θ)

exp(εd∗)px∗(t),

for all t ∈ T0, where d∗ = supx∈supp(x|t0,θ) d(x, x∗).

Furthermore, the privatised data probability P(T ∈ · | θ) is bounded by Lθ,ε and Uθ,ε on T0:

P(T ∈ · ∩ T0 | θ) ∈ I
(
Lθ,ε,Uθ,ε

)
. (5.7)

Proof. (sketch) The existence of a density p(t | θ) for P(T ∈ · ∩ T0 | θ) follows from the fact that all

Px with x ∈ supp(x | t0, θ) are mutually absolutely continuous by Theorem 5.3.5. For the upper bound
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of (5.7), first observe that

p(t | θ) =
∫
supp(x|t0,θ)

px(t)dPθ(x)

≤
∫
supp(x|t0,θ)

eεd(x,x∗)px∗(t)dPθ(x)

≤ eεd∗px∗(t).

Since the above inequalities hold for all x∗ ∈ supp(x | t0, θ), we can take the essential infimum over x∗ to

obtain the bound p(t | θ) ≤ uθ,ε(t). The lower bound of (5.7) follows similarly.

It becomes apparent in the proof of Theorem 5.4.1 that this result can be generalised in the following

way: In defining T0 = {t ∈ T | supp(x | t, θ) ⊂ supp(x | t0, θ)}, one may replace supp(x | t0, θ) with

any measurable S satisfying

supp(x | t0, θ) ⊂ S ⊂ [supp(x | t0, θ)].

(The notation [·] is defined in Definition 5.3.2.) Theorem 5.4.1 holds with this new T0, provided that

supp(x | t0, θ) is replaced by S in the definitions of lθ,ε, uθ,ε and d∗. This demonstrates that the density

p(t | θ) exists on a larger T0, although the resulting bounds lθ,ε and uθ,ε on p(t | θ)may be wider.

Theorem 5.4.1 shows that the privatised data probability P(T ∈ · | θ) is in a probability interval, and

that this probability interval is bounded by Lθ,ε and Uθ,ε on T0. Broadly speaking, this theorem has two

uses. Firstly, t0 may be taken to be the realised value of T. Then Theorem 5.4.1 can be interpreted as

bounds on the marginal likelihood l(θ | t0) of θ. (For this application, one must make the additional

assumption that
⋃

θ∈Θ supp(x | t0, θ) is d-connected, so that the densities p(t0 | θ) of the privatised data

probability, across the different values of θ, share a common dominating measure. This ensures that the

likelihood l(θ | t0) = p(t0 | θ) is well-defined as a function of θ.) Secondly, one may be interested in
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understanding the privatised data probability within some subspace S ⊂ T . Although it may not always

be possible, if one can find some t0 ∈ T such that S ⊂ T0, then Theorem 5.4.1 provides information on

what the privatised data probability looks like within the subspace of interest S.

Surprisingly, the interval of measures I
(
Lθ,ε,Uθ,ε

)
in (5.7) depends on the data-generating distribution

Pθ only through supp(x | t0, θ). When supp(Pθ) is constant, I
(
Lθ,ε,Uθ,ε

)
is completely free of θ. Alter-

natively, one may take the essential-infimum of Lθ,ε over θ ∈ Θ to obtain a bound on P(T ∈ · ∩ T0 | θ)

which is completely free of θ, although it is likely such a bound will be vacuous.

Theorem5.4.1 is only practicallymeaningful when d∗ <∞. Typically supx,x′∈X d(x, x′) =∞, which

one might presume would imply that d∗ =∞. But supp(Pθ) can be much smaller than the data universe

X when the analyst has prior knowledge of the data X. The analyst is free to restrict supp(Pθ) to the set

of datasets they deem plausible; the tighter this restriction, the stronger Theorem 5.4.1 is. For example,

the analyst may have an upper bound b on the number of records |X|. (Provided that supp(x | t0, θ)

is connected – a weak assumption, as explained in Remark 5.4.2 – this would imply d∗ ≤ b for typical

choices of d.) Moreover, supp(x | t0, θ) can be much smaller thanX when t0 restricts the possible values

ofX, such as in the presence of invariants (Gong andMeng, 2020; Bailie et al., 2025b). For example in local

DP (or boundedDPmore generally), the number of records |t| is invariant; this restricts supp(x | t0, θ) to

data x satisfying |x| = |t0|, which would typically imply d∗ ≤ |t0|.

Remark 5.4.2. Theorem 5.4.1 only relies on a single assumption which concerns the connectedness of

supp(x | t0, θ). This assumption is weak. In fact, we can always augment the data-release mechanismM

so that this assumption is satisfied without increasingM’s privacy loss ε. Specifically, the (deterministic)

mechanism x 7→ [x] (which publishes the connected component [x] of the observed data x) is trivially ε-DP
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with ε = 0. Publishing [x] alongsideM(x,U) ensures that supp(x | t, θ) is always connected, for all t and

θ. (This argument is formalised in Proposition 16.)

We illustrate Theorem 5.4.1 with two examples.

Example 5.4.3 (privatised binary sum). Suppose the database x ∈ X =
⋃∞

n=1{0, 1}n consists of n records

of binary features, and its sum q(x) =
∑n

i=1 xi is to be queried. Consider sanitising q(x) using the Laplace

mechanism defined in Example 5.2.2. For every privacy loss ε > 0 and every database x,

px(t) =
ε

2Δ(q)
exp
(
ε|t− q(x)|

Δ(q)

)
,

where, in this case, the global ℓ1-sensitivity Δ(q) (defined in (5.4)) is one.

The data analyst posits an arbitrary statistical model X ∼ Pθ for θ ∈ Θ with supp(Pθ) ⊂ {x ∈ X |

|x| ≤ 10}, and considers the confidential and unknown database x to be a realization from this model.

Since supp(Px) = R for all x ∈ X , the assumption of Theorem 5.4.1 simplifies to the requirement that

supp(Pθ) is d-connected. Moreover, T0 = T = R. (Both of these points hold regardless of the choice of

t0.)

Figure 5.2 displays the lower and upper densities, lε = ess infθ∈Θ lθ,ε and uε = ess supθ∈Θ uθ,ε, for the

privatised data probability p(t | θ). The analyst upper bounds the number of records |x| by 10, so that

d∗ = 10. The left and right panels display bounds under twodifferent settings of ε. The bounds are tighter

and more informative when privacy protection is more stringent (ε = 0.1), and looser as the privacy loss

increases (ε = 0.25). Notice that these bounds for p(t | θ) are functions of the value of the privatised

query t. In particular, they do not depend on θ nor the form of the posited data model Pθ.

Example 5.4.4 (local ε-DP). Suppose the distribution Px of the published summary statistic T factors as
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Figure 5.2: Upper and lower bounds for the density p(t | θ) of the privatised binary sum (Example 5.4.3). The privacy loss is ε = 0.1
(left) and ε = 0.25 (right). TheseboundsdependontheassumeddatamodelPθ only through theanalyst’sbelief that thenumber

of records |x| is bounded by ten, whichmeans that supp(Pθ) ⊂ {x ∈ X | |x| ≤ 10}. They are tighter andmore informative
when the privacy protection is more stringent (i.e. when ε is smaller).

∏n
i=1 Pxi , where n = |x|. (This always holds under the local, non-interactivemodel of DP, as we described

in Example 5.2.3.) Then |T| = |X| and hence supp(Px) ⊂ {t ∈ T | |t| = |x|}.

Most local DP mechanisms satisfy the stricter assumption that supp(Px) = {t ∈ T | |t| = |x|}.

Under this assumption, T0 = {t ∈ T | |t| = |t0|} and, if d = dHam (as is typical for local DP), then

d∗ ≤ |t0| regardless of the choice of x∗. Hence, by Lemma C.6.3 of Appendix C.6 (which is used in

proving Theorem 5.4.1), the density of an ε-DP mechanism is bounded by

p(t | θ) ∈
n∏
i=1

pxi(ti) exp(±εn),

for any x and any t with |x| = |t| = n. Applying this result to the randomised response mechanism

(Example 5.2.3), minxi pxi(ti) = (exp ε+ 1)−1 and maxxi pxi(ti) = eε(exp ε+ 1)−1, so that

1
(exp ε+ 1)|t|

≤ p(t | θ) ≤ exp(|t|ε)
(exp ε+ 1)|t|

. (5.8)

The bounds in (5.8) depend on t only through |t| (the number of records), regardless of the records’ values.

Figure 5.3 displays these bounds as a function of |t| for ε = 1. Asmore records are released (larger |t|), both
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Figure 5.3: Upper and lower density bounds for p(t | θ) under randomised response (Example 5.4.4). The privacy loss is ε = 1. These
bounds are a function of t only through |t| (the number of observed records).

bounds tend to zero with a narrowing gap.

5.5 Frequentist Privacy-Protected Inference

The interval of measures formulation of ε-DP also shows that Neyman-Pearson hypothesis testing is re-

stricted in the private setting, as demonstrated by the following theorem.

Theorem 5.5.1. Consider testing H0 : θ = θ0 versus H1 : θ = θ1 for some θ0 6= θ1 ∈ Θ. Let Si =

supp(Pθi) and suppose that S0 ∪ S1 is d-connected. In the private setting where the observed data T is the
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output of an ε-DPmechanism, the power of any level-α test is bounded above by α exp(d∗∗ε) where

d∗∗ = sup
x∈S0,x′∈S1

d(x, x′).

Proof. (sketch) By IV of Theorem 5.3.5,

p(t | θ1)
p(t | θ0)

=

∫
S1 px(t)dPθ1(x)∫
S0 px′(t)dPθ0(x

′)

=

∫
S1

[∫
S0

px′(t)
px(t)

dPθ0(x
′)

]−1
dPθ1(x)

∈ exp(±εd∗∗).

Let R be the rejection region of a test with size P(T ∈ R | θ0) ≤ α and let ν be the dominating measure

of the densities p(t | θ0) and p(t | θ1). Then

P(T ∈ R | θ1) =
∫
R
p(t | θ1)dν(t) (5.9)

≤ exp(d∗∗ε)
∫
R
p(t | θ0)dν(t)

≤ α exp(d∗∗ε).

Compare Theorem 5.5.1 to the hypothesis test H0 : x1:m = y versus H1 : x1:m = y′ wherem ≤ |x|.

(Here we assume that the datasets x ∈ X are vectors of length |x| and consist of records x1, x2, . . . , xn,

where n = |x|. For 1 ≤ i ≤ j ≤ |x|, the notation xi:j denotes the sub-vector (xi, xi+1, . . . , xj), consisting

of the i-th through j-th records of x.) This testmodels an attacker trying to distinguish the firstm records of

the database. Wasserman andZhou (2010) showed that any level-α test of x1:m has power atmost α exp(εm)

when the records Xi are i.i.d.
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If the data analyst restricts S0 and S1 to datasets of lengthm, then typically d∗∗ = m. Thus, any level-α

test on the parameter θ has the same bound α exp(εm) on its power (under an arbitrary data-generating

model, not just i.i.d. Xi).

Theorem 5.5.1 strictly generalises the result of Wasserman and Zhou (2010). By taking Θ ⊂ X and

setting Pθ as degenerate point masses, we recover the set-up of an attacker’s hypothesis test.6 Thus, Theo-

rem 5.5.1 is applicable to both the attacker testing x (as in Wasserman and Zhou (2010)) and the analyst

testing θ (with non-degenerate Pθ). This highlights the fundamental tension between data privacy and

data utility: bounding an attacker’s power will bound the power of a legitimate analyst. However, an-

other look at Theorem 5.5.1 seems to suggest a possible way to partially resolve this tension under certain

circumstances. The data custodian might have the liberty to choose a metric d onX that ensures the con-

nectedness assumption of Theorem 5.5.1 holds for the hypothesis tests of the typical attacker but not for

those of the legitimate analyst. If this happens, the hypothesis test of the attacker – but not of the legit-

imate analyst – will be constrained by Theorem 5.5.1. Such a choice for d would therefore resolve the

tension between privacy and utility as it appears in Theorem 5.5.1. (This is not to suggest that the analyst

will be totally unaffected by such privacy protection – any noise infusion can in general decrease the power

of their test – but, at least, they will not be affected to the extent suggested by Theorem 5.5.1.)

6This ignores one minor technicality: the attacker may take some records as nuisance parameters, which they
do not want to test. It is straightforward to generalise Theorem 5.5.1 to this situation. Without loss of generality,
suppose xm+1:n are nuisance parameters when testing x1:m against x′1:m. By assigning a conditional probability on
xm+1:n satisfying π(xm+1:n | x1:m) = π(xm+1:n | x′1:m), the nuisance parameters can be integrated out in (5.9). This
gives the same power bound α exp(d∗∗ε), except now with

d∗∗ = sup
xm+1:n

d
([

x1:m, xm+1:n
]
, [x′1:m, xm+1:n]

)
,

which is typically equal tom, as before.
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Corollary 5.5.2. Under the set-up of Theorem 5.5.1, the power 1 − β of any size-α test is bounded by the

inequalities:

max
(
αe−d∗∗ε, 1− ed∗∗ε[1− α]

)
≤ 1− β ≤ min

(
αed∗∗ε, 1− e−d∗∗ε[1− α]

)
. (5.10)

Proof. (Kifer et al., 2022, Section 6.1) LetR be the rejection region of a test with size α = P(T ∈ R | θ0)

and power 1− β = P(T ∈ R | θ1). In the proof of Theorem 5.5.1, we showed that

P(T ∈ R | θ1) ≤ exp(d∗∗ε)P(T ∈ R | θ0).

In the same way, one can show that

P(T ∈ R | θ1) ≥ exp(−d∗∗ε)P(T ∈ R | θ0),

and that

exp(−d∗∗ε)P(T /∈ R | θ0) ≤ P(T /∈ R | θ1) ≤ exp(d∗∗ε)P(T /∈ R | θ0).

Combining these four inequalities gives (5.10).

5.6 Bayesian Privacy-Protected Inference

Following the set-up from the previous two sections, we further assume that the analyst is Bayesian and

places a (proper) prior π on Θ. This setting can be seen as a Bayesian hierarchical model where the raw,

confidential data X acts as latent parameter in the Markov chain θ→ X→ T.

We make the following assumption throughout this section.

Assumption 5.6.1. Define

supp(x | t) :=
⋃

θ∈supp(π)

supp(x | t, θ).
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Fix some t0 ∈ T . Suppose that (A) supp(x | t0) is d-connected. Further, assume that (B) the prior π on θ

is proper.

By the same reasoning as inRemark5.4.2,Assumption5.6.1(A) isweakbecause it can always be satisfied

by augmenting the data-release mechanismMwithout additional privacy loss.

Theorem5.6.2 establishes boundson the analyst’s prior predictivedistributionP(T ∈ S) =
∫∫

Px(S)dPθ(x)dπ(θ)

for the privatised data T.

Theorem 5.6.2. Let M be an ε-DP mechanism. Define T0 = {t ∈ T | supp(x | t) ⊂ supp(x | t0)}.

Then, there exist measures Lε and Uε on (T ,F ) with densities lε and uε satisfying

lε(t) = ess sup
x∗∈supp(x|t0)

exp(−εd∗)px∗(t) and uε(t) = ess inf
x∗∈supp(x|t0)

exp(εd∗)px∗(t),

for all t ∈ T0, where d∗ = supx∈supp(x|t0) d(x, x∗).

Furthermore, the Bayesian analyst’s prior predictive probability P(T ∈ ·) is bounded by Lε and Uε on T0:

P(T ∈ · ∩ T0) ∈ I(Lε,Uε). (5.11)

Proof. (sketch) Since p(t) =
∫
Θ p(t | θ)dπ(θ), Theorem 5.6.2 follows by showing p(t | θ) is bounded by

lε(t) and uε(t) for almost all t ∈ T0. The proof of this is analogous to (5.7).

As for Theorem 5.4.1, one can replace supp(x | t0) in the definition of T0 and in the statement of

Theorem 5.6.2 with any measurable S ⊂ X which satisfies

supp(x | t0) ⊂ S ⊂ [supp(x | t0)].

In this way, one can obtain bounds lε(t) and uε(t) on the prior predictive density p(t) which apply for a

larger subspace T0, although these bounds will be wider.
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Theprior predictive distribution p(t)plays an important role in Bayesian inference andmodel checking.

Before observing the data, p(t) captures the analyst’s implied specification on the data-generation process.

After observing the data, this quantity assessed at their value is calledmodel evidencewhere low p(t) reveals

potential conflict between the data and theprior Evans andMoshonov (2006);Walter andAugustin (2009).

In addition, it is also the normalizing constant for the posterior distribution π(θ | t) and hence is useful

for computation.

Theorem 5.6.2 shows that the prior predictive distribution P(T ∈ ·) is in a probability interval, and

this probability interval is bounded by Lε andUε on T0.

As an illustration, we can see from Figure 5.2 of Example 5.4.3 that when ε = 0.1, the prior predictive

probability of the privatised query is lower-bounded at ≈ 0.02 whenever 0 ≤ t ≤ 10, and can never

exceed≈ 0.08 even when t = 5. On the other hand, when privacy protection is less stringent (ε = 0.5),

the upper bound on the prior predictive probability increases to more than 0.4.

An important observation on Theorem 5.6.2 is the following: While p(t) is a function of both the data

model Pθ and the prior π, the density bounds lε(t) and uε(t) are free of both. In this sense, these bounds

provide a non-trivial yet almost assumption-free prior predictive model sensitivity analysis. Non-trivial

bounds on p(t) are not possible in general; in this case they are a consequence of the data T being ε-DP.

Theorem 5.6.3 provides general bounds limiting the learning of a Bayesian analyst.

Theorem 5.6.3. Suppose that an ε-DP mechanism M outputs the realisation t0. The analyst’s posterior

probability given t0 satisfies

π(θ ∈ S | t0) ∈ π(θ ∈ S) exp(±εd∗∗), (5.12)

for all S ∈ F , where d∗∗ = supx,x′∈supp(x|t0) d(x, x
′).
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Proof. (sketch) As in the proof of Theorem 5.5.1, we can show that

p(t0 | θ)
p(t0 | θ′)

∈ exp(±εd∗∗),

for all θ, θ′ ∈ supp(π). Plugging this into π(θ | t0) = p(t0|θ)π(θ)∫
Θ p(t0|θ′)dπ(θ′) gives the result.

Theorem 5.6.3 demonstrates that the posterior π(θ ∈ · | t0) is in a probability interval which is centred

at the prior π(θ ∈ ·) and has radius exp(εd∗∗):

π(θ ∈ · | t0) ∈ I1(L,U),

where L = π(θ ∈ ·) exp(−εd∗∗) andU = π(θ ∈ ·) exp(εd∗∗).

Remark 5.6.4. By following the proof of Theorem 5.6.3, one can observe that DMult(Px,Px′) being

bounded away from infinity, for all x, x′ ∈ supp(x | t0), is a necessary condition for

DMult
[
π(θ | t0), π(θ)

]
<∞.

(Note that (5.12) is equivalent to DMult[π(θ | t0), π(θ)] ≤ εd∗∗.) Indeed this condition is required for

the posterior to be in a non-vacuous probability interval centred at the prior – i.e. for the posterior to be in

an probability interval of the form π(· | t0) ∈ I1(aπ, bπ)where 0 < a ≤ 1 ≤ b <∞. Hence the use of

DMult in the Lipschitz condition (5.2) is the unique choice (modulo distorting functions ddist satisfying

αddist ≥ DMult for some constant α) that ensures a bound on the prior-to-posterior of the form (5.12).

This is analogous to the fact thatDMult is the unique choice of distorting function that encodes privacy

as indistinguishability (see Remark 5.3.7). Furthermore, by similar logicDMult is also the unique choice

of distorting function which enables bounds on hypothesis testing like those in Theorem 5.5.1.

These uniqueness properties are mirrored in the results of Wasserman (1992) and Lavine (1991b) on
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the uniqueness of intervals of measures in robust Bayesian inference.

Theorem 5.6.3 contributes to what is called the prior-to-posterior semantics of differential privacy (see

Kasiviswanathan and Smith (2014); Dwork et al. (2006b); Duncan and Lambert (1986)), in the sense

that (5.12) describes the extent to which a Bayesian agent’s posterior about a parameter θ can depart

from their prior when learning from an ε-DP data product.7 Analogous to the discussion on frequen-

tist attackers at the end of Section 5.5, Theorem 5.6.3 demonstrates the trade-off between restricting a

Bayesian attacker while allowing for legitimate Bayesian learning: By setting Θ ⊂ X and Pθ as degener-

ate point masses, we strictly generalise the result of Gong and Meng (2020) which bounds an attacker’s

prior-to-posterior change in a single record xi.8 Hence, we see that Theorem 5.6.3 applies to both the legit-

imate analyst who is inferring population-level characteristics and the illegitimate attacker who is inferring

individual-level information. Restricting the attacker (by decreasing ε) necessarily hurts the analyst; whilst

furnishing the analyst (by increasing ε) also assists the attacker. What makes this dilemma tractable is that

d∗∗ is typically much larger for the analyst than for the attacker because the analyst is interested in pop-

ulation quantities while the attacker is interested in individual records. Hence, Theorem 5.6.3’s bounds

7An alternative type of semantics for differential privacy is the posterior-to-posterior semanticsDinur and Nissim
(2003); Kasiviswanathan and Smith (2014), whose focus is on the extent to which a Bayesian agent’s posterior may
vary were it derived from privacy-protected queries based on different (counterfactual) confidential databases. Pre-
vious literature in differential privacy predominantly adopted posterior-to-posterior semantics; see e.g. Kifer et al.
(2022). However, prior-to-posterior semantics have recently attracted increasing attention as they circumvent coun-
terfactuals and are closely connected with the literature on statistical disclosure risk; see e.g. Gong andMeng (2020);
Hotz et al. (2022).

8By fixing some x ∈ X and setting π(X−i = x−i) = 1, we get d∗∗ = 1 and thereby rederive the result from
Gong and Meng (2020). (Here x−i denotes the dataset x – which is assumed to be a vector – with the i-th record
removed.)

Alternatively, one could set π(θ) = π(xi | x−i), in which case Theorem 5.6.3 implies that

π(xi | t, x−i) ∈ π(xi | x−i) exp(±εd∗∗),

(with d∗∗ = 1 when, for example, d = dHam).
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on the inference of the analyst are wider than those of the attacker. However, this argument breaks down

when the analyst is interested in small subpopulations (such as in small-area estimation) because in these

situations there is little light between the attacker’s and the analyst’s interests, and as such the values of

d∗∗ associated with the attacker and the analyst will be similar. (This commentary – on why the tradeoff

between analysts and attackers is tractable – also applies to Theorem 5.5.1.)

Theorem 5.6.3 is powerful because it holds for arbitrary specifications of the data model Pθ and is ap-

plicable to the agent’s arbitrary (proper) prior π(θ). So long as d∗∗ is finite (see the discussion after Theo-

rem 5.4.1 on why this is not unreasonable), the bounds in (5.12) are non-trivial.

With that said, whenever d∗∗ is large, the bounds provided by Theorem 5.6.3 are wide, rendering the

results weakly informative at best. Indeed, rather than a pair of wide posterior bounds, the agent would

be better off with a precise Bayesian posterior, which is theoretically derivable via the simple relation

π(θ | t) ∝ π(θ)p(t | θ), (5.13)

where p(t | θ) can in turnbe derived from the convolutionof the datamodelPθ and the privacymechanism

Px according to (5.6). In practice, however, direct computation or sampling from (5.13) is not always

possible or feasible. Such difficulties arise in situations A) where the privacy mechanism Px is not fully

transparent to the analyst due to its complex dependence on x, whether by design or by post-processing

Gong (2022b); B) where the data model Pθ is intractable, such as if defined algorithmically or treated as a

black-box; or C) where their convolution (5.6), typically an n-dimensional integral, is intractable. Under

any of these situations, the analyst may still rely on Theorem 5.6.3 to obtain bounds on their posterior.

Despite their width, these bounds are optimal whenever ε is the smallest constant satisfying the Lip-

schitz condition (5.2). Without adding further assumptions on M,Pθ, or π, these bounds cannot be
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shrunk. (This also applies to the bounds from Sections 5.4 and 5.5. We prove this in Section 5.9.) Yet

they are not necessarily tight at a given θ. This deficiency is an inevitable consequence of our analysis,

which replaced the average case,
∫
px(t)dPθ(x), with the extremal case, px∗(t) exp(εd∗). Such an analysis is

necessarily loose whenever there is any variation away from the extreme. But the analysis cannot be tight-

enedwithoutmaking assumptions about the nature of this variation – i.e. bymaking further assumptions

onM,Pθ, or π.

We illustrate the posterior bounds of Theorem 5.6.3 with an example of Bayesian inference for a priva-

tised count.

Example 5.6.5 (privatised single count). Suppose the database consists of a single count record x ∈ N. We

wish to query the value of x after it has been clamped to a pre-specified range [a0, a1]. That is, q(x) = a0 if

x < a0, q(x) = a1 if x > a1, andq(x) = xotherwise. Indifferentially privatemechanismdesign, clamping

can be a necessary procedure when the intended query has otherwise unbounded global sensitivity. Under

clamping, the sensitivity is reduced to Δ(q) = a1 − a0.

The analyst’s Bayesian model is

θ ∼ Gamma(α, β),

x | θ ∼ Pois(θ),

t | x ∼ Lap
(
q(x); ε−1Δ(q)

)
.

For illustration, set a0 = 0, a1 = 6, α = 3, β = 1. Figure 5.4 depicts in blue solid lines the upper

and lower density bounds on the analyst’s posterior distribution p(θ | t) as given by Theorem 5.6.3. With

ε = 1 and d∗∗ = 1, they are equal to the Gamma(3, 1) prior density (blue dashed line), scaled by exp(±1).

Overlaid in grey areMonteCarlo posterior densities p(θ | t(k)), k = 1, . . . , 10, produced via the exact sam-
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Figure 5.4: Density bounds for the posterior p(θ | t) from a privatised single count (Example 5.6.5). The dashed blue line is the

density of theGamma(3, 1) distribution, the analyst’s prior for θ. In grey are simulation-based posterior densities based on
10 realizations of t from its prior predictive distribution under the Poisson data model (Gong, 2022a). Upper and lower density

bounds for the posterior p(θ | t) are in solid blue. The clamping range is [0, 6] and the privacy loss is ε = 1.

pling algorithmproposed byGong (2022a). Each t(k) is independently simulated from the prior predictive

distribution of the above Bayesian model.

Several aspects of Example 5.6.5 are worth noting. First, the posterior density bounds (solid blue) are

functions of the analyst’s chosen prior π(θ) and the privacy mechanism parameters ε and d∗∗ only. They

are valid for any datamodelPθ that the analyst wishes to employ, including (but not limited to) the Poisson

data model that underlie the depicted precise posteriors densities p(θ | t(k)) in grey. On the other hand,

while these precise posterior densities display moderate variations among each other, they do not depart
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much from the prior density (dashed blue). This is due to the heavy-handedness of the privacy mecha-

nism employed for this analysis, resulting in poor statistical utility of the privatised count t. Indeed, the

mechanism injects Laplace noise with standard deviation of
√
2ε−1Δ(q) = 8.48 into a statistic clamped

between a0 = 0 and a1 = 6. That t cannot be highly informative for the inferential problem at hand

is correctly identified by the full Bayesian analysis which precisely accounts for the uncertainty induced

by the privacy mechanism (grey lines). Furthermore, these precise posterior distributions are generally far

from the bounds implied by Theorem 5.6.3; this re-enforces the shallowness of these bounds due to their

validity for very general classes of the data model Pθ and priors π.

5.7 Pufferfish Privacy

As the classic formulation of differential privacy, pure ε-DP has inspired many variants, most of which

closely resemble the original (for example by replacingDMult with some other distorting function ddist,

see Remark 5.3.6). In contrast, Pufferfish privacy (Kifer and Machanavajjhala, 2014) is conceptually dis-

tinct from ε-DP in two ways. Firstly, while ε-DP conceptualises privacy as indistinguishability between

pairs of comparable datasets x, x′ ∈ X (Remark 5.3.7), Pufferfish reconceptualises privacy as indistin-

guishability between pairs of competing conjectures about the unobserved, confidential data x (as we will

see in Remark 5.8.2). Secondly – and consequently – ε-DP is concerned solely with the design of the

data-release mechanism, while the object of Pufferfish’s interest is the composition of the data-generating

process and the data-release mechanism. We call this composite function the data-provision procedure:

Definition 5.7.1. Given a data-generating processG(θ,U1) and a data-release mechanismM(x,U2), the
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data-provision procedure MG : Θ× [0, 1]2 → T is defined as

MG(θ,U1,U2) = M(G(θ,U1),U2),

whereU1,U2 are independent and (without loss of generality) identically distributed Unif[0, 1].

HereU1 andU2 are the random components (i.e. seeds) of the data-generationG and of the data-release

M respectively; θ is the data-generating model parameter;X = G(θ,U1) is the (stochastic) dataset; and (as

before) T = M(X,U2) is the released summary statistic.

As in Section 5.4, we require that the data universe X is equipped with a σ-algebra G ; that the data-

releasemechanismM is (G⊗B[0, 1],F )-measurable; and, further, thatG(θ, ·) is (B[0, 1],G )-measurable

for all θ ∈ Θ. (Recall thatB[0, 1] is the Borel σ-algebra on [0, 1] andF is the σ-algebra of the output space

T .) Wenow also assume that the data-generatingmodel parameter setΘ is in a one-to-one correspondence

with the set of probability measures on (X ,G ). (So the data-generating model is not parametric in the

usual sense of the term.)

Under these requirements, the seedU1 induces a probability measure for the dataset X:

Pθ(X ∈ E) = λ
(
{u1 ∈ [0, 1] : G(θ, u1) ∈ E}

)
, (5.14)

(where λ is the Lebesgue measure) and – together with the seed U2 – also for the output T of the data-

provision procedureMG:

P(T ∈ S | θ) = λ
(
{u1, u2 ∈ [0, 1] : MG(θ, u1, u2) ∈ S}

)
=

∫
X
Px(S)dPθ(x), (5.15)

(Equation (5.15) follows from the previous line by Fubini’s theorem – see Proposition 18.) Recall from
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Equation (5.6) that P(T ∈ · | θ) is the privatised data probability. Because Pufferfish is concerned with

the data-provision procedure MG – and because P(T ∈ · | θ) is the probability induced by MG – the

privatised data probability plays a central role in Pufferfish. In fact, we will see (in Definition 5.7.3) that

Pufferfish can be conceived as a Lipschitz condition on the map θ 7→ P(T ∈ · | θ), just as ε-DP is a

Lipschitz condition on the map x 7→ Px.

Pufferfish provides a framework for developing tailored privacy definitions. The data custodian con-

structs their custom Pufferfish privacy definition according to their judgement of:

A. The attackers: Against what kinds of background knowledge, or beliefs about the data, should
the data-release mechanismM guard? (These knowledge and beliefs are modelled by probability
distributions θ on the data X.)

B. Theattackers’ conjectures on confidential information: Whichparts of the dataset require protection
(i.e. what are the confidential information?), and what conjectures may an attacker make about
these information? (Conjectures are modelled as events E ∈ G on the data universeX .)

C. The pairs of competing conjectures: Which pairs of conjectures should remain indistinguishable to
the attackers, even after observing (the realized value of) T? (Or, for a Bayesian attacker, between
which pairs of conjectures should it be impossible for the attacker to significantly improve their
ability to distinguish?)

(Note that B. is only used as a stepping-stone for answering C.; it does not have an independent role to

play in Pufferfish.) Putting the above discussion more formally, the data custodian specifies their privacy

definition with a Pufferfish instantiation:

Definition 5.7.2. A Pufferfish instantiation ε-PufferF ish(D, S) is a tuple with three components:

1. A setD ⊂ Θ of attackers;

2. A set S ⊂ G × G of pairs of competing conjectures about “confidential” information in the dataset
x;9 and

9Note that elsewhere in the literature (for example in Kifer andMachanavajjhala (2014)), what we term the “at-
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3. A privacy loss budget 0 ≤ ε ≤ ∞.

The sets D and S correspond to points A. and C. respectively in the above discussion. The privacy

loss budget ε has the same role in Pufferfish as in ε-DP: it describes the degree of continuity of the map

θ 7→ P(T ∈ · | θ) – and hence, intuitively, the degree of privacy afforded to the data – with smaller ε

corresponding to more continuity/privacy.

Pufferfish privacy is a Lipschitz condition onMG:

Definition 5.7.3. Fix the data-generating process G. A data-release mechanismM satisfies the Pufferfish

instantiation ε-PufferF ish(D, S) if the associated data-provision procedureMG satisfies the inequality:

DMult

(
P(T ∈ · | θ),P(T ∈ · | θ′)

)
≤ εdD,S(θ, θ′),

for all θ, θ′ ∈ Θ.

Here dD,S is a metric on Θ which is given by the Pufferfish instantiation ε-PufferF ish(D, S). It is

defined as follows: Firstly, as Θ is in a one-to-one correspondence with the set of probability measures on

(X ,G ), it is closed under conditioning. That is, for each θ ∈ Θ and for each event E ∈ G , there exists

a unique θ′ ∈ Θ such that Pθ′(X ∈ ·) = Pθ(X ∈ · | X ∈ E) (provided that Pθ(X ∈ · | X ∈ E) is

well-defined10). Denote this θ′ by θ|E.

tackers’ conjectures” are referred to as “secrets,” and the “pairs of competing conjectures” are referred to as “discrim-
inative pairs.” Moreover, in Kifer andMachanavajjhala (2014), the set of discriminative pairs is denoted by Spairs and
S instead denotes the set of secrets/conjectures. We choose to omit the set of secrets/conjectures from a Pufferfish
instantiation as it is superfluous, and instead use S to denote the set of pairs of competing conjectures.

10Pufferfish limits its consideration to θ ∈ ΘandE,E′ ∈ G forwhichPθ(X ∈ · | X ∈ E) andPθ(X ∈ · | X ∈ E′)
are well-defined, in order to ensure that the data-provision proceduresP(T ∈ · | θ,X ∈ E) andP(T ∈ · | θ,X ∈ E′)
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Then let the graphGD,S on Θ have edges (θ, θ′) if there exists some θ∗ ∈ D and some (E,E′) ∈ S such

that θ = θ∗|E and θ′ = θ∗|E′ – i.e. such thatPθ is equal to the conditional distributionPθ∗(X ∈ · | X ∈ E)

and Pθ′ is equal to Pθ∗(X ∈ · | X ∈ E′). Finally, define dD,S(θ, θ′) as the length of a shortest path between

θ and θ′ inGD,S.

Therefore, for all θ∗ ∈ D and all (E,E′) ∈ S (with Pθ∗(X ∈ · | X ∈ E) and Pθ∗(X ∈ · | X ∈ E′) both

well-defined10), the data-generating probabilities θ∗|E and θ∗|E′ are adjacent in the graphGD,S and hence

DMult

(
P(T ∈ · | θ∗,X ∈ E),P(T ∈ · | θ∗,X ∈ E′)

)
≤ ε. (5.16)

The above discussion sheds light on the differences between Pufferfish and pure ε-DP: As observed

earlier, ε-DP is concerned with indistinguishability of datasets x, x′ ∈ X . Hence, its starting point is the

data universe X and it is a Lipschitz condition on the data-release mechanism M : X × [0, 1] → T .

On the other hand, Pufferfish is concerned with competing conjectures θ∗|E and θ∗|E′ (for θ∗ ∈ D and

(E,E′) ∈ S). Its starting point is thus the data-generating parameter setΘ and it is a Lipschitz conditionon

the data-provision procedureMG : Θ× [0, 1]2 → T . Yet the data custodian only has partial control over

MG. That is to say, while Pufferfish is a property of the data-provision procedureMG, the data custodian

can achieve this property only through the design of M. In contrast, the data custodian often has full

are themselves well-defined.
However, determining whether or not Pθ(X ∈ · | X ∈ E) can be well-defined is beyond the scope of this paper.

Answering this question to the necessary level of generality is difficult (see Chang and Pollard (1997) and references
therein), but the majority of cases encountered in practice are covered by two approaches: When Pθ(X ∈ E) is non-
zero, Pθ(X ∈ A | X ∈ E) is defined as Pθ(X ∈ A ∩ E)/Pθ(X ∈ E). And when X = (Y,Z) has a canonical density
f(Y = y,Z = z) on a productmeasure μ = μ1×μ2with{X ∈ E} = {Z = zE} for some zE, thenPθ(X ∈ · | X ∈ E)
is defined as the regular conditional probability fY|Z(· | zE)dμ1(·)where

fY|Z(y | z) =

{
f(y,z)
f(z) if f(z) > 0,
φ(y) otherwise,

with f(z) =
∫
f(y, z)dμ1(y) and φ(y) an arbitrary density on μ1 (Durrett, 2019, Example 4.1.6).
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control of the object of ε-DP’s interest, the data-release mechanismM.

While ε-DP allows for the use of an arbitrary distance d, Pufferfish makes a very particular choice for

the distance on its input space: dD,S. (However, beyond the interpretation of dD,S in terms of attackers

and competing conjectures, there is no reason in principle that Pufferfish cannot be generalised to allow

for arbitrary distances d on Θ. In fact, all of the results below generalise immediately from dD,S to any

metric d on Θ which satisfies Assumption 5.3.3.)

Despite their differences, ε-DP and Pufferfish share one characteristic which is very important for our

purposes: They both use the multiplicative distance DMult to measure the change in output variations.

This means that Pufferfish is fundamentally linked to the concept of an interval of measures, just as ε-DP

is. This connection to intervals of measures and the resulting implications on the indistinguishability of

important inferential quantities are the subject of the next section.

5.8 An IP View of Pufferfish Privacy

As an analog to Theorem 5.3.5 for pure ε-differential privacy, Theorem 5.8.1 below establishes the con-

nection between Pufferfish and intervals of measures. Specifically, 5.8.1.II is the standard definition of

Pufferfish as given in Kifer and Machanavajjhala (2014). The equivalence 5.8.1.I⇔ 5.8.1.II justifies the

formulation of Pufferfish as Lipschitz continuity. In addition, 5.8.1.III and 5.8.1.IV give novel formula-

tions of Pufferfish in terms of intervals of measures.

Theorem 5.8.1. Fix the data-generating process G(θ,U1) and the data-release mechanismM(x,U2). For

any Pufferfish instantiation ε-PufferF ish(D, S) with privacy loss budget ε < ∞, the following statements

are equivalent:

I M satisfies ε-PufferF ish(D, S).
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II For all S ∈ F , all competing conjectures (E,E′) ∈ S and all attackers θ∗ ∈ D (such that Pθ∗(X ∈
· | X ∈ E) and Pθ∗(X ∈ · | X ∈ E′) are both well-defined10), the following inequalities are satisfied:

P(T ∈ S | θ∗,X ∈ E) ≤ eεP(T ∈ S | θ∗,X ∈ E′),
P(T ∈ S | θ∗,X ∈ E′) ≤ eεP(T ∈ S | θ∗,X ∈ E).

III For all δ ∈ N and all θ, θ′ ∈ Θ with dD,S(θ, θ′) = δ,

P(T ∈ · | θ′) ∈ I1
(
Lθ,δε,Uθ,δε

)
,

where Lθ,δε = e−δεP(T ∈ · | θ) and Uθ,δε = eδεP(T ∈ · | θ).

IV For all θ ∈ Θ and allmeasures ν ∈ Ω, if P(T ∈ · | θ) has a density p(t | θ)with respect to ν, then for
every dD,S-connected11 θ′ ∈ [θ], P(T ∈ · | θ′) also has a density p(t | θ′) (with respect to ν) satisfying

p(t | θ′) ∈ p(t | θ) exp
[
±εdD,S(θ, θ′)

]
,

for all t ∈ T .

Proof. First note that (5.16) is equivalent to both I and II. Specifically, that (5.16) implies I follows by

applying the triangle inequality to a shortest path between θ and θ′ inGD,S, similar to the proof of 5.3.5.I

⇔ 5.3.5.II in Theorem 5.3.5. The remainder of the proof is analogous to that of Theorem 5.3.5.

Remark 5.8.2. Statement IV of Theorem 5.3.5 is the backbone for reasoning about indistinguishability

between d-connected datasets x, x′ ∈ X under ε-DP (see Remark 5.3.7). In contrast, statement IV of

Theorem5.8.1 provides the rationale for indistinguishability betweendD,S-connecteddistributions θ, θ′ ∈

Θ under Pufferfish privacy. Specifically, for θ = θ∗|E and θ′ = θ∗|E′ (with θ∗ ∈ D and (E,E′) ∈ S), an

attacker cannot distinguish with certainty between θ and θ′ because p(t | θ)/p(t | θ′) is bounded away

from zero and infinity, regardless of the value of t. More generally, whenever θ is plausible (i.e. when

11Analogous to the concept of connected data x, x′ ∈ X (Definition 5.3.2), we say that θ, θ′ ∈ Θ are dD,S-
connected if dD,S(θ, θ′) <∞ and we define [θ] to be θ’s connected component: [θ] = {θ′ ∈ Θ | dD,S(θ, θ′) <∞}.
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p(t | θ) > 0) then all dD,S-connected θ′ ∈ [θ] are also plausible (regardless of the choice of dominating

measure ν).

We now turn to discussing the impact of Pufferfish privacy on statistical inference in both Bayesian

and frequentist paradigms. From the Bayesian view, Pufferfish limits the ability of an attacker θ∗ ∈ D to

discern between two competing conjectures (E,E′) ∈ S relative to their prior (baseline) ability to do so:

e−ε ≤ Pθ∗(X ∈ E | T = t)
Pθ∗(X ∈ E′ | T = t)

/
Pθ∗(X ∈ E)
Pθ∗(X ∈ E′)

≤ eε, (5.17)

where the attacker’s “ability to discern between (E,E′)” is quantified as the odds of E against E′, so that

(5.17) is a bound on the prior-to-posterior odds ratio. In fact,M satisfies ε-PufferF ish(D, S) if and only

ifM satisfies (5.17) for all θ∗ ∈ D, all10 (E,E′) ∈ S and almost all t ∈ T . (This result was first described

in (Kifer and Machanavajjhala, 2014, p. 6) and follows from Statement 5.8.1.IV by setting θ = θ∗|E and

θ′ = θ∗|E′ , and then applying Bayes rule. We formally state and prove this result in Proposition 19 of

Appendix C.5.)

As previous sections contend, there is an important type of competing conjectures that privacy mecha-

nisms aim to make indistinguishable. These conjectures concern the values of the records in the dataset x.

To this end, Pufferfish provides a Bayesian semantic guarantee that conforms to the structure of a density

ratio neighbourhoodWasserman and Kadane (1992); Wasserman (1992), defined below.

Recall (fromDefinition 5.3.1) that Ω is the set of σ-finite measures on the measurable space (T ,F ).

Definition 5.8.3. The density ratio neighbourhood of μ ∈ Ωwith radius r ≥ 0 is defined as

Nr(μ) = {ν ∈ Ω : dDR(μ, ν) ≤ r},
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where dDR is the density ratio metric:

dDR(μ, ν) =



0 if μ = ν = 0

ess supt,t′∈T o ln
(

f(t)
f(t′)

/
g(t)
g(t′)

)
else if μ, ν are mutually absolutely continuous,

∞ otherwise,

(5.18)

with f and g densities of σ-finite measures μ and ν respectively, with respect to some common dominating

measure τ ∈ Ω; T o = {t ∈ T | 0 < f(t), g(t) <∞}; and the essential supremum is with respect to τ.12

The definition of the density ratio metric dDR is well-defined in the sense that dDR(μ, ν) does not de-

pend on the choice of f, g and τ in (5.18). (See Appendix C.2 for details.)

The following theorem characterises Pufferfish privacy (under a particular choice of S) as the require-

ment that an attacker θ’s posterior on X is in the ε-density ratio neighbourhood of their prior:

Theorem 5.8.4. Fix some θ∗ ∈ D. Let SX be a partition ofX such that Pθ∗(X ∈ E), for E ∈ SX , is given

by a density pθ∗(Z = zE) of some marginalisation Z of X. Define S = SX × SX .

If M satisfies ε-PufferF ish(D, S), then

Pθ∗(Z ∈ · | T = t) ∈ Nε
(
Pθ∗(Z ∈ ·)

)
, (5.19)

for P(T ∈ · | θ∗)-almost all t ∈ T .

In the other direction, suppose that Pθ(X ∈ E), for E ∈ SX , is given by a density pθ(Z = zE) for all

θ ∈ D. Then (5.19) holding for all θ ∈ D and P(T ∈ · | θ)-almost all t ∈ T implies that M satisfies

ε-PufferF ish(D, S).

12The property f, g <∞ holds τ-almost everywhere (because μ and ν are σ-finite – see the proof of LemmaC.5.2),
and f, g > 0 holds μ- and ν-almost everywhere. Hence, practically one may take the essential supremum in equa-
tion (5.18) over T ; restricting to T o simply removes the complications of dividing by zero or infinity.
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The proof of Theorem 5.8.4 is immediate from (5.17).

Two special cases of Theorem 5.8.4 are worth noting. Firstly, when the partitionSX = {{x} : x ∈ X}

consists of all the singleton subsets ofX , an ε-PufferF ish(D, S) mechanism is taskedwith providing indis-

tinguishability between competing conjectures E = {x} and E′ = {x′}. That is, a Pufferfish mechanism

must protect against the conjecture X = x versus X = x′, for any arbitrary choices of x, x′ ∈ X . This is

a tall order, because the dataset may contain a large number of individual records, each with values xi, x′i

that are nothing alike. The resulting privacy guarantee is thus a stringent one: For any θ ∈ D,

Pθ|t ∈ Nε
(
Pθ
)
,

where Pθ and Pθ|t are Pθ(X ∈ ·) and Pθ(X ∈ · | T = t) respectively. In other words, the Bayesian attacker

θ’s ability to discern between two arbitrary datasets relative to their prior discernability (i.e. the prior-to-

posterior odds ratio) is limited by a multiplicative factor of eε. (This is closely related to the ‘no-free-lunch

privacy’ of Kifer andMachanavajjhala (2011) and (Kifer andMachanavajjhala, 2014, Section 3.2).)

A second, and more pragmatic, special case arises when the partition SX consists of the level sets given

by fixing a small number of records in the dataset – in particular, by fixing a single record. Assume that the

datasets x ∈ X are vectors (x1, . . . , xn) of records and letR be the set of all possible values that a record

xi can take, so thatX ⊂
⋃∞

n=1Rn. Define

SX = {E(r, 1) : r ∈ R}, (5.20)

where E(r, i) is the level set which fixes the ith record to be the value r:

E(r, i) = {x ∈ X : xi = r}. (5.21)
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For this choice of SX , the two densities pθ(Z = zE(r,1)) and pθ(Z = zE(r,1) | T = t) are, respectively, the

prior marginal density, pθ(X1 = r), and the posterior marginal density, pθ(X1 = r | T = t), of the first

record taking the value r, where the marginalisation is over all the other records with respect to the data-

generating process θ. Theorem 5.8.4 states that these prior and posterior marginal densities are restricted

to the same density ratio neighbourhood of radius ε.

Remark5.8.5. When the competing conjecturesS are givenby the level sets, ε-PufferF ish(D,S) has a close

connection to pure ε-DP. Indeed, suppose thatX = Rn for a fixed n and letS =
⋃n

i=1{E(r, i) : r ∈ R}2.

If D is the collection of distributions on X which take the records X1, . . . ,Xn as mutually independent,

then a mechanism M satisfying ε-PufferF ish(D, S) is equivalent to M satisfying ε-DP with d = dHam

(Kifer andMachanavajjhala, 2014, Theorem 6.1). This result follows from observing

P(T ∈ S | θ,Xi = xi) =
∫
Rn−1

Px(S)dPθ(X−i = x−i),

for θ ∈ D, which implies that Statements 5.3.5.II and 5.8.1.II are equivalent.

Pufferfish also has a frequentist interpretation as a limit to the power of any attacker’s level-α test be-

tween competing conjectures (c.f. Theorem 5.5.1):

Theorem 5.8.6. Adata-releasemechanismM satisfies ε-PufferF ish(D, S) if and only if, for all θ0 6= θ1 ∈

Θ, the power 1− β of all size-α tests of

H0 : θ = θ0 versusH1 : θ = θ1,

is bounded by the inequalities:

max
(
α/φ, 1− [1− α]φ

)
≤ 1− β ≤ min

(
αφ, 1− [1− α]/φ

)
, (5.22)
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where φ = exp[εdD,S(θ0, θ1)].

Proof. The result is immediate from IV of Theorem 5.8.1 and the Neyman-Pearson lemma. (The deriva-

tion is analogous to the second half of the proof of Theorem 5.5.1 and the proof of Corollary 5.5.2.)

As an application of Theorem 5.8.6, suppose an attacker θ∗ ∈ D is interested in testing the null hypoth-

esis X ∈ E against the alternative X ∈ E′, for some (E,E′) ∈ S. This is equivalent to setting θ0 = θ∗|E

and θ1 = θ∗|E′ in Theorem 5.8.6 (assuming that θ∗|E and θ∗|E′ are well-defined10). Hence, any such test

with level 0.05 will have power at most 0.05 exp(ε) under ε-PufferF ish(D, S).

Remark 5.8.7. Because the density ratio neighbourhoodNr(μ) is the closed ball BrdDR
(μ), it is a distortion

model (Remark 5.3.6). Moreover, it is closely related to the constant odds ratiomodelWalley (1991), which

is the distortionmodel associated with the distorting function dCOR Montes et al. (2020a). Here, dCOR is

the constant odds ratio metric:

dCOR(μ, ν) =



0 if μ = ν = 0,

1− infS,S′∈F∗
μ(S)ν(S′)
μ(S′)ν(S) else if μ, ν are mutually absolutely continuous,

1 otherwise,

for finite μ, ν ∈ Ω, whereF ∗ = {S ∈ F : μ(S) > 0}.

Corollary C.5.5 in Appendix C.5 proves that, for finite μ, ν ∈ Ω,

dDR(μ, ν) = − ln[1− dCOR(μ, ν)].

Hence, when restricting to finite measures, the density ratio neighbourhood Nr is equal to the constant

odds ratio model with distortion parameter δ = 1− exp(−r).
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5.9 Optimality of This Paper’s Results

The bounds presented in this paper cannot be improved without additional assumptions on the data-

release mechanismM, the data-generating model Pθ or the prior π. In this section, we provide examples

which demonstrate the optimality of these bounds. However, it is important to reiterate that these bounds

are only tight pointwise. Indeed itwould be impossible for it to be otherwise, since the bounds are onprob-

ability measures, yet the bounds themselves are not probability measures.

Throughout this section, we rely on the Laplace mechanism M for the count query q(x) =
∑

i xi

(Example 5.2.2). The density of T ∼ M(x,U) is px(t) = ε
2 exp(−ε|t− q(x)|) when X = {0, 1}n and

the metric d onX is the Hamming distance dHam. We assume that n is fixed, so thatX is dHam-connected

and supx,x′∈X dHam(x, x′) = n <∞.

We begin with Theorem 5.4.1 which states that the privatised data probability P(T ∈ · | θ) is bounded

byLθ,ε andUθ,ε on T0. Because p(t | θ) =
∫
px(t)dPθ(x) for a.e. t ∈ T0, the lower bound p(t | θ) ≥ lθ,ε(t)

is tight if px(t) = lθ,ε(t) forPθ-a.e. x ∈ supp(x | t0, θ). Consider the Laplacemechanismunder the setting

given above. In this case,T0 = R for any t0 and any θ. Further, the essential-supremum in lθ,ε(t) is achieved

by x∗ = (1, . . . , 1)when t ≤ 0. Hence lθ,ε(t) = px0(t)where x0 = (0, . . . , 0). Therefore, p(t | θ) can be

arbitrarily close to lθ,ε(t) for t ≤ 0 as Pθ concentrates on x0. This implies P(T ∈ S | θ) can be arbitrarily

close to Lθ,ε(S) for a bounded, measurable set S ⊂ R≤0. The upper bound P(T ∈ · | θ) ≤ Uθ,ε follows

similarly, by considering t ≥ n, x∗ = (0, . . . , 0) and x0 = (1, . . . , 1).

We nowmove to Theorem 5.5.1 which concerns the power of hypothesis tests in the private setting. To

see that this result is tight, consider the model P =
{
Pθ | θ ∈ {0, 1}n

}
where Pθ(X ∈ ·) is the point

mass on x = θ. Set θ0 = (0, . . . , 0) and θ1 = (1, . . . , 1). By examining the density px(t) of the Laplace
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mechanism for x = (0, . . . , 0) and for x = (1, . . . , 1), one can conclude that the Neyman-Pearson (NP)

test must have a rejection region of the form R = {t > t1} for some t1. Moreover, for small enough ε, t1

must be at least n = d∗∗ (assuming α < 0.5). Then, p(t | θ1) = exp(εn)p(t | θ0) for all t ∈ R, which

means the NP test has power exactly α exp(εn).

Theorem5.6.2 provides bounds on aBayesian analyst’s prior predictive probability. If one sets the prior

π to be a pointmass on a single θ0, then the prior predictive probabilityP(T ∈ S) =
∫
Θ P(T ∈ S | θ)dπ(θ)

reduces to the privatised data probabilityP(T ∈ S | θ0). In this case, proving optimality of Theorem 5.6.2

is analogous to proving that the bounds Lθ0,ε ≤ P(T ∈ · | θ0) ≤ Uθ0,ε are tight. Hence, the argument

outline above for Theorem 5.4.1 can also be used to show optimality of Theorem 5.6.2.

For Theorem 5.6.3 – which demonstrates that a Bayesian’s posterior is within a probability interval of

the prior – take Θ = [0, 1] with the prior π = Unif[0, 1]. Let Pθ(x) be the point mass on (1, . . . , 1) if

θ = 1 and the point mass on (0, . . . , 0) otherwise. For t > n, we have π(θ = 1 | t) = π(θ = 1) exp(εn).

Thus, the bound in Theorem 5.6.3 is achieved since d∗∗ = n.

Finally, we prove that our results on the inferential limits induced by Pufferfish privacy (Theorems 5.8.4

and 5.8.6) are tight. For this, consider the setting described in Remark 5.8.5. In this case, the Laplace

mechanism M with X = {0, 1}n satisfies ε-PufferF ish(D, S). Theorem 5.8.4 states that, for any i ∈

{1, . . . , n} and any θ∗ ∈ D, the posterior Pθ∗(Xi ∈ · | T = t) is in the density ratio neighbourhood of

radius ε that is centred at the prior Pθ∗(Xi ∈ ·). Let θ∗ be such that

Pθ∗(X = x0) = Pθ∗(X = x1) = 0.5,
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where x0 = (0, . . . , 0) and x1 = (1, 0, . . . , 0). Then

Pθ∗(X1 = 0 | T = t)
Pθ∗(X1 = 1 | T = t)

/
Pθ∗(X1 = 0)
Pθ∗(X1 = 1)

=
px0(t)
px1(t)

,

by Bayes rule, where px(t) is the density of the Laplace mechanism. Yet px0(t)/px1(t) = exp(ε) for t ≤ 0.

Hence,

dDR

(
Pθ∗(X1 ∈ · | T = t),Pθ∗(X1 ∈ ·)

)
= ε,

and thus the bound (5.19) of Theorem 5.8.4 is tight.

Now we consider Theorem 5.8.6, which provides a bound on the power of any size-α test. As before,

we use the Pufferfish instantiation given in Remark 5.8.5 and the Laplace mechanism M. Let θ0 and θ1

be such that Pθi(X ∈ ·) is the point mass on xi, where x0 = (0, . . . , 0) and x1 = (1, . . . , 1) with |x0| =

|x1| = n. Then dD,S(θ0, θ1) = n and, furthermore, the test H0 : θ = θ0 versus H1 : θ = θ1 is exactly

the test we examined when proving the optimality of Theorem 5.5.1. In that proof, we demonstrated that

the Neyman-Pearson test has power α exp(εn) (assuming that ε is small and α < 0.5). This implies the

bounds (5.22) in Theorem 5.8.6 are tight.

5.10 Discussion

The results we obtain in this paper make novel contributions to the differential privacy literature in the

following ways. Firstly, the bounds we obtain in Theorems 5.4.1, 5.5.1, 5.6.2, 5.6.3, 5.8.4 and 5.8.6 are

non-trivial, due to the validity of these results across a broad range of datamodels, privacymechanisms and

prior distributions. When the analyst has little knowledge or is only willing tomakeminimal assumptions

about theirmodel, these bounds are useful representations of the limits of statistical learning under privacy

constraints. This draws a contrast with the existingDP literature, which has largely focused on asymptotic
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lower bounds or on constructing (asymptotically-)optimal data-release mechanisms for specific data use

cases Smith (2011); Cai et al. (2021); Chhor and Sentenac (2023); Duchi et al. (2018); Bassily et al. (2014);

Talwar et al. (2015); Dwork et al. (2014); Wasserman and Zhou (2010); Awan and Slavković (2020). This

literature aligns with query-based access Hotz et al. (2022) where the user can choose what statistics are

released. Our results, on the other hand, are finite-sample and apply to the dissemination mode of data

release where the mechanism is not tailored for the analyst’s use case. This setting is typical of official

statistics (e.g. censuses and surveys) and, more generally, data products with multiple users, and is more

common in the research community than query-based access Hotz et al. (2022).

Secondly, the generality of our bounds implies that they are inherent consequences of the privacy stan-

dards themselves, be it pure ε-DP or Pufferfish. Specifically, these bounds stem only from the requirement

that the mechanism M is ε-DP – or ε-PufferF ish(D, S) – and not on any particularities of Pθ,M or π.

That these bounds are typically wide in practice – as can be seen from Examples 5.4.3 and 5.6.5 – is in

part due to the near-total lack of assumption under which they are derived. While these bounds can ap-

proach vacuity as the data size n grows, in practical examples that need not be the case if, for example, the

data analyst has probabilistic knowledge about the privacymechanism (see e.g. Example 5.6.5) or the data

space X . For a given choice of Pθ,M and π, we may obtain tighter bounds than those in this paper. In

addition to the asymptotic results in the aforementioned papers, sharp bounds for specific Pθ,M and π

may be derivable from the existing literature on measurement errors (errors-in-variables) in statistics and

econometrics, particularly in the case of point identification problems (see e.g. (Carroll and Hall, 1988;

Horowitz andManski, 1995)).

Through the lens of Theorems 5.5.1, 5.6.3, 5.8.4 and 5.8.6, we obtain valuable insights in both frequen-
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tist and Bayesian paradigms on the privacy-utility trade-off which is fundamental to differential privacy

as a quantitative privacy standard Hotz et al. (2022). (For details, see the discussion accompanying these

theorems.) Qualitatively speaking, there exists an inherent tension between protecting private informa-

tion and deriving scientific knowledge. To date, quantitative approaches to this trade-off predominantly

rely on the privacy loss budget as the sole metric to balance this trade-off Abowd and Schmutte (2019);

Hsu et al. (2014); Heffetz (2022). However, from the suite of IP analyses presented here, we see that other

building blocks – notably the metric structure (X , d) of the data universe, the associated database dis-

tances (such as d∗ and d∗∗), and the clamping parameters on X – are all relevant factors that, together

with the privacy loss budget ε, collectively determine the limits to statistical learning for attackers and sci-

entists alike. Therefore, ε is not the only parameter of concern – and perhaps not even the central concern

– when assessing and trading-off privacy and utility Bailie et al. (2025b).

While this paper qualifies the tradeoff of ε-DP and Pufferfish privacy in concrete terms, it narrowly

conceives privacy and utility in terms of the extent of statistical estimation attainable under either frequen-

tist or Bayesian paradigms. There are, of course, many other aspects of utility that are worth examining

– such as the ease of analysis, use of computational resources, facial validity and logical consistency boyd

and Sarathy (2022); Hotz and Salvo (2022); Ruggles et al. (2019) – and other paradigms (in particular

decision theory) with which the notions of privacy and utility can be quantified. In fact, both notions

are multi-faceted and context-specific and, as one of the reviewers of Bailie and Gong (2023a) pointed

out, a judicious conceptualisation of privacy and utility may improve their tradeoff’s efficiency frontier.

Acknowledging the complex makeup of this tradeoff, we advocate for future design and analysis of data-

release mechanisms to treat the conceptualisations of privacy and utility – and the roles that X , d and
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the distorting function ddist play in these conceptualisations – with scrutiny, given their scarcity in the

current literature (Bailie et al., 2025c).

Tools from the IP literature harbour potential in aiding future endeavours to study statistical data pri-

vacy in a rigorous yet general manner. This work has examined some examples in which a DP definition

can be formulated as the requirement that a mechanism’s probability Px under one input x ∈ X is in

a certain distortion model of its probability Px′ under another input x′, whenever those two inputs x, x′

are connected. In this case, the choice of distorting function ddist (partially) determines the flavor of the

privacy guarantee. One direction for future research is thus to explore IP characterisations of other com-

mon flavors of DP, in particular (ε, δ)-DP (Dwork et al., 2006a; Machanavajjhala et al., 2008; Kifer et al.,

2022), zero-concentrated DP (zCDP) (Dwork and Rothblum, 2016; Bun and Steinke, 2016), Rényi DP

(Mironov, 2017) and Gaussian DP (Dong et al., 2022), which are popular in practice due to flexible pri-

vacy mechanism design, better privacy budget accounting and increased statistical efficiency. Since these

variants, andothers such as subspaceDP (Gao et al., 2022), stem fromchangingX , dor thedistorting func-

tion ddist (Remark 5.3.6), three key questions are 1) how the distorting function ddist corresponding to a

DP variant can be characterised as an IP object; 2) what IP properties does ddist have; and 3) what are the

consequences on statistical inference from using ddist to constrain Px and Px′ (for connected x, x′ ∈ X ).

For example, our preliminary analysis shows that (ε, δ)-DP cannot be described by an interval ofmeasures,

at least not alone. Moreover, we have demonstrated the necessity of using DMult as the distorting func-

tion for ensuring the types of bounds on frequentist and Bayesian inference found in Sections 5.5 and 5.6

(see Remark 5.6.4). This implies other variants of DP which replace DMult with some other distorting

function ddist cannot satisfy the Bayesian and frequentist semantics described in this article.

221



A second direction for future research is suggested by the characterisation of Pufferfish as a Lipschitz

condition with the metric DMult on Ω and the metric dD,S on Θ. Replacing DMult with some other

distorting function ddist – for example the distorting functions corresponding to (ε, δ)-DP or to zCDP

(see Bailie et al. (2025b) for the definitions of these distorting functions) – would generate new variants

of Pufferfish. (Some such variants have already been proposed in Zhang et al. (2022); Ding (2024).) Sim-

ilarly, replacing dD,S with another metric on Θ would generalise Pufferfish beyond the interpretation of

attackers and competing conjectures, and would provide amore-flexible framework for expressing privacy

as ε-indistinguishability (Remarks 5.3.7 and 5.8.2) between distributions θ, θ′ ∈ Θ: By specifying their

own metric on Θ, the data custodian can choose which θ and θ′ should be ε-indistinguishable according

to their knowledge and expertise, rather than being restricted to those (θ, θ′) pairs which correspond to

(θ∗|E, θ∗|E′) for some θ∗ ∈ D and some (E,E′) ∈ S.

Thirdly, a conceptually distinct IP approach todata privacy protection is the employment of SDLmech-

anisms that produce set-valued outputs. This approach has not been explicitly considered in this paper,

although one can take the elements t of the output space T to themselves be sets, and as such, the results

from this paper may still be applied. SDL mechanisms which produce set-valued outputs – such as the

“leaky” variant of Warner’s randomised response considered in Li et al. (2022) and the randomised cen-

soring mechanisms considered in Ding and Ding (2022) – can be understood as an intentional coarsening

of the data product Heitjan and Rubin (1990). A mechanism that produces set-valued outputs has a pre-

cise probability distribution that is given by the mass function associated with a belief function – a special

type of coherent lower prevision Shafer (1976). As such, one can view set-valued mechanisms as inducing

imprecise probabilities on T – rather than precise probabilities Px – where this imprecise probability is a
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belief function. Compared tomore general forms of IP, including the distortionmodels considered in this

work, themass function formulation of belief functions lends a computational advantage (particularly for

Markov chainMonte Carlo – see e.g. Jacob et al. (2021)). On the other hand, it is less clear that set-valued

outputs are practically acceptable for many of the real-world use-cases of SDL. Data users may anticipate

point-valued data in most situations, and may not be prepared to conduct further statistical processing of

set-valued outputs. In sum, the utility of the set-valued approach to SDL remains open to formulation

and assessment in future research.
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Part III

Differential Privacy in the Survey
Context
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6
Whose Data Is It Anyway? Towards a Formal
Treatment of Differential Privacy for Surveys1

6.1 Introduction

The survey is the workhorse of statistical agencies. For example, the U.S. Census Bureau conducts

more than 100 surveys annually (US Census Bureau, 2023o) including key data collections such as the

American Community Survey (ACS), the Current Population Survey (CPS), the Survey of Income and

Program Participation (SIPP) and the new Annual Business Survey (ABS). The data gathered through

these surveys provide invaluable information on theUS economy and onAmerican societymore generally.

They are used by various stakeholders – for example, businesses, researchers, local and federal governments,

media and not-for-profits – to make investment decisions, to inform policy and to allocate government

funding, among many other uses.

1Based on work coauthored with Jörg Drechsler.
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On the other hand, national statistical organizations (NSOs) have acknowledged for decades their obli-

gation to maintain the confidentiality of survey respondents due to legal and ethical considerations, but

also to safeguard institutional trust and thus sustain the quality of their data products. To address these

conflicting goals, various methods have been proposed over the years to protect the confidentiality of sur-

vey respondents while still maintaining the value of the data for the different stakeholders involved. In the

last two decades, a new framework for assessing the privacy of statistical data products has emerged: differ-

ential privacy (DP) (Dwork et al., 2006b). This framework ismathematically appealing as it offers a formal

guarantee: any single unit’s influence on the probability of observing a specific output is bounded. This

guarantee translates into quantifiable measures of protection against an adversary seeking to learn the con-

fidential responses, although not without some complications (Cuff and Yu, 2016; Tschantz et al., 2020;

Kifer andMachanavajjhala, 2011; Bailie et al., 2025e). Beyond the formal guarantees, DP is attractive as it

allows for full transparency of the methods that were used to protect the output, without further loss to

respondents’ privacy beyond that associated with publishing the outputted statistics and the DP specifi-

cation. This is in contrast to many methods that are currently employed at statistical agencies, which rely

on hiding some of the parameters of the privacy-protection mechanism (such as the variance of the noise

term when noise addition is used to protect a continuous attribute) to ensure privacy. With DP, agen-

cies typically release all details about the mechanism including the levels of the privacy parameters. This

implies that – at least in principle – users of the protected data will be able to account for the additional

uncertainty introduced through the protection step (although this turns out to be difficult for many of

the algorithms used in practice so far). Finally, DP offers several additional properties such as immunity

to postprocessing and composition of privacy budget (see for example Dwork and Roth (2014)). This
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second property makes the DP framework specifically interesting for statistical agencies as it allows for the

quantification of the privacy loss over multiple data releases.

These attractive features havemotivated the adoptionofDP in theprivate sector (Erlingsson et al., 2014;

Apple’s Differential Privacy Team, 2017; Ding et al., 2017; Messing et al., 2020a; Uber Security, 2017), as

well as at some NSOs such as the Census Bureau (Machanavajjhala et al., 2008; Foote et al., 2019; Abowd

and Hawes, 2023). Still, all deployments of DP so far have focused on situations in which the data to be

protected coincided with the population of interest. As pointed out above, this is rarely the case for data

collected by NSOs. Except for censuses – which are typically only conducted every five to ten years – and

some administrative databases, most data at statistical agencies are collected via probability surveys. In

the survey context, information is only gathered from a small fraction of the population, but the careful

design of the selection process and several adjustment steps after the survey has been conducted (such

as weighting, editing and imputation) ensure that the resulting data can be used to obtain approximately

unbiased estimates for thepopulationof interest. (Wewill offer amoredetailed reviewof the surveyprocess

in Section 6.2.3.) However, how to properly account for these particularities within the framework of DP

is currently poorly understood (see Reiter (2019) and Drechsler (2023) for an in-depth discussion of the

challenges that will arise in this context). Gaining a better understanding is especially critical as theCensus

Bureau has publicly committed to adopting DP for all its data products (US Census Bureau, 2018) – a

resolution that has been recently reaffirmed in US Census Bureau (2022c). (In fact, the Census Bureau

only recommitted to adopting “formal privacy”; however we are not aware of any other formal privacy

frameworks for statistical data apart for DP.) In the same 2022 press release, the Census Bureau concluded

that “the science does not yet exist” to implement DP for their flagship survey – the ACS – highlighting
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the need for additional research in this area.

We are aware of only a few papers that address DP in the survey context and, moreover, all these pa-

pers only focus on specific aspects of this process. Lin et al. (2023) study how to estimate the mean of a

binary variable under DP assuming stratified sampling using proportional allocation and simple random

samplingwithin the strata. Bun et al. (2022) investigate if the complex sampling designs commonly used in

the survey context can offer increased privacy protection building on previous results showing that simple

sampling procedures such as simple random sampling or Poisson sampling will amplify the privacy protec-

tion (Balle et al., 2020). We will summarize their findings in Section 6.4.1. Finally, in some preliminary

work, Das et al. (2022) study the effects of imputation. They find that if DP is only considered when ana-

lyzing the imputed data, the required privacy loss budget can increase linearly with the number of missing

cases. They also show that this problem can be avoided – at least for certain imputation schemes – if DP

is already considered during imputation.

This paper aims to establish a framework for DP in the survey context by discussing the implications

of (for example) whether the privacy guarantees should hold only for the sampled units or the entire pop-

ulation. We identify ten settings that vary in their assumptions about the data at different levels (the re-

sponding sample, the selected sample, the sampling frame, and the target population). Building on the

framework introduced in Bailie et al. (2025b), we formalize the DP flavors for these settings and discuss

their implications on both data utility and privacy.
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6.2 Background

6.2.1 Notation

We typically denote sets by upper-case calligraphic letters (for example, S, T or D) and sets of sets by

upper-case script letters (for example, D or F ). Datasets are denoted by fraktur lower-case letters (for

example, d, d′, p, f or s) when they are not stochastic, and by upper-case letters (for example,D,D′,P,F

orS) when they are random variables. In general, we follow the convention that lower-case letters denote

realizations of the corresponding upper-case random variable. However, we use the sans-serif superscript

R to denote a random set (for example,SR); an upper-case calligraphic letter without this superscript often

denotes a realization of the corresponding random set (for example,S denotes a realization of the random

set SR).

A record r is a set of attributes and a dataset d is a set of records. Every record r is associated with a unit,

which we denote by u(r). The units of a dataset d are given by the setU(d) = {u(r) | r ∈ d}. We assume

throughout that every unit is associated with at most one record in any given dataset, although a unit will

often have multiple records spread across different datasets. The unique record in the dataset d associated

with unit i ∈ U(d) is denoted by di.

As an example, a unit could be a person, and the attributes of a record could describe some of the char-

acteristics of that person, such as their age, income and occupation, as well as some identifiers, such as their

name and address. Alternatively, a unit could be a company, and a record associated with a company could

detail some business characteristics of that company. Less frequently, a unit may represent a group of peo-

ple, or a population – in this way, we can encode population-level information in a dataset. Occasionally,

it will be important to distinguish between the unit – which is an abstraction – and the real-world entity

230



that is represented by the unit. Beyond their philosophical differences, discrepancies between a unit’s data

and the corresponding entity’s characteristics can arise due to measurement error, non-response or impu-

tation. Moreover, there can be multiple units which represent the same entity. Such over-counting can

occur when, for example, units are constructed from a register of addresses (or phone numbers, identifica-

tion numbers, etc.) because a single entity can havemultiple addresses. Duplication is a common problem

in surveying, particularly in the context of business statistics, and – as we will see – poses a complication

for DP.

An attribute is a value of a variable. More exactly, an attribute of a unit i is the value of a variable that

is taken by i. (For example, an attribute could be the value 40 and the associated variable could be Age (in

years). This would signify that unit i has an age of 40 years.) Therefore, a record r is uniquely specified by

its unit u(r) and the variables associated to its attributes. Denote the set of the variables in a record r by

V(r) and the variables in a dataset d by V(d) =
⋃

i∈U(d) V(di). Although we do not require it, usually

every record in a dataset has the same variables: V(d) = V(di) for all i ∈ U(d).

Given a set of unitsU and a set of variablesV , let d(U ,V) denote the dataset {r | u(r) ∈ U ,V(r) = V}.

This dataset d(U ,V) is well-defined because every record is determined by its variables and its unit. Given

a variable x and a unit i, let xi denote i’s value of the variable x. We can re-express d(U ,V) as

d(U ,V) =
{
{xi | x ∈ V}

∣∣∣ i ∈ U}.
6.2.2 Differential Privacy

DP studies data-release mechanisms – functions T which take as input a dataset d and a random seed ω,

and output a stochastic summary T(d,ω) of d.
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Definition 6.2.1. A data-release mechanism is a function T : D0 ×Ω→ T where

• D0 is the data space, the set of all theoretically-possible datasets d;

• Ω is the probability space of the seed ωwith σ-algebraFΩ and probability P;

• T is equipped with a σ-algebraFT ; and

• T(d, ·) is measurable for all d ∈ D0.

(See Bailie et al. (2025b) for a slightly more general definition and for additional context.)

Intuitively speaking, d is the data that is considered confidential and hence must not be disclosed by

the summary T(d,ω). DP measures how the probabilistic noise induced by the seed ω masks this input

dataset d.

We emphasize that, in order for T to be well-defined (as a function D0 × Ω → T ), its input d must

contain all the data which has a non-zero probability (with respect toP) of being used byT. That is to say,

the output T(d,ω) can only depend on data which is in d, or data that is generated from d and ω, but not

on other data. While it may seem we are belaboring an obvious point – of course, by definition T(d,ω)

cannot be a function of anything but d and ω – the input dataset d is surprisingly slippery to specify in the

context of surveying, as we illustrate with the following simplistic example.

Example 6.2.2. Suppose that a government agency is conducting a survey on the health of people inMas-

sachusetts. The agency has a list of Massachusettsans (a frame f, see Subsection 6.2.3 below) from which

they will randomly select a sample of individuals. They will then collect data S on some of the health

characteristics of the sampled individuals (e.g. blood pressure, heart rate, etc.) and publish some aggregate

statistics based on these collected data.
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As we will expand upon later in this article, the agency may decide to include the sampling procedure

in their data-release mechanism T, since this can potentially increase the efficiency of the privacy-utility

tradeoff (see Subsection 6.4.1). In this case, T takes as input the frame f; it “performs” the sampling and

data collection steps outlined above; and then it calculates and outputs the aggregate statistics. There

are two options for how T can “collect” the data S. The first option is that the data S is generated (or

modelled, depending on one’s perspective) within the data-release mechanism T – i.e. S is a function of

T’s input data and seed. The second option is that the dataS is itself included as part of T’s input data.

We will see in Section 6.5 that the DP guarantee does not necessarily apply to data generated within a

DPmechanism– it only applies to themechanism’s input data.2 Hence, the first option is not appropriate

if we want to guarantee the privacy protection of the sampled individuals’ health characteristics. Wemust

therefore resort to the second option and include the data S as input to T. However, we do not know

a-priori which individuals will be sampled. Since any individual in the frame f has a non-zero probability

of being sampled, any of the records in d(U(f),V(S))may appear in the sample dataS. As such, all of

these records must be included as input – that is, T requires as input f∗ = d(U(f),V(f) ∪ V(S)).

We refer to f∗ as the augmented frame, since it includes all the variables that are collected in the survey

as well as all the frame variables. In the context of survey sampling, f∗ is never observed. Yet, it must

nevertheless serve as input to any data-release mechanism T, whenever T includes a sampling step and we

wish to provide the sample data with a DP guarantee. The data in d(U(f),V(S)) are not available to

the government agency at the time it starts its data collection. Rather, d(U(f),V(S)) is the ‘theoretical’

dataset from which the agency collects the survey data.

While the input f∗ described above can be observed if the agency surveyed all units in the frame, in some

2This discussion is still missing at this point, but will be included in the final version of the paper.
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situations it is not even theoretically possible to observe the input to a DP data-release mechanism. It is

not uncommon that a survey includes a minor intervention as part of its data collection. For example, the

Massachusetts health survey could require administering an oral glucose load as part of a glucose tolerance

test in the diagnosis of diabetes (Phillips, 2012), or it could direct the survey respondent to exercise on a

stationary bike as part of a cardiac stress test (Bruce andMcDonough, 1969). Alternatively, in the context

of a medical trial, the sampled individuals could be randomly assigned to receive a treatment or a placebo.

In these cases, the datawewish to protect – the outcomes of these health tests – are only realized during the

data collection process. When this data collection process is included within the data-release mechanism –

asmust necessarily be the case when the data-releasemechanismT includes the sampling step of the survey

– these data cannot possibly be included as input into T, because they do not even exist at the time the

data-release mechanism begins! (One may argue that the process of any data collection or measurement –

such as checking blood pressure – is itself an intervention and the collected data only come into existence

at the point of collection. Under this perspective, the following remarks apply to all data.)

In such cases, the input data must necessarily include the potential outcome of each of the possible

interventions (or treatments). To those familiar with causal inference, the dataset of these potential out-

comes is known as the science table (Rubin, 2005). The science table is never fully observable because the

potential outcome under a counterfactual treatment is always unknown. Yet, if we want to protect the

outcome under the non-counterfactual treatment –which is unknown at the start ofT –wemust include

it as input to T, and we can only ensure it is included as input if we include all the potential outcomes as

input.

We end this example by noting that, if T does not include a sampling step, then T need not include the
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data collection step either. As such, T’s input data is simply the collected data, without concern to the

counterfactual potential outcomes.

It is convenient to think of a data-releasemechanism as a functiond 7→ Pd(T ∈ ·). Here the probability

distribution Pd(T ∈ ·) of the summary T(d,ω) is the push-forward measure induced by the distribution

P of the random seed ω ∈ Ω, taking d as fixed:

Pd(T ∈ E) := P({ω ∈ Ω : T(d,ω) ∈ E}),

where E ∈ FT is any measurable subset of the output space T . DP is the condition that the data-release

mechanism is Lipschitz continuous – i.e. that the distanceDPr(Pd,Pd′) between outputs Pd and Pd′ is at

most a multiplicative factor of the distance dD0(d, d
′) between the corresponding inputs d and d′.

Example6.2.3. Forpureε-DP, as defined inDwork et al. (2006b), themultiplicative factor isε; the distance

between inputs d and d′ is the Hamming distance; and the distance between outputs Pd and Pd′ is the

multiplicative distance:

DMult(Pd,Pd′) = sup
E∈FT

∣∣∣∣ln Pd(T ∈ E)
Pd′(T ∈ E)

∣∣∣∣,
(For readers that are familiar with the definition of pure ε-DP in terms of neighboring datasets d and d′,

the Lipschitz condition for non-neighbors is implied by group privacy. Hence, the neighbor definition of

pure ε-DP is the equivalent to the above definition.)

For approximate (ε, δ)-DP (Dwork et al., 2006a), the multiplicative factor is again ε; the distance be-
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tween inputs is given by

dneighborsD0
(d, d′) =



0 if d = d′,

1 if d and d′ are neighbors,

∞ otherwise;

and the distance between outputs is given by

Dδ
Mult(Pd,Pd′) = sup

E∈FT

{
ln

[Pd(T ∈ E)− δ]+

Pd′(T ∈ E)
, ln

[Pd′(T ∈ E)− δ]+

Pd(T ∈ E)
, 0
}
,

(where [x]+ = max{x, 0}). Note that dneighborsD0
andDδ

Mult are not distances in the mathematical sense of

a metric; we will instead refer to them as premetrics from herein. SinceDδ
Mult does not satisfy the triangle

inequality, approximate (ε, δ)-DP’s group privacy budget does not increase linearly with the group size;

hence we cannot replace dneighborsD0
with the Hamming distance, as we did for pure ε-DP.

By definition, a data-release mechanism T satisfies DP if it is Lipschitz continuous. There are different

flavors (i.e. types or versions) ofDP; each of these flavors correspond to differentways to specify continuity.

For our purposes, there are four components to the specification of Lipschitz continuity. Most obviously,

there are the premetricsdD0(d, d
′) andDPr(Pd,Pd′). These premetricsmeasure the ‘distance’ between any

two inputs d and d′, or between any two output probabilities Pd and Pd′ . Secondly, there is the domain

D0 of the data-release mechanism, which – as we shall see – serves as the parameter space of the attacker’s

inferential model.3 Finally, there is the data multiverse D , which allows the data custodian to restrict the

Lipschitz continuity condition to certain pairs of inputs – as is often desirable in practice. For example,

we may only want to compare samples drawn from the same population. This restriction is achieved by

3This discussion is still missing at this point, but will be included in the final version of the paper.
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specifying the data multiverseD .

Definition 6.2.4 (Bailie et al. (2025b)). A differential privacy flavor is a quadruple (D0,D , dD0 ,DPr)

where:

1. The domainD0 is the data space – the set of all (theoretically-possible) input datasets.

2. Themultiverse D ⊂ 2D0 is a set of universes, which are denoted byD orD′.

3. The input premetric dD0 is a premetric on D0 – i.e. a function D0 × D0 → R≥0 such that
dD0(d, d) = 0 for all d ∈ D0.

4. The output premetric DPr is a premetric on the space of all probability distributions P – i.e. a
functionP × P → R≥0 of probabilities P,Q ∈ P such that

• DPr(P,P) = 0 for all P ∈ P ; and
• DPr(P,Q) =∞ for probabilities P,Qwhich live on different measurable spaces.

Once we have specified the four components for Lipschitz continuity via a DP flavor, we also need

to specify the multiplicative constant (known as the Lipschitz constant) which controls the rate between

input and output variations. Together, choices for these five components are called a DP specification:

Definition 6.2.5. A differential privacy specification is a quintuple (D0,D , dD0 ,DPr, εD) consisting of

a DP flavor (D0,D , dD0 ,DPr) and a privacy-loss budget εD : D → R≥0. We denote a DP specification

by εD-DP(X ,D , dX ,DPr).

A data-release mechanism T : D0 ×Ω → T satisfies the DP specification εD-DP(X ,D , dX ,DPr) if,

for all data universesD ∈ D , and all d, d′ ∈ D,

DPr
[
Pd(T ∈ ·),Pd′(T ∈ ·)

]
≤ εDdD0(d, d

′). (6.1)

LetM(D0,D , dD0 ,DPr, εD) denote the set of data-release mechanisms which satisfy the DP specifi-

cation εD-DP(X ,D , dX ,DPr).
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For the purposes of understanding DP in the context of survey sampling, the relevant components of

a DP flavor (D0,D , dD0 ,DPr) are its domainD0 and its multiverseD .

We need the following technical definition:

Definition 6.2.6. Let D0 be a domain and D ,D ′ ⊂ 2D0 be two multiverses of D0. We say D ′ is a

coarsening ofD if, for allD ∈ D , there existsD′ ∈ D ′ withD ⊂ D′.

When D ′ is a coarsening of D we write D ≤ D ′. The following lemma justifies this notation by

establishing thatD is a weaker condition than D ′ ifD ≤ D ′.

Lemma 6.2.7. Let D0 be a domain and D ,D ′ ⊂ 2D0 be multiverses such that D ≤ D ′. Then, for all

budgets εD′ : D ′ → R≥0,

M(D0,D
′, dD0 ,DPr, εD′) ⊂M(D0,D , dD0 ,DPr, εD),

where εD = inf{εD′ : D′ ∈ D ′ s.t.D ⊂ D′}.

Definition 6.2.8. Given a DP flavor (D0,D , dD0 ,DPr), the multiverse D is complete if dD0(d, d
′) <∞

for all d, d′ ∈ D and allD ∈ D .

Definition 6.2.9. Given a DP flavor (D0,D , dD0 ,DPr), two datasets d, d′ ∈ D0 are comparable when

1) d 6= d′; 2) dD0(d, d
′) < ∞ or dD0(d

′, d) < ∞; and 3) there exists a data universeD ∈ D such that

d, d′ ∈ D.

Definition 6.2.10. Given a DP flavor (D0,D , dD0 ,DPr), denote the protection objects connected to d ∈

D0 by

[d] = {d′ ∈ D0 : dD0(d, d
′) <∞}.
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Then the completionD of the data multiverseD is defined as

D = {D ∩ [d] : D ∈ D , d ∈ D}.

Lemma 6.2.11. Let (D0,D , dD0 ,DPr) be a DP flavor where dD0 is a metric. Then, the completionD ofD

is complete and, for all budgets εD : D → R≥0,

M(D0,D , dD0 ,DPr, εD′) =M(D0,D , dD0 ,DPr, εD),

where

εD′ = inf{εD : D ∈ D s.t.D′ ⊂ D}.

6.2.3 Survey Sampling

Surveys are conducted to learn some characteristics of a well-defined population by collecting information

from a random subset of this population. Most survey sampling processes rely on three key ingredients:

the target population of interest; the sampling frame from which the random sample to be surveyed is

drawn; and the sampling design for drawing this sample.

The target population (also known as the universe in some survey sampling texts, although we will not

use this term to avoid confusion with the notion of a universe D in a DP flavor) is the scope of the sur-

vey; it is the population the survey is aiming to learn about. It is typically defined conceptually, while the

sampling frame f, on the other hand, is an existent register containing names (or other identifiers), contact

information (postal or physical address, email, and/or telephone number) and possibly some basic demo-

graphic information of the survey units. The sampling frame f serves as the source fromwhich the sample

is drawn. For the discussions in the remainder of the paper it is important to clearly distinguish between

the target population and the sampling frame f. While the sampling frame aims to cover all the units from
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the target population, it might include units that are not part of the target population (overcoverage), and

it might also miss units that should be included (undercoverage). To formalize the difference between the

target population and the sampling frame, we suppose that the frame is not constructed from the target

population data, but from a fixed dataset we term the pseudo-population dataset p. Typically, the frame is

constructed from previous censuses’ data, administrative records and canvassing. The pseudo-population

dataset p is the collection of all such data, so thatU(f) ⊂ U(p). By introducing the concept of the pseudo-

population, we allow for undercoverage and overcoverage, as well as duplications in the frame (where a

single unit in the target population corresponds to multiple units in the frame).

The sample is the set UR(S) of units of the sample dataset S. The sample is a random set whose

distribution is given by the sampling design. The sampling design is defined as a probability measure τf

on 2U(f). The units UR(S) of the sample dataset S are a draw from τf. That is, UR(S) ∼ τf. For

each subset S ⊂ U(f), τ(S) is the probability that the realized sample U(s) is S . Sometimes the frame f

contains basic demographic information on the survey units, which can be used to construct the sample

selection probabilities τ(S). The sampling designs used in practice are often complexmulti-stage designs,

with different sampling strategies (e.g. cluster sampling, stratified sampling, probability-proportional-to-

size (PPS) sampling) for each of the different stages. In determining the sample design τf, the frame f is

usually taken into consideration, which can complicate the deployment of DP.

To illustrate the relevanceof this discussion,we look at theCurrentPopulationSurvey (CPS) conducted

by the Census Bureau for the Bureau of Labor Statistics (BLS). The target population of the CPS is the

civilian noninstitutionalized population in the US, or, more exactly,

“all people residing in the 50 states [of the US] and the District of Columbia who are not
confined to institutions such as nursing homes and prisons, and who are not on active duty
in theUSArmed Forces. Included are citizens of foreign countries who reside in theUnited
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States but do not live on the premises of an embassy. The civilian noninstitutional popula-
tion ages 16 and older is the base population group used for CPS statistics” (US Bureau of
Labor Statistics, 2018a).

The survey uses two different sampling frames: one for households and one for group quarters. Both

are derived from the master address file (MAF) of the Census Bureau: “The MAF is a national inventory

of addresses that is continually updated by the U.S. Census Bureau to support its decennial programs and

demographic surveys” (US Census Bureau, 2019a). The CPS uses a stratified two-stage sampling design.

In the first stage, the population is divided into geographical clusters and one cluster is sampledwithin each

stratum using PPS sampling. A small group of households is selected in the second stage using systematic

sampling based on a list sorted by demographic composition and geographic proximity. (See Section 2.2

in US Census Bureau (2019a) for a full description of the sampling methodology.)

6.2.4 SurveyWeights

A distinctive feature of survey data is that they typically contain survey weights. Survey weights are pro-

vided by statistical agencies as a convenient tool to account for the sampling design and additional data

preparation steps such as nonresponse adjustments when analyzing the data. Because complex sampling

designs are often used (as we described in the previous section) and because not all sampled units actually

respond to the survey, the resulting dataset cannot be treated as a simple random sample from the target

population. Most estimators need to be adjusted to take these complications into account. For example,

the (unweighted) sample mean can no longer be treated as an unbiased estimator for the mean in the pop-

ulation if the probability of being included in the responding-sample varies between the units. Instead, it

is typical to use weighted estimators, where individual data points are weighted according to their survey

weights.
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Survey weights are typically generated in three stages. In the first stage, design weights are generated that

reflect the sampling design. In the second stage, nonresponse adjustment weights are used to account for

different response propensities in different subgroups of the population. Finally, calibration weights try to

correct for any deficiencies in the sampling frame and also help to reduce the variance of the final estimates.

The design weights wD are defined as the inverse of the probability of selection: wD
i = 1/πi, where

πi is the probability that unit i ∈ U(f) is selected into the sample UR(S). Nonresponse adjustment

weights try to adjust for potential biases that might arise due to unequal response propensities. The idea

is to estimate the probability to respond for each unit. The nonresponse adjustment weights wNR are

calculated as the inverse of the estimated response probabilities pRi ; that is, wNR
i = 1/pRi for i ∈ UR(S).

Note that the response probabilities can be used to compute the final probability to be included in the

sample: p(inc)i = πipRi . Hence, the inverse of p(inc)i can be used as a weight that accounts for both the

complex sampling design and the nonresponse.

The final weighting step is commonly to calibrate the survey data to information that is known about

the population of interest from other sources. For example, the total number of people living in the U.S.

by age and gender might be known from the previous Census. Common calibration techniques are post-

stratification, raking or the GREG estimator. Describing the details of these adjustment methods is be-

yond the scope of this paper (see Valliant et al. (2018) for further details). It suffices to note that all these

methods can be reflected by adjusting the survey weights obtained from the previous two steps.

6.3 DP Flavors for Survey Statistics

As we have seen in Subsection 6.2.3, there are multiple phases in the creation of survey statistics: defining

the target population, compiling the sampling frame, selecting the sample according to the sampling de-
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sign, and collecting data from the responding units. (From herein, we use the term ‘target sample’ to refer

to the sample of units selected by the sampling design from the sampling frame, in order to differentiate

this sample with the responding sample – the set of units which were selected and responded.) The data

output by each phase of this pipeline is fed into the subsequent phase as input. For example, data about

the target population is used to compile the frame and data on the frame is used to select the sample.

Thedata custodian (e.g. theNSO) couldplausibly start the data-releasemechanismT at anypoint along

this data pipeline. That is, the data-releasemechanism could take as input the dataset corresponding to any

of the various phases. Moreover, the custodian could also plausibly condition on previous phases in the

data pipeline (taking their data as invariant). Thus, the data custodian is faced with two decisions: what

should the protection domainD0 be? And what should the data multiverseD be?

In this section, we formalize the various options for these two decisions in terms of their corresponding

DP flavors. In Sections 6.4 and 6.5, we show why these two decisions are important by describing the

consequences of each option on both data utility and privacy.

Definition 6.3.1. LetDpp
0 be the set of all possible pseudo-population datasets;Dfr

0 the set of all possible

frames (from all possible pseudo-populations); Dsamp
0 the set of all possible target sample datasets (from

all possible frames); and Dresp
0 the set of all possible responding sample datasets (from all possible target

samples). We say that a DP flavor (D0,D , dD0 ,DPr) is population-level ifD0 = Dpp
0 . The definitions of

frame-level, (target-)sample-level and responding-sample-levelDP flavors are analogous.

In the above definition, we have been deliberately vague in specifyingDpp
0 . The precise definition of the

setDpp
0 depends on the data custodian’s assessment of what pseudo-populations are considered ‘possible’.

In general, ‘possible’ should be interpreted liberally, so that this setDpp
0 is generously large. (See Section 6.5
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for an explanation of why this matters and Bailie et al. (2025b) for a more extensive discussion.)

We can bemore specific in the definition ofDfr
0 , since the construction of a frame is a real-world process

undertaken by anNSO (although in practice this process is oftenmessy, complex and hard to precisely de-

scribe). This process takes as input a pseudo-population p ∈ Dpp
0 and outputs a frame for that population.

ThenDfr
0 is the set of all outputs from this process, across all possible pseudo-populations p ∈ Dpp

0 .

When defining the set Dsamp
0 of all possible samples, we assume that there is a given sampling design

τf and we only consider those sample datasets s with non-zero probability τf(U(s)) > 0. However, as is

frequently the case, the sampling design τf can depend on the realized frame f. (For example, the stratum

sample sizes are part of a stratified sampling design, and these sizes are partially based on the sizes of the

strata in the frame f.) Thus,

Dsamp
0 = {s : τf(U(s)) > 0, f ∈ Dfr

0 }.

Definition 6.3.2 (Primitive data multiverses). Define the primitive data multiverses:

1. Dfr|pp = {Dp : p ∈ D
pp
0 }, whereDp is the set of all possible frames constructed from the pseudo-

population p ∈ Dpp
0 ;

2. Dsamp|pp = {Dp : p ∈ D
pp
0 }, whereDp is the set of all possible target sample datasets drawn from

the pseudo-population p ∈ Dpp
0 :

Dp = {s : τf(U(s)) > 0, f is a possible frame constructed from the pseudo-population p}.

3. Dsamp|fr = {Df : f ∈ Dfr
0 }, whereDf is the set of all possible target samples drawn from the frame

f ∈ Dfr
0 :

Df = {s : τf(U(s)) > 0}.

4. The data multiverses Dresp|pp,Dresp|fr and Dresp|samp can be defined analogously, as the set of data
universesDd, withDd the set of all possible responding samples drawn from, respectively, the pop-
ulation, frame, or target sample d.
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Definition 6.3.3 (Population-, frame- and sample-invariance). ADP flavor (D0,D , dD0 ,DPr) is:

1. population-invariant ifD ≤ D·|pp, where

• for frame-level flavors: D·|pp = Dfr|pp,

• for sample-level flavors: D·|pp = Dsamp|pp, and

• for responding-sample-level flavors: D·|pp = Dresp|pp;

2. frame-invariant ifD ≤ D·|fr, where

• for sample-level flavors: D·|fr = Dsamp|fr, and

• for responding-sample-level flavors: D·|fr = Dresp|fr;

3. sample-invariant ifD ≤ Dresp|samp (for responding-sample-level flavors).

The intuition behind these definitions is very simple. The idea is to restrict the comparable datasets

(Definition 6.2.9). Population-invariance means that comparable frames (or samples or responding sam-

ples) must be from the same pseudo-population. (That is, a pair of frames are comparable only if they are

constructed from the same pseudo-population.) Analogously, frame-invariance means that comparable

sample datasets must be drawn from the same frame.

If a DP flavor is not population-invariant (resp. frame-invariant or sample-invariant), then we say it

is population-agnostic (resp. frame-agnostic or sample-agnostic). Frame-agnosticism implies that there are

two comparable samples which are drawn from different frames.

Because invariance at one level implies invariance at previous data pipeline phases, we identify ten set-

tings (which together exhaust the potential options for where the DPmechanism starts and which phases

are taken as invariant): one setting for population-level flavors; two for frame-level flavors; three for sample-

level flavors; and four for responding-sample-level flavors (see Table 6.1 for illustration.)
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Dpp
0 population agnostic
Dfr

0 population agnostic population invariant
Dsamp

0 +frame agnostic +frame agnostic +frame invariant
Dresp

0 +sample agnostic +sample agnostic +sample agnostic +sample invariant

Table 6.1: Overview of the possible settings for the different levels.

6.4 Utility Considerations

In this section we consider the possible implications of the different DP flavors on the achievable level

of accuracy of the noisy outcome given a desired level of privacy (expressed by fixing the privacy parame-

ters). Two components are relevant when evaluating the accuracy for DP estimates from survey data: the

privacy amplification effects from sampling, which imply that less noise needs to be infused to achieve a

given privacy level and the increased sensitivity of the weighted estimator (where weights are included to

account for the sampling design, nonresponse, and potentially for other data deficiencies such as over- or

undercoverage of the sampling frame), which typically implies that more noise is required. We discuss the

effects of the different flavors on both components in the following chapters.

6.4.1 Privacy Amplification via Sampling

Previous research has shown that simple sampling designs offer privacy amplification, that is, the privacy

offered when running a DP algorithm on a random subset of the population is higher than if the same

algorithmwith the same privacy parameters is run on the full population. Balle et al. (2018) proof the fol-

lowing theorem for simple random samplingwith replacement (they also obtain similar results for Poisson

sampling and simple random sampling without replacement):

Theorem 6.4.1 (Balle et al. (2018)). Let C be a sampling scheme that uniformly randomly samples n values

out of N possible values without replacement. Given an (ε, δ)-bounded differentially private mechanismM,
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we have thatM◦ C is (ε′, δ′)-bounded differentially private for ε′ = log(1+ n
N [e

ε − 1]) and δ′ = n
Nδ.

In this theorem bounded differential privacy refers to the scenario in which neighboring datasets are

obtained by changing the values of one record in the data while keeping the size of the data fixed. Note

that for small ε and small sampling rates this implies that ε′ ≈ n/Nε, i.e., the amplification is proportional

to the sampling rate. Based on these results Bun et al. (2022) studied to what extent privacy amplification

can also be achieved for the more complex sampling designs commonly used at statistical agencies. Their

findings can be summarized as follows:

• Cluster sampling using simple random sampling without replacement to draw the clusters offers

negligible amplification in practice except for small ε (less than 0.5) and very small cluster sizes (less

than 15 units).

• Withminor adjustments, stratified sampling using proportional allocation can provide privacy am-

plification.

• Data dependent allocation functions such as Neyman allocation for stratified sampling will likely

result in privacy degradation (the effects will depend on the sensitivity of the allocation function).

• With PPS sampling at the individual level, the privacy amplification will linearly depend on the

maximum probability of inclusion (for small ε).

• Systematic sampling will only offer amplification if the ordering of the population is truly random.

In all other cases, systematic sampling will suffer from the same effects as cluster sampling leading

to no amplification (assuming the ordering is known to the attacker).
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In practice this implies that for themulti-stage sampling designs that typically startwith (multiple stages

of) stratified cluster sampling, amplification effects can generally only be expected from those stages at

which individual units are selected (typically the last stage of selection).

6.4.2 Privacy Amplification for Different DP Flavors

Before discussing the implications of the DP flavors introduced in Section 6.3, it is important to consider

at which stages of the data production pipeline amplification effects could occur. Conceptually, three dif-

ferent sampling steps can be defined when moving from the population to the responding sample. The

most obvious step (and the only one that is fully controlled) is the selection of the target sample from the

sampling frame. However, if nonresponse is treated as a stochastic process (as is commonly done in the

survey literature), moving from the target to the responding sample can be interpreted as another sampling

step. The same is true whenmoving from the pseudo-population to the sampling frame if we assume that

each unit in the pseudo-population has a certain probability to be included in the frame. Still, the amplifi-

cation effects of these two steps are difficult to take into account in practice as the inclusion probabilities

are unknown and would need to be estimated. Errors whenmodeling these probabilities would lead to in-

valid statements regarding the amplification effects. Besides, the amplification effects when moving from

the pseudo-population to the sampling frame will typically be negligible given that the probability to be

included in the frame should be well above 90% for high quality frames.

Considering theDP flavors, we can distinguish four scenarios: If the responding sample dataset is given

as input, the DPmechanism can only be applied at the responding sample level. This scenario boils down

to the standard setting considered in most DP papers. There is no (sub)sampling step within the data re-

lease mechanism T and thus there is no amplification effect. Interestingly, this scenario offers the same
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privacy guarantees as the more restrictive assumption that the attacker knows who participated in the sur-

vey. In all other scenarios, privacy is amplified through the (sub)sampling process.

In the second scenario, the DP flavor is at the target sample-level. In this scenario, amplification can

only arise from the subsampling step when moving from the target sample to the responding sample. As

response rates are often less than 20% in practice, this subsamplingmight offer some privacy amplification.

However, as mentioned earlier, quantifying this effect will be difficult in practice as response probabilities

are unknown and will likely differ between the units. In the third scenario, the (augmented) frame f∗ is

taken as input to the data-release mechanism. This scenario will offer privacy amplification as discussed in

Bun et al. (2022) in addition to the theoretical amplification offered from nonresponse. Finally, if the DP

flavor has domain Dpp
0 , a third layer of amplification is possible by moving from the pseudo-population

to the sampling frame. As discussed above, this layer will typically be negligible for sampling frames com-

monly used in practice.

6.4.3 Weighting

Using weighted estimators generally increases the amount of noise that needs to be added to achieve a de-

sired level of privacy protection. This is because the sensitivity of the result, i.e., the maximum possible

change in the result when changing a single record, increases when incorporating the survey weights. To

illustrate, we can consider the simple example of a counting query. A counting query simply counts the

number of units in a database that satisfy a given set of conditions, for example, the total number of un-

employed men between 30 and 40. Counting queries are attractive under DP as they have low sensitivity

and thus require limited amounts of noise to achieve DP (as the noise scales with the sensitivity of the

query). Under unbounded DP (i.e., defining neighboring datasets by adding or removing one record) the
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sensitivity of a counting query is 1.

In the survey literature a counting query is called a total and themost convenient way to estimate a total

for complex sampling designs is to use the Horvitz-Thompson estimator (Horvitz and Thompson, 1952),

which provides approximately unbiased estimates for most sampling designs. The Horvitz-Thompson

estimator for a total is given as t̂x =
∑

i∈UR(S) wixi, where t̂x is the estimated total in the population for the

target variable x andwi is the survey weight for unit i. In our example, xi is a binary indicator which equals

1 if unit i satisfies the conditions of interest (i.e. unit i is unemployed, male, and between 30 and 40 years

old) and is zero otherwise. Using theHorvitz-Thompson estimator, theL1-sensitivity increases tomax(wi)

(where the maximum is taken either over the records in the sample (under target sample invariance), the

frame (under frame invariance) or over the entire population (under population invariance)).

Since the amount of noise that is required typically scales with the sensitivity of the output, this implies

that muchmore noise needs to be added when trying to protect a weighted survey estimate. However, the

considerations so far assume that the weights can be considered fixed. This assumption is never justified

for the final survey weights. This is because the nonresponse adjustments and calibration steps rely on

models that are estimated from the data. Changing one record in the data will change these models and

thus the weights. How to account for this variability in the final weights when computing the sensitivity

of a survey weighted estimate has not been addressed in the DP literature so far.

But even if we only consider the design weights, the assumption of constant weights is only justified, if

changing one record in the database does not change the probability of inclusion for any of the records in

the pseudo-population. Whether this is a realistic assumption will depend on the DP flavor to be consid-

ered but also on the properties of the sampling design.

In general, the design weights can only be treated as fixed under the frame-invariant or target sample
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DP Setting Effects on DesignWeights
Target sample invariance Can be treated as fixed
Frame invariance Can be treated as fixed
Population invariance Sensitivity needs to be considered
Population agnostic Sensitivity needs to be considered

Table 6.2: Overview of the implications on the design weights for different types of invariance. We note that the final weights

that also account for nonresponse can never be treated as fixed.

invariant scenario. In all other scenarios the weights will typically change. How much the weights will

change will depend on the sensitivity of the sampling design, which in turn depends on how data depen-

dent the sampling design is. To illustrate, data dependence will be small for single stage cluster sampling

designs especially if the clusters are selected using simple random sampling (such a design is used for ex-

ample for the GermanMicrocensus). For such a design, the probability of selection does not change over

neighboring frames (as long as the definition of the clusters does not change). On the other hand, PPS

sampling will generally be highly data dependent as the probability of selection directly depends on some

features of the data. This will be less problematic if PPS sampling is used to select the clusters as the proba-

bility of selection will only depend on the size of the clusters and these sizes will only change by one record

over neighboring databases. However, if PPS sampling is used to select individual units, the probabili-

ties of selection can change arbitrarily over neighboring datasets. Thus, for these designs the sensitivity of

the final estimate might increase considerably and it seems difficult to correctly quantify this sensitivity in

practice.

Tables 6.2 and 6.3 summarize the implications of the different DP flavors considered in this paper. To-

gether they highlight the inherent trade-off between the various flavors of DP for survey estimators. For

example, considering the frame as invariant implies that theDPflavor is at the target- or responding-sample
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DP Setting Amplification from
Responding-sample levelDresp

0 –
Target-sample levelDsamp

0 NR
Frame levelDfr

0 NR&S
Population levelDpp

0 FR&S&NR

Table 6.3: Overview of the implications on privacy amplification for different levels of DP. (The abbreviations are

NR=nonresponse,S=sampling,FR=frame).

level and hence no utility improvements through amplification by sampling can be achieved. On the other

hand, frame invariance allows treating the weights as fixed, which will generally reduce the sensitivity of

the final estimates and thus the noise that needs to be added to ensure privacy. For the other flavors, utility

improvements could be achieved through privacy amplification, but this benefit comes at the cost that the

sensitivity of the weights needs to be considered. This increase might outweigh the benefits of amplifica-

tion from sampling, especially since as Bun et al. (2022) have shown, the amplification effects tend to be

small for sampling designs commonly used in practice. Which of the flavors will be most attractive from a

utility perspective will crucially depend on the sampling design in practice as the design will have an effect

on both the amplification and the sensitivity of the weights. It will also depend on the question whether

response probabilities can be determined reliably.

6.4.4 Sensitivity Reduction from the Sampling Design

When the DP flavor is frame-invariant, the sampling design τf can reduce the sensitivity of a query such as

the Horvitz-Thompson estimator. This is because only samples with non-zero probability are considered.

Comparable sample datasets s, s′ must both have non-zero probability of being realized under the same

samplingdesign τf. This restricts thenumber of comparable sample datasets, andhencepotentially reduces

the sensitivity of a query.
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For example, if the sampling design τf includes stratification, then the stratum sample sizes are constant

between comparable sample datasets s, s′. Thus, if s and s′ differ only on a single record, that recordmust

belong to the same stratum in both s and s′. When the difference between the possible values of xi within

strata is smaller than their difference across strata (which typically is the case whenever stratification is

used to reduce the uncertainty in survey estimates), the sensitivity of the Horvitz-Thompson estimatoris

reduced when the DP flavor is frame-invariant.

6.4.5 Utility Implications for theHorvitz-Thompson Estimator

In this section, we use the Horvitz-Thompson estimator t̂x =
∑

i∈UR(S) wixi discussed in Section 6.4.3

to illustrate the utility implications of the different settings. For simplicity, we assume the output of t̂x is

protected using the Laplace mechanism (we do not claim this mechanism is optimal for this estimator).

The LaplaceMechanism for theHorvitz-Thompson Estimator

If the Horvitz-Thompson estimator must be differentially private, the corresponding Laplace mechanism

can be used in place of t̂x.

Definition 6.4.2 (Dwork et al. (2006b)). Let εD-DP(X ,D , dX ,DPr) be a DP specification withDPr =

DMult. Suppose q : D0 → Rk is a non-stochastic function. The Laplace mechanism corresponding to q is

the data-release mechanism

Tq,Lap(d,ω) = q(d) + Δq([d]D)ω,

where

• the seedω ∈ Rk is a vector of k iid Laplace random variables, eachwith PDF f(ωi) = 1
2 exp(−|ωi|),
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• [d]D is the connected component

[d]D = {d′ ∈ D0 | there existsD ∈ D s.t. d, d′ ∈ D and dD0(d, d
′) <∞},

• forD∗ ⊂ D0, Δq(D∗) is the ε-adjusted L1-sensitivity

Δq(D∗) = sup
D∈D
D⊂D∗

sup
d,d′∈D

‖q(d)− q(d′)‖1
εDdD0(d, d

′)
,

(with ‖·‖1 the L1-norm, 0/0 := 0 and sup ∅ := 0).

Theorem 6.4.3. The Laplace mechanism Tq,Lap satisfies εD-DP(X ,D , dX ,DPr).

Sensitivity of theHorvitz-Thompson Estimator

Suppose that dD0 is the Hamming distance; the budget εD = ε is constant in D; and q is the Horvitz-

Thompson estimator t̂x =
∑

i∈UR(S) wixi, with wi the design weights. Consider sample-level DP: the

domainD0 is the set of all possible samples s. For

Df = {s : τf(U(s)) > 0},

define the (unadjusted) L1-sensitivity as

Δq(Df) = sup
s,s′∈Df

∣∣q(s)− q(s′)
∣∣.

In this section, we will prove that the L1-sensitivity Δq(Df) is bounded by |maxi∈f(wixi)−mini∈f(wixi)|.

This is the relevant L1-sensitivity for frame-invariant DP flavors. For frame-agnostic DP flavors, the rele-

vant L1-sensitivity is the global L1-sensitivity Δq(D0), which can only be bounded by the worst-case

|maxwixi −minwixi|+ (n− 1)(maxwi −minwi)(|max xi| ∨ |min xi|),
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where n is the (fixed) size of the target sample and the maximums and minimums are all over i ∈ U(p)

and all possible p because, in general, changing a single record may change the design weights of all other

records.

6.5 Privacy Considerations

6.5.1 Privacy Semantics

Posterior-to-Posterior Comparisons

The aimof the posterior-to-posterior framework is to comparewhat an attacker would learn about a single

unit, if this unit is included in the input dataset relative to a counterfactual world in which the unit is not

included or his or her record is not used.

Adopting notation similar to that of Kifer et al. (2022), letPA be the attacker’s prior on the domainD0,

i.e., the prior implies that the input dataset is treated as a random variableD on the spaceD0. The goal of

the attacker is to infer information about the recordDi of a single unit i ∈ UR(D) in the input dataset

D. For this to be well-defined, we must assume that the units ofD are fixed (that is, U(D) is a fixed set).

A common practice in the literature is to assume that the units ofD are identified by the indices 1, . . . , n,

where n = |U(D)|. Throughout this section we assume dD0 is the Hamming distance. For simplicity, we

also assume thatD0 and T are countable spaces.

Let t ∈ T denote a realized output of the data release mechanism T. The posterior-to-posterior frame-

work as adopted in Kifer et al. (2022) compares the posterior distribution PA(Di ∈ · | T(D) = t)

with the counterfactual world in which the information of the selected unit is replaced by a random draw

from the posterior distribution of the attacker assuming knowledge of everybody else. Let psample[d] ∼

PA(D | D− = d−) denote this random draw, where D− and d− denote the random variable D and
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dataset d with the selected record (Di or di respectively) being removed. As shown in Kifer et al. (2022)

the ratio of these two posteriors is given by

PA(Di = r | T(D) = t)
PA(Di = r | T(psample[D]) = t)

=

∑
d− PA(d

−)PA(r | d−)Pd−∪{r}(T = t)∑
d− PA(d−)PA(r | d−)

∑
r′ PA(r′ | d−)Pd−∪{r′}(T = t)

.

(6.2)

For ε-DP,

e−ε ≤
Pd−∪{r}(T = t)
Pd−∪{r′}(T = t)

≤ eε,

and hence the ratio of posteriors (6.2) is bounded between e−ε and eε, for all possible values r ofDi (see

Theorem 7.1 in Kifer et al. (2022)).

Implications for the Different Settings

The posterior-to-posterior semantics apply to the possible values r of a record di from the input dataset

d ∈ D0, which varies depending on the DP setting. Of particular importance is the domain D0 of the

DP flavor, since this determines what dataset – the (augmented) pseudo-population dataset p∗, the (aug-

mented) frame f∗, the sample dataset s, or the responding-sample dataset r – is protected. Although not

explicitly stated, the classical framework considered in most of the DP literature assumes the responding-

sample-level setting, in which the domainD0 is the set of possible responding-sample datasets, Dresp
0 . In

this case, the data-releasemechanism takes as input the fixed responding sample r. As such, the protections

supplied by the data-release mechanism – as measured by the posterior-to-posterior framework – apply to

a record ri from the responding sample. That is, an ε-DP mechanism with domainDresp
0 ensures that the

posterior-to-posterior ratio for a responding sample record ri is bounded in the interval [e−ε, eε].

If we change the DP flavor to be at the frame-level – so that we may benefit from privacy amplification

by sampling – then the input to the data-release mechanism is the augmented frame f∗. As such, an ε-
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DP mechanism under this setting will protect an augmented frame record f∗i – rather than a responding

sample record ri –within the nominal interval [e−ε, eε]. This distinction is important, because protection

at one level does not imply protection at another level. In fact, wewill see in Subsection 6.5.1 thatwhenever

there is privacy amplificationdue to sampling, a sample record’s posterior-to-posterior ratio is not bounded

within [e−ε, eε] for an ε-DP mechanism at the frame-level.

Beyond looking at the different starting points of the data release mechanism, it is also important to

consider the impacts of different types of invariances. For example, treating the frame as invariant implies

that neighboring datasets must come from the same fixed frame. This enforces restrictions on the possible

values r of Di. As a consequence two data release mechanisms that start at the same level, for example,

Dfr
0 and use the same privacy loss budget ε, will offer different privacy guarantees, if one of them is frame-

invariant while the other is frame-agnostic. This illustrates the ever existing trade-off between utility and

privacy. From a utility perspective, it seems desirable to identify scenarios, in which enforcing invariance

substantially restricts the possible values ofDi as thismight considerably reduce the sensitivity of the query

of interest. On the other hand, shrinkingn the data univeres D ∈ D will implicitly reduce the privacy

guarantees even if the privacy loss parameter is held constant.

No Privacy Amplification if the Attacker Knows that Unit i Is in the Sample

In this section, we show that we cannot hope for privacy amplification by sampling if we assume that the

attacker knows that unit i is included in the sample UR(S). This is a risk scenario that statistical agencies

commonly need to consider in practice. In the statistical disclosure control literature, this is often referred

to as the “nosy neighbor” scenario, since a possible scenario in which this kind of knowledge is realistic is

the situation in which a neighbor witnesses an interviewer entering the house next door and then hopes
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to learn sensitive information about the neighbor by trying to reidentify him or her in the data.

To illustrate, we consider a data-release mechanism that starts at the frame level and thus should offer

privacy amplification from sampling. Specifically, suppose thatT is a data-releasemechanism at the sample-

level and let S(·) be the sampling function, which takes an frame f and outputs the sample according to

the given sample design τ. (That is,P(S(f) = S) = τ(S) for allS ⊂ U(f).) The data-release mechanism

that starts at the frame level is therefore the composition T′ = T ◦ S . Conditioning on the fact that unit

i is included in the sample, the lower bound of the posterior-to-posterior ratio under the assumption that

T is ε-DP is (below we write SR for the sample UR(S)):

PA(F
∗
i = r | T′(F∗) = t, i ∈ SR)

PA(F
∗
i = r | T′(psample[F∗]) = t, i ∈ SR)

=

∑
f∗− PA(f

∗− | i ∈ SR)PA(r | f∗−, i ∈ SR)Pf∗−∪{r}(T′ = t | i ∈ SR)∑
f∗− PA(f∗− | i ∈ SR)PA(r | f∗−, i ∈ SR)

∑
r′ PA(r′ | f∗−, i ∈ SR)Pf∗−∪{r′}(T′ = t | i ∈ SR)

≥
∑

f∗− PA(f
∗− | i ∈ SR)PA(r | f∗−, i ∈ SR)Pf∗−∪{r}(T′ = t | i ∈ SR)∑

f∗− PA(f∗− | i ∈ SR)PA(r | f∗−, i ∈ SR)eεPf∗−∪{r}(T′ = t | i ∈ SR)

= e−ε.

Whenever the mechanism T is optimal (i.e. it achieves the bound Ps(T = t)/Ps′(T = t) = ε for

some s, s′ with dD0(s, s
′) = 1), the above inequality is achieved for some choice r and i. Using a similar

argument, the upper bound of the ratio is eε. Thus, while the data release mechanism T′ satisfies ε′-DP

for ε′ < ε, the posterior-to-posterior protection provided by T′ when the attacker knows i ∈ UR(S) is

not bounded within the interval [e−ε′ , eε′ ] but only in the interval [e−ε, eε]. That is, the protection due to

privacy amplification from sampling is lost: T′ provides the same level of protection asTwhen the attacker

knows the unit i is in the sample.
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The Journalist and Sampling Amplification

In this section, we show that privacy amplification by sampling is not possible when the attacker does not

have a particular target unit inmind, but insteadwishes to learn about an arbitrary record. In the statistical

disclosure control literature, this is often referred to as the “journalist” scenario, since a journalist often

wants to expose the vulnerability of a data-release mechanism by learning any record, rather than focusing

on attacking a particular record (e.g. the record belonging to their neighbor). In this situation, it makes

sense for the journalist to focus on a record that is in the sample, since these records have themost influence

on the data-release mechanism’s output. As in the previous subsection, letT be an ε-DPmechanism, S(·)

be the sampling function and T′ = T ◦ S , so that T′ is ε′-DP with ε′ < ε. As is common convention, let

us identify the units ofS as i = 1, . . . , n, where n =
∣∣UR(S)

∣∣. Then
PA(Si = r | T′(F∗) = t)

PA(Si = r | T′(psample[F∗]) = t)

=

∑
s− PA(s

−)PA(Si = r | s−)PA(T′(F∗) = t | S = s− ∪ {r})∑
s− PA(s−)PA(Si = r | s−)

∑
r′ PA(Si = r′ | s−)PA(T′(F∗) = t | S = s− ∪ {r′})

=

∑
s− PA(s

−)PA(Si = r | s−)Ps−∪{r}(T = t)∑
s− PA(s−)PA(Si = r | s−)

∑
r′ PA(Si = r′ | s−)Ps−∪{r′}(T = t)

≥
∑

s− PA(s
−)PA(Si = r | s−)Ps−∪{r}(T = t)∑

s− PA(s−)PA(Si = r | s−)
∑

r′ PA(Si = r′ | s−)eεPs−∪{r}(T = t)

= e−ε.

As in the previous subsection, if T is optimal then the above inequality is achieved for some choice of

t, r and i. Analogous working shows that this posterior-to-posterior ratio is bounded above by eε, and

moreover, this bound is achieved when T is optimal. Hence, as in the previous subsection, the additional

privacy protection due to amplification from sampling is lost when the attacker targets an arbitrary record
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in the sample. That is, a sample record is not protected by the mechanism T′ at the nominal privacy level

ε′ of T′, but only at the privacy level ε.

Note that this result and the accompanying discussion applies more generally beyond the context of

survey sampling. They holds for any DP mechanism T′ which employs amplification by sampling. Such

mechanisms are frequently used as modules in sanitized (i.e. privacy-protected) machine learning and

neural networks as amplification by sampling is key to sanitized stochastic gradient descent algorithms

(Abadi et al., 2016; Bu et al., 2020).

6.5.2 Amplification by Sampling and Composition

An important considerationwhendiscussing thebenefits ofprivacy amplification fromsampling iswhether

the composition property of DP still hold. Composition refers to the fact that the total privacy loss of two

DP mechanisms with privacy loss ε1 and ε2, respectively is upper bounded by the sum ε1 + ε2 of the

two losses. This is an important property as it helps to track the privacy loss over multiple data releases.

This property is lost, however, in the context of privacy amplification through sampling as the following

example illustrates: Consider two pure ε-DP mechanisms T1 and T2 with privacy loss ε = 1 and ε = 2

respectively. Suppose that they are two outputs from the same sample survey (i.e. they always use the same

sample). For example,T1 is the Laplacemechanism for querying the number ofmales in the sample andT2

is the Laplace mechanism for querying the number of people in the sample with incomes over $100,000.

Suppose for simplicity that the sampling mechanism for the survey was simple random sampling without

replacement (SRSWOR)with sampling fraction f = n/N = 0.1. LetT′
1 andT′

2 be themechanismswhich

apply the sampling step and then run T1 or T2 respectively. These mechanisms have privacy loss 0.16 and

0.49 respectively (by amplification by sampling results given in Theorem 6.4.1). A naïve interpretation
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Figure 6.1: The total privacy loss over two mechanisms T′
1 and T′

2 which share the same sampling step. Here, T′
i = Ti ◦ S

whereS is simple random samplingwithout replacement (with sampling fraction f = n/N = 0.1). BothT1 andT2 satisfy ε-DP
with privacy loss ε given on the x-axis. The total privacy loss of the composition of the two mechanisms T′

1 and T′
2 is given on

the y-axis. The naïve calculation (in red) is given by the standard composition result of ε-DPwhich states that the privacy loss of
(T′

1,T′
2) is the sum of privacy losses ofT′

1 andT′
2. That is, the red line is 2 log(1+ f[exp(pl(T1)) − 1]), where pl(T1) is the

privacy loss ofT1. (We assumepl(T1) = pl(T2).) The true total privacy loss (in blue) is given by first composingT1 andT2 and

then applying privacy amplification (Theorem 6.4.1): pl(T′
1,T′

2) = log(1+ f[exp(2pl(T1))− 1]).
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of the composition theorem implies that their composition (T′
1,T′

2) has privacy loss 0.65. However, the

correct calculus would consider the composition (T1,T2) –which has privacy loss ε = 3 – and then apply

the amplification by sampling result to get a privacy loss for the composition (T′
1,T′

2) of 1.07. Wenote that

for small sampling rates f and small values (� 1) for both ε1 and ε2, the composition properties based on

the amplified privacy guarantees would still hold approximately since these conditions would imply that

the privacy loss ofT′
i is approximately ε′i ≈ n/Nεi, and thus ε′1+ε′2 ≈ n/Nε1+n/Nε2 = n/N(ε1+ε2).

However, for larger f or εi, the gap between the true privacy loss and the naïve calculation can be substan-

tial, as illustrated by Figure 6.1.

The source of this apparent contradiction is the composition theorem’s implicit assumption that the

seeds ω′1 and ω′2 of T′
1 and T′

2 are independent. This assumption does not hold when T′
1 and T′

2 always

select the same sample. More generally, suppose that T′
1 and T′

2 are mechanisms which include sample

procedures with designs τ1 and τ2 respectively. Then the composition theorem’s assumption is violated

whenever the sample designs τ1 and τ2 are dependent. In such cases, the calculation of the total privacy loss

acrossT′
1 andT′

2 cannot rely on applying the composition theorem toT′
1 andT′

2. Instead, this calculation

requires analyzing the privacy amplification of the sample designs τ1 and τ2 jointly, which will be difficult

in general.

Dependency between sample designs is unfortunately a common occurrence at many NSOs. Beyond

the above example where T′
1 and T′

2 use the same sample, there are (at least) two other common scenarios

which lead to violations of the composition theorem’s independence assumption. Firstly, because NSOs

runmany different survey collections concurrently, modern sample designs aim to reduce respondent bur-

den by controlling the overlap between the samples of different surveys. (For example, if a unit was selected
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for one survey, they will have a lower (or zero) probability of being selected in the near future for a dif-

ferent survey.) This introduces dependence between the sample designs of the NSO’s different surveys.

Secondly, sample rotation – which is a common feature in the collection of time series data, such as labor

force statistics – introduces dependency between the sample designs across time for the same survey.

In all three of these scenarios, frame- (or population-)level DP mechanisms will not have independent

seeds and hence the standard composition theorem does not apply to these mechanisms. This is an impor-

tant consideration in determining the total privacy loss of an NSO across their multiple surveys. In situa-

tions traditionally encountered in the DP literature, the composition theorem allows for modular privacy

analyses, but – without a generalized composition theorem which can account for dependency between

seeds – an NSO will be forced to resort to a joint privacy analysis which must simultaneously analyze all

the NSO’s surveys. Therefore, an important (and novel, as far as we are aware) future research is to under-

stand the composition property of DP under varying levels of seed dependency. Such an understanding

will enablemodular privacy analyses of dependentDPmechanisms to be combined into an overall privacy

loss – as the standard composition theorem currently enables for independent DPmechanisms.

We conclude this subsection with the general comment that the composition of multiple mechanisms

becomes more complex when these mechanisms share data-processing steps in common. Sampling is an

example of one such data-processing step, but it is by no means the only example. Population-level DP

mechanisms will also share the same process of frame construction (even if they use different frames, it is

likely that there are dependencies between the construction of the two frames), which must be accounted

for when determining the overall privacy loss.
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6.6 Discussion

This paper develops theory for understanding and implementing differential privacy in the context of sur-

vey statistics. By recognizing the major phases in the survey-data pipeline, we identified ten different set-

tings of DP. These settings correspond to different choices for 1) where the DP data-release mechanism

starts in this pipeline; and for 2) which of the previous phases are taken as invariant. Section 6.3 formalized

these ten settings into ten different conditions on the DP flavor.

Sections 6.4 and 6.5 show that the choice of the setting has significant impacts in terms of both privacy

and utility. Therefore, while DP is invariant to post-processing, pre-processing steps matter. Moreover,

the data custodian must necessarily choose a setting – they cannot implement DP without first deciding

(perhaps implicitly) where the DPmechanism starts and which pre-processing steps are taken as invariant.

Hence, contrary to commonly-held beliefs, DP does make important assumptions on the data and on

the attacker, because the data custodian’s decision impacts both the utility and privacy semantics of the

DP-outputted data.

Based on the discussions in the previous sections, we can offer some recommendations on the settings

a data custodian might want to choose. Firstly, we advice against the population-level setting (i.e. using

the domain D0 = Dpp
0 ). Compared to the frame-level setting (D0 = Dfr

0 ), the only advantage of the

population-level setting would be potential amplification gains because the frame could be treated as a

randomsubset of the pseudo-population. However, quantifying the resultingprivacy amplification effects

seems difficult, if not impossible, in practice. Moreover, for high quality frames the amplification effect

should be small since the fraction of the pseudo-population on the frame would be high. On the other

hand, usingDpp
0 would always require theDPflavor to be frame-agnostic, implying that the designweights
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could no longer be treated as fixed. This would potentially increase the sensitivity of the output of interest

and would make the computation of the sensitivity challenging in most cases.

Secondly, opting for the frame-level setting (D0 = Dfr
0 ) offers amplification from sampling, but re-

quires a frame agnostic DP flavor, implying that the sampling weights still cannot be treated as fixed. Since

previous research has shown that amplification effects tend to be small for many complex sampling de-

signs (Bun et al., 2022) and privacy amplification is only achievable if the nosy neighbor and the journalist

scenario discussed in Sections 6.5.1 and 6.5.1 are unrealistic threat models, it seems that the benefits of

amplifications are outweighted by the disadvantages of this DP setting.

Thirdly, when using one of the sample-level settings, it seems preferable to work under Dsamp|fr, i.e.,

treating the frame as invariant, as this would allow the design weights to be treated as fixed. These benefits

should outweight the fact that treating the frame as invariant will increase the risks by limiting the space

of neighboring datasets. These constraints on the possible values of a record si may be small in practice,

although more research is needed to verify this.4 In principle, the sample-level setting would also offer

amplification fromnonresponse. However, as discussed previously, quantifying these amplification effects

would require knowledge of the true response mechanism.

Finally, we do not see any benefits from starting the data release mechanism only at the responding

sample. If the data custodian still prefers to choose this option, we would recommend using Dresp|fr and

not Dresp|samp. Our concern is that treating the target sample as fixed might enforce strong constraints on

the possible values of a record ri in some circumstances. Whether one can find examples where this is really

the case would be an interesting area for future research.

4In the final version of this paper, we will address this question in further detail.
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7
The Complexities of Differential Privacy for

Survey Data1

7.1 Introduction

Differential privacy (DP) (Dwork et al., 2006b) has become the quasi-gold standard in re-

cent years for data collection and dissemination whenever privacy or confidentiality is a concern. It offers

formal (that is, mathematically quantifiable) privacy guarantees by bounding the influence that any single

record of the database can have on the computed outputs. The fundamental difference to earlier privacy

frameworks such as k-anonymity is that the guarantees are a property of the mechanism generating the

output and not a property of the data. DP specifies how much noise the mechanism needs to introduce

to ensure that the probability of obtaining a specific result does not change substantially, if one record in

the database is changed. In simple examples where we are interested in creating a DP version of an unpro-

1Based on work coauthored with Jörg Drechsler.
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tected statistic such as the sample mean, the required amount of noise depends on two components. The

first component is the privacy-loss parameter ε, which determines howmuch the probability of obtaining

a specific result is allowed to change.2 The smaller the privacy-loss parameter, the more noise needs to

be added and the better the level of protection offered. The second component is the sensitivity of the

unprotected statistic of interest, which is measured as the maximum possible change of the statistic when

changing one record in the database. The higher the sensitivity, the more noise needs to be added.

To illustrate, we can look at one of the classical DP mechanisms that is often used as a building block

in more complex algorithms: the Laplace mechanism, which, for any univariate statistic f, ensures ε-DP

by adding a random draw from a Laplace distribution centered at zero with scale parameter b = Δf/ε.

The parameter Δf is the sensitivity of fmeasured as the maximum absolute distance (the L1 norm) of the

statistic computed over two neighboring datasets, i.e., two datasets that differ only in a single record. With

this mechanism, the dependence on the two parameters is obvious: More noise is added for outputs with

higher sensitivity and smaller values of ε.

This is one of the attractive properties of DP. The concept is very intuitive and requires only three

steps, which in principle seem straightforward to apply: (i) define the maximum privacy loss that is still

considered acceptable and select a value for ε accordingly; (ii) identify the sensitivity of the statistic of

interest (for example, the sensitivity of a proportion under bounded ε-DP is simply 1/n, where n is the

number of records in the database); and (iii) choose aDPmechanism that infuses the right amount of noise

into the reported output based on the parameters from steps (i) and (ii). Of course, in practice all three

2For simplicity we limit our exposition to the classical bounded ε-DP setting, where ‘bounded’means that neigh-
boring datasets are defined as datasets that can be obtained by replacing a single record with another record with-
out changing the size of the database. Similar arguments would apply for other variants, such as (ε, δ)-DP, ρ-zero-
concentrated DP, or f-DP, and for other definitions of neighboring datasets, such as unbounded DP for which a
neighboring database is obtained by adding or removing a single record.
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steps have their challenges. The discussion on how to choose and interpret the privacy loss parameter(s)

shows no signs of abating (Hsu et al., 2014; Dwork et al., 2019; Abowd and Schmutte, 2019; Tschantz

et al., 2020; Nanayakkara et al., 2023; Drechsler, 2023; Bailie et al., 2025b); the sensitivity of the output

is not always easy to compute and can be unbounded without further assumptions (Casacuberta et al.,

2022); and finding a suitable DP mechanism can be challenging. Besides, there are often some hidden

complications toDP in practice beyondwhat this three-step processmakes apparent (Abowd et al., 2022a;

Seeman and Susser, 2023; Cummings et al., 2024). (For example, for the same research question there can

be multiple choices for which statistic is used in step (ii), and it can be difficult to determine which one

leads to themost efficientDPmechanism.) Still, the three components remain the same across applications

and at least the general setup is well defined.

However, when working with survey data, there are additional complexities which typically do not

arise in other settings. Moreover, the implications of usingDP in the context of surveys have received little

attention in the DP literature until recently. This led the U.S. Census Bureau to conclude in 2022 that

“the science does not yet exist” to implement DP in its American Community Survey (USCensus Bureau,

2022c). An expert panel convened by the National Academies of Sciences, Engineering, and Medicine

reached a similar conclusion with respect to the Survey of Income and Program Participation (National

Academies of Sciences, Engineering, andMedicine, 2024).

Given its commitment to formal privacy for all its data products, including its surveys (US Census Bu-

reau, 2018), the U.S. Census Bureau launched a research project in 2020 (which is currently still ongoing)

to better understand the complexities that arise when adopting DP in the survey context. In this paper,

we will summarize some of the key findings of this project so far and also discuss some of the challenges
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that still need to be addressed. Overall, we identify (at least) five aspects that need to be considered when

implementing DP in the survey context:

• Data production is a multistage process. As such, there are various options for how and where to

integrate DP in this pipeline, each of which come with their own advantages and disadvantages.

• Previous studies found that sampling can amplifyDP’s privacy guarantees. However, these amplifi-

cation effects do not necessarily hold for the complex sampling designs used by statistical agencies.

• These complex sampling designs need to be incorporated into any survey statistic and hence must

also be incorporated into any DPmechanism.

• Weighting adjustments are routinely used to account for unit nonresponse and to benchmark to

known population totals. As these adjustments can substantially increase the sensitivity of the

survey statistic, there is a need to develop robust adjustment strategies which are congenial to DP.

• Item nonresponse is often addressed using imputation, but similar to weighting adjustments some

standard imputation techniques can greatly inflate the sensitivity of the resulting statistic. Ongoing

research is currently investigating the feasibility of differentially private imputation techniques.

We will discuss each of these aspects in the remainder of this paper.

7.2 DP and theMultistage Process of Data Production

7.2.1 The Survey Pipeline

Theproduction of survey data is a complexmultistage process (Figure 7.1). The design of a survey typically

begins by conceiving the target population: the set of units that one wants to study. Usually, the target
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Figure 7.1: A survey pipeline consists of multiple steps, of which some of the most important are: determining the target popu-

lation to be studied; constructing the frame; drawing the sample; collecting survey data from the responding units; processing

the data (including coding free-form responses; editing inconsistent or improbable data; imputing missing records or variables;

calculating the survey weights; and injecting privacy-protecting noise); and computing the survey outputs. There are of course

additional steps to a surveypipeline after the surveyoutputs are released (such as data analysis) but, as they are not important to

this paper’s subject, we exclude these steps fromdiscussion. While not shown in this figure, it should benoted that data frompre-

vious stages of a pipeline are often used in later stages. (For example, the frame is usually used in computing the survey weights

during the production of the processed data.)

population is not actually specified as a concrete list of units. Instead, it is defined conceptually: “all adults

inMassachusetts” or “all businesses inHawaii.” Once the target population has been defined, the frame is

sourced. The frame is a register of units from which the sample will eventually be drawn. It must include

sufficient contact information so that the sampled units can be surveyed. The frame should align with

the target population as much as possible. However, perfect alignment is not possible in most cases, even

when the target population and the frame have the same inclusion criteria, because errors will typically be

made in the frame’s construction. These errors will result in overcoverage (including units which are not

in the target population) and undercoverage (not including units which are in the target population).

A sample is randomly drawn from the frame according to the survey’s sampling design: the probability

distribution which specifies for every potential sample the chance that that sample is selected. After sam-

ple selection, the statistical agency will solicit survey data from the sampled units. Most surveys, especially

modern ones, suffer from nonresponse. This means only a subset of the sampled units will respond and
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the agency will not obtain survey data from the other units. Data collected from the responding sample,

alongwith the frame and some auxiliary information (such as data fromadministrative records or frompre-

vious censuses or surveys), are passed through a number of complex data processing steps before the survey

outputs are computed and released. These data processing steps often include editing survey responses to

correct errors in data recording; coding each free-form answer into a categorical variable; imputingmissing

answers to individual survey questions (“item nonresponse”) or to the entire survey questionnaire (“unit

nonresponse”); and calculating multiple sets of survey weights for each record—to account for unequal

probabilities of selection in the sampling design, to mitigate bias due to nonresponse patterns, and to cali-

brate survey data to auxiliary sources of information. Finally, we note that datamaybe deliberately injected

with artificial noise at any point in the survey pipeline, so that releasing the survey outputs does not breach

the privacy of the data subjects.

7.2.2 DP in the Survey Pipeline

DP is a criterion applied to data-release mechanisms: algorithms that take data as input and produce a set

of outputs which will then be published (that is, “released”). Implementing DP involves both designing

a data-release mechanism which is compliant with DP, as well as integrating that mechanism into the rele-

vant data pipeline. Both tasks are crucial for successfully producing outputs with high accuracy and good

privacy protection.

There are two important considerations when integrating aDPmechanism into a data pipeline. Firstly,

at what point in the pipeline should the DP mechanism start? And secondly, which of the earlier stages

of the data pipeline should be considered invariant – i.e., should be treated as fixed – by DP?With survey

pipelines, there are a number of possible options with respect to both considerations. In the option most
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Figure 7.2: Three examples of where to start the data-release mechanism (circled in red) in the survey pipeline and which of

the previous stages to take as invariant (those stages before the pipeline branches). Recall from Figure 7.1 that p denotes the
population, f the frame, s the sample, r the responding sample, d the processed data and t the survey outputs. The apostrophe
′ indicates an alternative realisation of the associated variable. Figure (a) illustrates the standard approach in which there are

no invariants and the data-release mechanism only executes the final step of the survey pipeline–transforming the processed

data into the survey outputs. In Figure (b), the mechanism begins with the frame and includes the sampling, responding and

processing steps. The population is considered invariant. In Figure (c), the mechanism takes as input the responding sample.

Both the population and the frame are taken as invariant, so that DP only compares samples from the same frame. This reduces

the sensitivity of weighted estimators at the expense of reduced privacy (Section 7.4).

commonly seen in the DP literature, the data-release mechanism starts at the end of the pipeline and per-

forms just the last step – computing the survey outputs from the processed data – andnone of the previous

steps are taken as invariant (Figure 7.2a). However, a mechanism could conceivably start at any point of

the survey pipeline and incorporate all the steps that follow. For example, it could take as input the frame,

execute the sampling step, process the data and finally compute the survey outputs (Figure 7.2b). Further-

more, any of the steps before the mechanism starts could conceivably be taken as invariant. In the rest of

this subsection, we will explore these two considerations in turn.

Throughout this paper, we assume that the data-release mechanism always includes the final step of

the survey pipeline, the computation of the survey outputs.3 Under this assumption, a survey pipeline

3Technically, a data-releasemechanism is simply an algorithm that takes data as input and outputs some (possibly
noisy) transformation of that data. So, in principle, a data-release mechanism could be incorporated into a survey
pipeline even if it ends before the final step of the pipeline. (And such a mechanism could still be compliant with
DP.) In this case, the survey pipeline includes additional post-processing steps after the data-release mechanism ends
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can be split into those steps which are executed before the data-release mechanism starts and those steps

which are executed by themechanism. Yet choosing where tomake this split is not a simplematter. In fact,

there are a number of complexities associated with starting the data-release mechanism earlier or later in

the pipeline. We identify five.

Firstly, starting the DP mechanism earlier can complicate the computation of the cumulative privacy

loss acrossmultiple data-releasemechanismsbecauseDP’s composition theorems4 are not applicablewhen

there is dependence between the mechanisms’ noise terms (which can happen, for example, when their

sampling designs are dependent) (Bailie and Drechsler, 2024).

Secondly, as we will describe in Section 7.3, including the sampling step within the data-release mech-

anism can amplify DP’s privacy guarantees without degrading data utility. However, this privacy ampli-

fication can be nullified if the attacker knows that the record they are attacking is in the sample (Bailie

and Drechsler, 2024). More generally, if the attacker has knowledge about information intermediary to

the DPmechanism (that is, information which is conditionally dependent on confidential data, or on the

artificial noise introduced by the mechanism, conditioning on the output of the mechanism), the privacy

guarantees afforded by DP can be weakened. For this reason, DP prohibits the direct release of such infor-

but before the computation of the outputs whichwill be published. Such post-processing steps are usually included
to improve the utility, usability or accessibility of the survey outputs. On the other hand, any data-releasemechanism
can always be extended to one which ends with the final step of the survey pipeline, and any DP guarantees afforded
to the original mechanism automatically carry over to the extended one by the post-processing theorem. (The post-
processing theorem states that any function of a DPmechanism’s output – i.e. any “post-processing” – also satisfies
DP with (at most) the same privacy loss.) Therefore, we do not gain anything by considering DP mechanisms that
end before the survey pipeline’s final step.

4A composition theorem describes how to bound the total privacy loss incurred by multiple DP data releases
which are all based on the same confidential dataset. For example, the composition theorem for pure ε-DP states
that: if there areKmechanismsM1, . . . ,MK, which all satisfy pure ε-DP and all have the same input dataset, then
the total privacy loss – that is, the privacy loss of the mechanism that publishes all the outputs of M1, . . . ,MK
together – is bounded by the sum

∑
k εk over the privacy losses εk of each mechanism Mk. Existing composition

theorems assume that the noise added by each mechanism is “fresh”, i.e., independent of everything else.
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mation. Therefore, because the choice of the sampling design is often dependent on data in the frame, the

sampling design cannot be directly made public but instead can only be released by including it in the set

of DP-protected survey outputs.

However, defining a data-release mechanism – let alone one that satisfies DP – which releases the sam-

pling design is challenging due to the third complexity we identify: Incorporating existing steps of a survey

pipeline into a data-release mechanism can be difficult. A data-release mechanism is an algorithm which

must be fully specified in order to be analysed by DP; hence any stage of the survey pipeline must first

be fully “algorithmized” (that is, the process by which each of the stage’s possible inputs is transformed

into one of its outputs must be completely and programmatically specified) before it can be included in

a mechanism.5 A survey pipeline often includes a number of complex, ill-defined and human-intensive

tasks, such as building the frame, choosing a sampling design, coding and editing. Because these tasks all

usually require a degree of human judgment, they would be difficult to algorithmize. Moreover, including

these procedures – or other procedures often found in a survey pipeline – in a data-release mechanism can

add difficulties to making the mechanism compliant with DP. (In later sections, we will discuss some such

difficulties as they relate to the weighting and imputation procedures.)

Fourthly, even if a data-release mechanism begins later in the survey pipeline so that some steps of the

pipeline do not have to be incorporated in the mechanism, implementing DP still requires understand-

ing those steps’ effect on the mechanism’s input data. For example, some imputation techniques replace

5The post-processing theoremprovides an exception to this general rule. If the preliminary steps of a data-release
mechanism, taken on their own, satisfy DP, then the later steps of the mechanism do not need to be algorithmized,
because the post-processing theorem ensures that the mechanism as a whole always satisfies DP regardless of what
the later steps do. All that must be checked is that the later steps only use the DP outputs from the preliminary
steps, and not some other data. However, this exception does not apply to the survey pipeline steps under discussion
(choosing a sampling design, coding and editing) because these steps are typically applied before – not after – privacy
protection.
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missing records with copies of non-missing donor records. This means an individual survey respondent

can contribute tomultiple records in the post-imputation dataset. This complicates the appropriate defini-

tion of neighboring datasets, since there is no longer an exact correspondence between the dataset’s records

and the real-world entities (the individual respondents) that should be protected: In the post-imputation

dataset, changing a single record does not correspond to changing the data of one entity. Hence, naïvely

applying DP to the post-imputation dataset will not provide a donor record with the expected level of

protection; that is, the privacy guarantees for a donor record will be weaker than those for a post-imputed

record. In general, the later the DPmechanism begins, the more difficult it is to determine an appropriate

notion of neighbors since steps earlier in the pipelinemay introduce dependencies between dataset records,

thereby complicating the relationship between records and data subjects.

Fifthly, and most fundamentally, the starting point of the data-release mechanism determines what

form of the data is protected by that mechanism. For example, if a DP mechanism begins after data pro-

cessing, then it is the processed data – and not, for example, the raw responses from the data providers –

which are protected by that mechanism. That is to say, DP guarantees implicitly assume that the attacker

is interested in inferring the data that is input into a DP mechanism. Measures of protection are in terms

of the attacker’s ability to learn this input data – and not the data at other points in the pipeline. If the

DPmechanism takes the processed data as input, then the DP guarantees apply to the processed data and

do not necessarily carry over to the responding sample data. In order to have guarantees for the respond-

ing sample, the statistical agency must show that the pipeline from the responding sample to the survey

outputs (considered as a data-release mechanism) also satisfies DP.

These five complexities demonstrate that there can be conflicting demands in deciding where a DP
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mechanism should start within the survey pipeline. For example, suppose a statistical agency wants to

protect theunprocessed survey responses. Then either the coding and editing stepswill need tobe included

in the agency’s mechanism (which may be difficult because these steps could be hard to algorithmize) or

these stepswill need to be removed from the survey pipeline (which could decrease the quality of the survey

outputs).

We now return to the question of which steps of the survey pipeline should DP take as invariant. DP

assesses the privacy of a data-releasemechanism by comparing the survey outputs’ distribution under pairs

of counterfactual input datasets. These input datasets are generated by counterfactual runs of the initial

steps of the pipeline, up until the data-releasemechanismbegins. By taking some of these steps as invariant,

DP’s counterfactual comparisons are reduced to only those pairs of input datasets which share the same

realization of the invariant steps. For example, suppose the steps in the survey pipeline which generate the

population and the frame are taken as invariant and the data-releasemechanism starts with the responding

sample (Figure 7.2c). Then DP only compares those responding samples (i.e. those counterfactual input

datasets) which could have come from the same frame. Adding invariants will weaken the privacy guaran-

tees provided by DP (Kifer et al., 2022; Abowd et al., 2022a; Bailie et al., 2025b). In general, the later the

stage of the pipeline that is kept invariant, the greater the reduction in privacy. However, invariants may

be justifiable when the output of the invariant steps can be considered as public knowledge (such as if the

frame was sourced commercially rather than constructed from confidential information). Moreover, con-

straining some steps to be invariant has the advantage of reducing the sensitivity of weighted estimators

and thereby decreasing the noise which must be added for privacy protection (Section 7.4).
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7.3 DPwith Complex Sampling Designs

Statistical agencies have been aware for decades that sampling can be a simple and effective strategy to

reduce disclosure risks simply because an attacker can no longer be sure whether a specific target record

is included in the sample or not. This is the main motivation why most statistical agencies only release

samples from their censuses as public use micro datasets (they typically also apply additional measures to

further increase the level of protection). This idea has been formalized in several papers in the context of

DP (Kasiviswanathan et al., 2011;Wang et al., 2016; Bun et al., 2015; Balle et al., 2018;Wang et al., 2019).

The authors show that the level of privacy is amplified through sampling, i.e., the actual privacy guarantees

are higher then those implied by the chosen privacy loss parameters when protecting the sample output.

Specifically, for small sampling rates r and small privacy loss parameters ε, applying certain simple sampling

designs (simple random sampling with and without replacement, and Poisson sampling) before running

an ε-DP mechanism reduces the privacy loss to approximately rε.

However, most surveys conducted by statistical agencies use complex multistage sampling designs, po-

tentially with different sampling strategies at the different stages. These designs are primarily used to in-

crease the accuracy of the survey outputs or to reduce the survey’s operational costs. For example, the

Current Population Survey (CPS), one of the flagship surveys of the U.S. Census Bureau, uses a two-stage

sampling design in which stratified cluster sampling with probability proportional to size (PPS) is used

to select clusters at the first stage and systematic sampling is used to sample households within clusters at

the second stage (US Bureau of Labor Statistics, 2018b). There is no reason to believe that amplification

effects for these complex designs are comparable to those obtainable for the simple designs discussed above.

Bun et al. (2022) study the amplification effects for complex designs and find that amplification is small

277



for most of the sampling designs used in practice. Their findings can be summarized as follows:

• Cluster sampling using simple random sampling without replacement to draw the clusters offers

negligible amplification in practice except for small ε and very small cluster sizes.

• Withminor adjustments, stratified sampling using proportional allocation can provide privacy am-

plification. For small ε, the amplification is still linear in the sampling rate up to a constant factor.

• Data dependent allocation functions such as Neyman allocation for stratified sampling will likely

result in privacy degradation. (The effectswill depend on the sensitivity of the allocation function.)

• With PPS sampling at the individual level, the privacy amplification will linearly depend on the

maximum probability of inclusion (for small ε).

• Systematic sampling will only offer amplification if the ordering of the population is truly random.

In all other cases, systematic sampling will suffer from the same effects as cluster sampling, leading

to no amplification (assuming the ordering is known to the attacker).

In practice this implies that for many multistage sampling designs, which typically start with (multiple

stages of) stratified cluster sampling, amplification effects can generally only be expected from those stages

at which individual units or households are selected (typically the last stage of selection).

7.4 DP for SurveyWeighted Estimates

As discussed in the introduction, the amount of noise that needs to be added to achieve a specific privacy

loss ε directly depends on the sensitivity of the statistic of interest. Intuitively, this makes sense. If the

statistic changes substantially when one record is changed in the data it will be easier to infer that record’s
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value from observing the statistic and thus more noise will need to be added to sufficiently protect that

record. From a utility perspective, this implies that more reliable (less noisy) DP outputs can be expected

from statistics with low sensitivity. Thus, a common strategy with DP is to identify estimation strategies

with low sensitivity and replace very sensitive estimates with less sensitive alternatives, for example by using

robust statistics (Dwork and Lei, 2009; Avella-Medina, 2021).

When analyzing survey data, it is generally important to take the sampling design into account since

the probabilities of selection typically vary between the units included in the sample. Unweighted esti-

mates, especially those for descriptive statistics such as means and totals, will be biased whenever there are

varying selection probabilities. To obtain unbiased estimates, each observation needs to be weighted by

the inverse of its probability of selection. Hence, statistical agencies typically provide survey weights to

enable researchers to take the survey design into account. In practice, these survey weights will also ac-

count for nonresponse and other data deficiencies such as undercoverage. (We will address this extra layer

of complexity in the next section.)

Using survey weighted estimates raises the question: how (if at all) does the sensitivity of a statistic

change when the survey design is taken into account? To illustrate the possible impacts, let us assume the

analyst is interested in estimating the mean of some variable Y in the population using the sampled values

yi, i = 1, . . . , n, where n denotes the sample size. If the probabilities of selection were equal for all units,

the sample mean would be an unbiased estimate for the population mean and its sensitivity would be

R/n, whereR = max(yi)−min(yi) is the range of all possible values for yi.6 When dealing with unequal

probabilities of selection, a popular estimator for thepopulationmean is theHorvitz-Thompson estimator

6Throughout this section, we consider the bounded ε-DP setting. Similar arguments (with slightly different
values for the sensitivity of a statistic) would apply for other settings.
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(Horvitz and Thompson (1952)): μ̂HT
Y =

∑
wiyi/N, where wi is the weight of unit i, for i = 1, . . . , n

andN is the size of the population. Note that we assume for simplicity thatN is known and does not need

to be protected and wi is the design weight, i.e., it only accounts for the sampling design.

Ifwe can treat theweights as fixed, the sensitivity of μ̂HT
Y ismax(wi)R/N. Whether themaximum is over

all units in the frame, over all units in the population, or over all possible counterfactual units, depends

on which stages of the survey pipeline are treated as invariant as discussed in Subsection 7.2.2. Note that

for equal-probability designs all wi = N/n and thus the sensitivity of the Horvitz-Thompson estimator

is the same as for the unweighted estimator. If max(wi) > N/n, the Horvitz-Thompson estimator will

have larger sensitivity than the unweighted estimator.

However, these discussions assume that the weights can be treated as fixed, that is, they do not change

if a record changes in the database. For most sampling designs used in practice, such an assumption is

unrealistic. For example, with sampling proportional to size (PPS), the ith record’s probability of inclusion

is given by πi = (n ·xi)/N · x̄, where xi is the value for unit i of themeasure-of-size variableX that is used to

improve the efficiency of the sampling design, and x̄ =
∑

N xi/N is the population mean ofX. Changing

the value of X for a single record will change the probabilities of inclusion and thus the survey weights for

all other records in the sampling frame. Therefore, the sensitivity will be larger compared to the setting

with fixed weights as we no longer only need to consider the maximum possible change in a single record’s

value for Y. We also need to consider the impact of the weight change for all the other records even if their

values for Y don’t change.

A recently-proposed strategy to mitigate this potentially-substantial increase in sensitivity is to regular-

ize the weights, as explored by Seeman et al. (2024). (An extreme version of this strategy would set all

weights to be equal; this could be justifiable if the increase in the privacy noise due to the weights dwarfs
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the bias introduced by ignoring the sampling design.) Another possible strategy is to treat the frame as

invariant as discussed in Figure 7.2c. Frame invariance assumes any two neighboring datasets must always

originate from the same frame and so can only differ at the sample level (or later). Thus, the probabilities

of inclusion will be constant between neighboring datasets. However, treating the frame as invariant has

two additional implications that need to be considered. First, fixing the frame implies that privacy amplifi-

cation from sampling is no longer possible (we would need to have neighboring datasets at the frame level

in order to achieve amplification). However, given the results of Bun et al. (2022), this amplification is

likely small in practice and thus the positive effects of reducing the sensitivity will tend to outweigh the

negative effects of losing the amplification effect. On the other hand, fixing the frame will restrict the

possible conterfactual input datasets to those which are consistent with the realized frame. Because this

restriction will fix the survey weights, it might introduce strong constraints on the possible neighboring

datasets, depending on the sampling design. As a consequence, the actual privacy guarantees for a frame

invariant setting could be significantly weaker than the guarantees under a non-frame-invariant setting

even for the same privacy loss parameter. How problematic this reduction in privacy is in real settings is

currently an open question for research.

7.5 DP andWeighting Adjustments

In practice, two adjustment steps are commonly applied to the design weights to correct for unit nonre-

sponse and other data deficiencies such as over- or undercoverage in the sampling frame: nonresponse

adjustments and calibration. Nonresponse is typically taken into account by modeling each survey unit’s

probability to respond and thenmultiplying the design weights with the inverse of the estimated response

propensities. Calibration techniques rely on benchmarks known from other sources such as census data
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or large scale surveys such as the American Community Survey (US Census Bureau, 2022b). These tech-

niques can be used to adjust the surveyweights in such away that the surveyweighted estimates will match

the known benchmarks exactly. How these adjustment steps interfere with differential privacy has not

been studied so far. (We are currently at an early stage of trying to address this problem.) However, both

steps are data dependent, that is, they use information from the survey units for the adjustments. This

implies that these steps cannot be ignored from a privacy perspective as the adjusted weights leak some

personal information. Looking at the impacts on the sensitivity of the final statistic of interest (which uses

the adjusted weights), similar problems as those discussed in the previous section will arise: changing one

record in the database can potentially change the weight-adjustment factors for all other units in the sur-

vey. Thus, it seems imperative not to only account for these adjustment steps at the analysis stage. Better

results in terms of the privacy-accuracy trade-off might be achieved if the weight-adjustment steps would

be carried out in a differentially private way. More research is needed to better understand this trade-off.

For example, it seems beneficial to identify robust adjustment strategies as less noise would be required to

satisfy DP for these strategies.

In the particular case of post-stratification (which is a simple type of calibration), one such robust ad-

justment strategy has been proposed by Clifton et al. (2023). Another strategy would be to regularize the

nonresponse and calibration weight adjustments. (This would be similar to the survey weight regulariza-

tion strategy of Seeman et al. (2024) discussed in the previous section.)

7.6 DP and Imputation

All survey data are plagued by item nonresponse as survey respondents are often unwilling or unable to

respond to all survey questions especially if they request sensitive information. A common strategy to
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deal with this problem is to impute the missing values before analyzing the data. Imputation is especially

helpful if the response process is selective, that is if it is not missing completely at random as defined by

Rubin (1976). In this case, using only the fully observed cases for the analysis would give biased results.

However, imputations are always data dependent as they typically build a model based on the observed

data and use this model to impute the missing values. As a consequence, the implications of imputation

on the DP guarantees need to be considered regardless of whether or not the imputation procedure is

included inside the data-release mechanism. Some preliminary results for this problem are discussed in

Das et al. (2022).

Similar to the problem of weighting adjustments, there are two possible strategies to account for im-

putation under DP. The first strategy only considers the effects when analyzing the imputed data. The

second strategy modifies the imputation routines to ensure that the imputations already satisfy DP. As

Das et al. (2022) have shown, the first strategy implies that in the worst case the sensitivity increases lin-

early with the number of imputed observations. This substantial increase of the sensitivity arises because

changing one record in the database can potentially impact all of the imputed values. Whether the worst

case applies depends on the analysis of interest and on the selected imputation procedure. Still, for statis-

tical agencies offering pre-imputed datasets for accredited researchers, this strategy is not an option since

they cannot anticipate which analyses might be performed on the imputed data.

The second strategy can break the dependence on the number of imputed records at least for certain

imputation strategies. The key requirement for breaking the dependence is that the imputation modelm

can bewritten asD(i)
imp ∼ m(D(i)

obs, θ̂), whereD
(i)
imp andD

(i)
obs contain the imputed and observed variables for

record i and θ̂denotes themodel parameters estimated on the complete data. Themodel implies that, given
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θ̂, the imputed values of record i only depend on the observed values of that record and not on any other

record. If these requirements aremet and the parameters θof the imputationmodel are estimatedusing any

suitable differentially private mechanism with privacy loss parameter ε1, then, given any ε2 differentially

private mechanism used for analyzing the data, the overall pivacy loss is given by ε1 + ε2.

We note that the conditional independence assumption of the imputationmodel holds formany impu-

tation methods, for example, parametric imputation models based on linear regression. However, it does

not hold for hot-deck imputation, an imputation method commonly applied at statistical agencies.

7.7 Discussion

DP is theoretically intuitive and elegant. It provides quantifiable and composable guarantees of privacy

protection (although these guarantees havebeen subject to someconfusion andmisinterpretation (Tschantz

et al., 2020)). Byputtingdata privacy on amathematical basis, it has supplied a calculus for reasoning about

the protection offered by sophisticated data-release mechanisms.

Yet implementing DP mechanisms in practice often entails unforeseen complexities. In this paper we

have focused on some of the complexities which arise in the context of survey data. Many of the same

complexities can also emerge in settings with data preprocessing steps or with multistage data collection

(such as national censuses). The goals of this paper are to draw attention to these complexities, review

the current progress on addressing them, and spur renewed research activity to resolve those that remain

outstanding.

Having identified a multiplicity of challenges in obtaining DP – some of which may be unduly con-

straining – we suggest that future research investigates pragmatic modifications to “completely-by-the-

books” implementations of DP. The goals of such modifications should be: to provide a solution which
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is feasible to implement; to retain the essence of DP even while not strictly satisfying DP; and to not un-

duly sacrifice the accuracy of the released data, nor the privacy of the data subjects, nor the resources of

the statistical agency (in implementing the solution). Of course, any such modifications should be princi-

pled, in the sense that the associated risks to privacy are properly quantified and are outweighed by gains

in data utility or implementability. Assessing the privacy risks of these modifications will likely involve a

combination of theoretical and empirical analyses, and require measures of data privacy which lie outside

the framework of DP.

An example of one possible modification is the non-DP publication of a data-dependent sampling de-

sign. A description of a survey’s sampling design is crucial information for data users. Yet, as outlined in

Subsection 7.2.2, if the sampling design was chosen with reference to the frame (as is often the case), then

DP requires noise to be added to it before it can be published. Moreover, designing a DP mechanism to

publish a sampling design will likely be difficult. On the other hand, it defies intuition that a simple de-

scription of a survey’s sampling design should be disclosive of private information. This suggests it may be

reasonable to modify the DP data-release mechanism, allowing the sampling design to be released exactly

(i.e. without noise) even while the other outputs are protected in line with the exact requirements of DP.

But to justify this pragmatic violation of DP, the statistical agency should first address the questions: Can

the risks associatedwith publishing a sampling design be quantified (without resorting toDP)?Andwhen

is it principled (in the sense given in the previous paragraph) to publish a sampling design as is, without

privacy protection?
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8
The Five Safes as a Privacy Context1

8.1 Introduction

Asasupplierofofficialdata, anational statistical office (NSO) is an integral part of awell-functioning

democratic state. Its data are essential for informing government policy, business strategy and academic re-

search, thereby advancing society and driving economic growth (Lateral Economics, 2019). Yet anNSO’s

ongoing value depends upon maintaining its social license to collect and share data. It is therefore neces-

sary that NSOs balance their social and economic utility with the privacy of their data providers. With the

recent increase in resources available to malicious actors and the growth of competing data vendors, this

trade-off is increasingly difficult to manage (Bailie, 2020).

The Five Safes is one tool that assistsNSOs in balancing privacy andutility. It is a conceptual framework

for designing and assessing modes of statistical data sharing under privacy and confidentiality constraints.

1Based on work coauthored with Ruobin Gong.
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Originally developed in 2003 to enable researchers’ access toOffice ofNational Statistics (ONS)microdata

(Desai et al., 2016), its use has since expanded to all forms of statistical dissemination (Australian Bureau

of Statistics, 2021a). It has been employed by NSOs in the UK, Australia, and New Zealand to guide de-

sign decisions and risk assessments for statistical disclosure control (SDC) (Stokes, 2017; UKData Service,

2023; Australian Bureau of Statistics, 2021a; Statistics New Zealand, 2022). In the USA, the Five Safes

have been used by the Coleridge Initiative in the context of data sharing within and across states, govern-

ment agencies and researchers (Foster et al., 2021). Further, theAdvisoryCommittee onData for Evidence

recently recommended that the use of the Five Safes in the US federal bureaucracy be expanded (Advisory

Committee on Data for Evidence Building, 2022).

We make two main points in this work. Firstly, the Five Safes is a reparametrization of contextual in-

tegrity (CI) in the situation where the information flow is a statistical dissemination. Section 8.3 describes

the translation between the Five Safe parameters (people, projects, settings, data and outputs) and the CI

parameters (sender, recipient, subject, information type and transmission principles). Therefore, the Five

Safes provides specialized guidance as to howNSOs can satisfy contextual information norms. Moreover,

by placing Five Safes within the CI theory, NSOs benefit from the extensive CI literature in justifying and

understanding the Five Safes.

Secondly, as a framework for controlling the disclosure risk of statistical dissemination, the Five Safes

provides a natural context for differential privacy (DP).Asdescribed in Section8.4,DP is a broad collection

of technical standards which all measure (in various ways) how a statistical dissemination can depend on

the response of a data provider – or, in other words, how a data provider can influence the data being

shared. Importantly, we argue thatDPmeasures some – but, crucially, not all – of the dimensions relevant
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for assessing the contextual integrity of statistical data sharing. We use the Five Safes, as a holistic risk

assessment tool, to situate DPwithin the dimensions it partially measures (safe data and safe outputs) and

to explicate the dimensions to which DP is agnostic.

Our contextualization of DP within the Five Safes is important for two reasons. Any implementation

of DP requires choosing its various components (see Section 8.4). This choice depends on the broader

context of the implementation, which the Five Safes explicate. Moreover, by placing DP within the Five

Safes, NSOs can see howDP could be used to partially control safe data and safe outputs, and howDP can

be traded-off against the other safes.

To recap, this work seeks to, firstly, situate the Five Safes framework within the broader concept of CI

and, secondly, to contextualise DP via the Five Safes. This explains the dual meaning of this paper’s title:

the Five Safes is a context for narrow, technical notions of privacy and security, like DP; yet it is also a

specific context within the theory of CI.

8.2 The Five Safes and the Information Flows They Govern

In this Section, we give a brief review of the Five Safes framework, concentrating on the two information

flows with which it is concerned. The major thesis of the Five Safes is that five dimensions of data ac-

cess – people, projects, settings, data, and outputs – collectively determine the disclosure risk in statistical

dissemination. These dimensions are related yet independent to one another. The safety of each of these

dimensions can be measured on a continuous scale. In the design of a statistical dissemination paradigm,

a data custodian strives to ensure data confidentiality by promoting safety of these five dimensions. How-

ever, doing so usually entailsmorework on the custodian’s part, including vetting, supervision, and higher

degrees of infrastructure security and compliancemonitoring. Viewing these five dimensions under a joint
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framework allows a data custodian with a fixed amount of resources to focus on the safety of a subset of

these dimensions, while maintaining control of the overall disclosure risk.

Toexplicate themeaningof theFive Safes,webeginwith an examinationof the two types of information

flow that it is concerned with:

data→ people (researcher), (8.1)

outputs→ people (general public). (8.2)

The two types of informationflowareneither independentnormutually exclusive toone another. Flow (8.1)

is the process through which the researcher learns from the data in the possession of the data custodian.

Typically, the researcher takes the initiative to access the data, conducts analyses based on the data, and

publishes a set of scientifically significant findings. These published results, alongside any open infor-

mation required to support the verification of these results, make up the outputs that reach the general

public as captured in Flow (8.2). Alternatively, Flow (8.2) may occur when the data custodian directly

share information derived from their database with the general public, without involving researchers as an

intermediary.

The term ‘researcher’ here refers to a person or an entity whose identity has been subject to some degree

of vetting by the data custodian. This distinguishes a researcher from a member of the general public in

our current discussion, even though in practice the two identities are not well separated. As such, a ‘safe’

researcher is someone who has demonstrated a good scientific standing as well as a commitment to data

confidentiality and research ethics.

The ‘safe projects’ dimension concerns whether the intended use of the data is appropriate, ethical, and

compliant with relevant legislation or regulations. The use of certain sensitive data may be restricted by
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law to support independent scientific research only (Foster et al., 2021, Section 12.3). The data custo-

dian would often also ascertain that their data is used toward the advancement of science, with clear and

positive social benefits and in a manner consistent with modern scientific norms, including standards of

reproducibility and knowledge sharing. In addition, the ‘safe settings’ refers to the security of the environ-

ment in which data access and sharing takes place, be they physical or virtual.

We illustrate how the two information flows interact under the Five Safes framework with three exam-

ples of data dissemination paradigms.

Example 8.2.1 (Public use data files/Open data). Statistical agencies publish public use data files for access

by the general public and researchers alike. The agencies do not vet people who seek access because, by

design, any person or entity without abusive intentions should be able to access the resource. A high level

of scrutiny is placed on the data, which doubles as the output, to ensure that they are safe. On the other

hand, since the data custodian cannot supervise the use of the data once it is made open access, no scrutiny

is possible regarding the safety of the projects nor the settings in which the projects will be conducted.

Public use data files are frequently in the form of tabular data, which are highly aggregated from an

underlyingmicrodata to ensure adequate confidentiality. Public usemicrodata exist too, but they are often

heavily subsampled. The U.S. Census Bureau curates the Public Use Microdata Sample (PUMS) based

on a small sample (1% and 5%) of responses from the American Community Survey (US Census Bureau,

2023k). The PUMS files are available on the Census Bureau’s website and may be accessed via the file

transfer protocol (FTP), a microdata analysis tool, or through an API provided by the Bureau.

Example 8.2.2 (Data Enclaves). Data enclaves are secure access environments through which authorized

researchers can query the custodian’s database. Data enclaves provide a highly secure setting for data ac-
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cess. Both the people and the projects seeking access are heavily vetted: only researchers who demonstrate

legitimate scientific purposes of their inquiry and compliance with research ethics are allowed access. The

outputs that the researcher is allowed to obtain and bring to outside of the data enclave is subject to various

degrees of scrutiny. As a result, the data accessible through data enclaves can be detailed and comprehen-

sive.

Data enclaves may be physical or virtual. A physical enclave is synonymous with a research data center

(RDC), such as the Federal Statistical Research Data Center (FSRDC) of the U.S. Census Bureau. A vir-

tual data enclave allows authorized researchers to access restricted-use data by logging into a secure, remote

server. The DataLab of the Australian Bureau of Statistics (ABS) is an example of a virtual data enclave.2

The reader is referred to (Australian Bureau of Statistics, 2021a) for further illustrations of dissemination

paradigms discussed in Examples 8.2.1 and 8.2.2 and an analysis of important safety considerations that

pertain to them.

Example 8.2.3 (Synthetic datawith validation servers). The data custodian releases a synthetic dataset that

resembles the underlying confidential dataset. Researchers who hold permission to access the synthetic

dataset may use it to compose their desired statistical analysis including its code implementation. Then,

theymay validate the resultswith the data custodianwhowill run the analysis on the restricted-use dataset,

and release the results to the researcher if they are deemed safe.

Aprominent case of Example 8.2.3 is the Survey of Income andProgramParticipation (SIPP) Synthetic

Beta (SSB) (US Census Bureau, 2022d). The SSB is synthesized by the U.S. Census Bureau through inte-

grating nine annual SIPP panels between 1984 and 2008, together with the W-2 records from the Social

2Due to a lack of full oversight on the data access setting compared to physical data enclaves, statistical agencies
debate the safety of virtual data enclaves (see e.g. Russell, 2022).
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Security Administration (SSA) and Internal Revenue Service (IRS). Researchers whose proposed analysis

is deemed appropriate and feasible by theCensus Bureau are permitted to access the SSB. Prior toOctober

2022, access could be obtained via the Synthetic Data Server (SDS) hosted by Cornell University.3 Once

the researcher composes a functional and correct statistical analysis program, they submit the code to the

Bureau, who in turn performs the validation on the researcher’s behalf on the Gold Standard File (GSF)

which is internal to the Bureau and confidential. The output is subject to a stringent level of disclosure

review similar to those applicable to the FSRDCs.

Example 8.2.3 is an interesting mode of statistical dissemination, through which we see a juxtaposition

of safety levels pertaining to the two information flows. On the level of Flow (8.2) where the relevant peo-

ple are the general public, the outputs are strictly scrutinized according to a high safety standard, rendering

this setting similar to the open data mode discussed in Example 8.2.1. On the level of Flow (8.1), data con-

sists of two distinct components, the SSB and theGSF,where the former commands a level of safety higher

than the latter due to its synthetic nature. The people, here referring to the researchers, are placed under

a moderate level of scrutiny. The setting, the Cornell SDS, is effectively a virtual enclave. These elements

render this setting analogous to the data enclave mode discussed in Example 8.2.2.

8.3 The Five Safes as a Privacy Context for Statistical Dissemi-
nation

Contextual integrity (CI) defines an information flow as private if it conforms with contextual informa-

tional norms (Nissenbaum, 2010). There are five parameters that define contextual informational norms:

the sender, the recipient, the subject, the information type, and the transmission principles (Nissenbaum,

3Unfortunately, the Cornell server was shut down on September 30, 2022.
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Privacy norm parameters Their meanings in statistical dissemination

sender statistical agencies/NSOs/data custodians
recipient people: researchers (8.1) and general public (8.2)
subject is a component of data (8.1)

information type is a component of data (8.1) and outputs (8.2)
transmission principles encompass projects, settings, and more

Table 8.1: The five contextual integrity parameters and their meanings in statistical dissemination, with a reference mapping to

the Five Safes (in bold).

2019). Of the five parameters, the first two are straightforwardly understood: the sender is the person or

entity who is sending the information, and the recipient is who is receiving the information. The latter

three parameters require that we take a tailored approach to their explication by first situating this discus-

sion in the context of statistical dissemination.

Claim 1. In the context of statistical dissemination, the Five Safes is an instantiation of a set of informa-

tional norms that govern privacy protection.

Table 8.1 outlines themeanings of the privacy contextual informational norm parameters as they apply

to statistical dissemination. These meanings are explicated with reference to the five elements of the Five

Safes framework. As the Table illustrates, the Five Safes is a reparametrization of CI – faithful albeit im-

perfect – when the information flow in question is a statistical dissemination. In particular, we note that

the notion of ‘subject’ is a component of ‘data’ under the Five Safes, and the notion of ‘information type’

is a component of both data and outputs. On the other hand, the ‘transmission principles’ encompass

multiple dimensions of the Five Safes, including projects, settings, and more. The nuances of these over-

and under-inclusive mappings will be further explicated in future work.
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8.4 Differential Privacy in the Context of the Five Safes

Differential privacy is a state-of-the-art technical formulation of privacy associatedwith statistical and data

dissemination. It has been adopted by data agencies and intermediaries. Since the proposal of ε-DP (or

pure DP) (Dwork et al., 2006b), a multiplicity of flavors of differential privacy has emerged, including

probabilisticDP (Dwork et al., 2006a), approximateDP (Machanavajjhala et al., 2008), zero-Concentrated

DP (Bun andSteinke, 2016), f-DP (Dong et al., 2022), to name a few. There are bounded versusunbounded

versions of DP to suit the scenarios with known versus unknown dataset sizes. The TopDown algorithm

(Abowd et al., 2022a), the U.S. Census Bureau’s differentially private disclosure avoidance system (DAS)

for the 2020DecennialCensusRedistrictingData (P.L. 94-171) Summary andDemographic andHousing

Characteristics Files, introduced the concept of invariantswhich are exact statistics of the confidential data

that are mandated for release. To gain conceptual clarity amidst such plurality of choices, we employ the

unified construction proposed by (Bailie et al., 2025d), which explicitly spells out the necessary elements

of a differential privacy definition, some of which are often overlooked:

• What can be protected: D , the data multiverse (consisting of multiple data universesD);

• Who are protected: dX , the input divergence;

• How to measure protection: dT , the output divergence;

• Howmuch protection is afforded: ε, a privacy loss budget.

A data release mechanism can be most-generally defined as differentially private as follows.

Definition 8.4.1 (Definition 3.4 of (Bailie et al., 2025d)). Adata-release mechanismT : X × [0, 1]→ T
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satisfies a differential privacy definition (D , dX , dT )with privacy budget εD ≥ 0 if

dT
[
PX(T ∈ ·),PX′(T ∈ ·)

]
≤ εDdX (X,X′),

for allX,X′ in every data universeD ∈ D .

In this work we will not explicate Definition 8.4.1 in further detail, other than remark that it illustrates

how the aforementioned elements of a differential privacy definition come together. Notably, the trio (D ,

dX , dT ) confer a quantitative description of the privacy guarantee (its flavor), whereas the privacy loss

budget εD serves as a quantitative measurement (its strength). We will return to this definition later in this

section.

In statistical dissemination, the Five Safes delineate a context in which differential privacy can be under-

stood. What we mean is the following.

Claim 2. Differential privacy is a quantitative standard of safety pertaining to aspects of the outputs and

the data in the Five Safes.

A quantified measurement of safety levels for aspects of the outputs and the data is helpful in the Five

Safes framework, because it allows for the modulation of the various elements that collectively contribute

to disclosure risk. The modulation may be achieved in multiple ways, two of which we discuss here.

First, differential privacy acts as a screen between the data and the people who access the data. By con-

struction, differential privacy constrains the probabilistic properties of any output by a certified mecha-

nism. This may be employed by the statistical agency to compose open data as well as to restrict researcher

release from data enclaves or validation servers. Differential privacy may also directly restrict how the re-

searcher may interact with the data in the first place. One example is differentially private synthetic data
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(see e.g. Bowen et al., 2022). In the case of local privacy, the measurements taken from individual data

contributors are privatized as soon as they leave the end device prior to arriving at the data custodian. In

each of these cases, the differential privacy guarantee ascertains, in a mathematically rigorous way, a level

of difficulty for adversarial agents to deduce the value of the confidential data. This enables, at least in a

heuristic way, less scrutiny to be placed on the people.

Second, differential privacy enables precise privacy accounting by statistical agencies. For privacy defini-

tions of the same flavor (i.e. the sameD , dX and dT choices), the privacy loss budgets of twomechanisms

may be composed – often the case added – to yield the overall budget pertaining to both.4 What this means

is that the data custodianwith a fixed amount of privacy loss budgetmay choose to divide the budget across

a number of projects, evenly or unevenly according to their significance, modulating the quantity-quality

tradeoff in ways that the custodian sees fit.

We also observe two limitations of differential privacy as a quantitative standard of safety.

Remark 8.4.2. Differential privacy is silent on the safety of certain aspects of the outputs and the data.

Differential privacy specifies the flavor, as it does the strength, of the privacy protection. It is, however,

agnostic to the nature of the data at hand. A differential privacy mechanism will treat two datasets identi-

cally so long as they possess identical mathematical structures, even though one may be highly sensitive in

nature (e.g. records of patients suffering from a socially stereotyped disease) while the other is not (e.g. a

log of dairy preferences of customers at a coffee shop). Therefore, differential privacy should not be taken

as a comprehensive quantification for the safety of the outputs and the data.

4Composition is not possible within approaches to privacy that are not formal. It may well be the case that the
combined disclosure risk of two data products is infinite, even though either carries a finite risk.
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Remark 8.4.3. Differential privacy does not purport an assessment of safety for people, projects, or set-

tings.

Differential privacy is a property of the output rather than the process through which it is generated.

As such, it is agnostic to the settings in which privatization and data sharing takes place. Indeed, one of the

celebrated feature of differential privacy is that the privacymechanism can be entirely transparent without

sabotaging the privacy guarantee.

For similar reasons, differential privacydoesnotdirectlymeasure the safety of thepeople and theprojects.

When used as a standard to quantify the safety of aspects of the data and the outputs, however, itmay serve

as an indirect guidance on the safety tuning for the people and for the projects. In fact, such tuning often

constitute a balancing act between privacy and utility.

8.5 Ongoing Inquiries

What we have presented so far is work in progress. In this last Section, we briefly discuss three important

questions that remain unanswered.

First, we view the Five Safes as a reparametrization of contextual integrity when the information flow in

question is statistical dissemination. As Section 8.3 discusses, this reparametrization is faithful but imper-

fect, in the sense that the mappings between the two frameworks can seem either narrow or capacious, as

summarized in Table 8.1. In future work, we aim to supplant themeanings that are lost in this translation,

in particular by spelling out aspects of data and outputs (from the Five Safes) that go beyond the subject

and the information type (from the privacy norms), as well as aspects of transmission principles that go

beyond the dimensions of the Five Safes.

Second, as we have already argued, differential privacy offers a strong technical notion for assessing cer-
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tain aspects of the ‘safe data’ and ‘safe output’ dimensions. Does there exist more comprehensive technical

notions to these dimensions, and does there exist technical notions for the other dimensions of Five Safes?

We surmise that a pursuit towards technicalization may not make sense universally. After all, some of the

safety dimensions (such as safe people) may be too complex to allow mathematical tractability. However,

others – such as safe settings – may benefit from advances in fields such as information security.

Third, we look to further explore the interaction between the Five Safes and the legal frameworks gov-

erning the operations of the NSOs. For starters we ask: what configurations of the Five Safes best corre-

spond to the current legal framework for a specific NSO? And how can the Five Safes be used to update

the legal framework in the future?

300



Appendices



This page intentionally left blank.



A
Appendices to Chapter 2

A.1 TheMeasure-Theoretic Definition of a Data-ReleaseMech-
anism T

In this section, we formally define a data-release mechanism and the distribution of its output. Through-

out this section, fix a DP flavor (X ,D , dX ,DPr).

DefinitionA.1.1. Twoprotectionobjects x, x′ ∈ X are (explicitly)-comparable if 1) x 6= x′; 2)dX (x, x′) <

∞ or dX (x′, x) <∞; and 3) there exists a universeD ∈ D such that x, x′ ∈ D.

Comparability defines a symmetric relation on X , which can be understood as an undirected graph.

Let [x] denote the connected component of x ∈ X in this graph. Two protection objects x, x′ ∈ X are

implicitly-comparable if they belong to the same connected component – that is, if x′ ∈ [x].

Definition A.1.2. A data-release mechanism is a function T : X × U → T , together with a probability

space
(
U ,FU ,P(U ∈ ·)

)
for the randomseedU and a σ-algebraF

[x]
T onT for each connected component
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[x], such that the map T(x, ·) given by

(U ,FU )→ (T ,F [x]
T )

u 7→ T(x, u),

is (FU ,F
[x]
T )-measurable, for all x ∈ X .

Hence a data-releasemechanism is a three-tuple
(
T : X ×U → T ,

(
U ,FU ,P(U ∈ ·)

)
, {F [x]

T }x∈X
)
.

Usually we will refer to a data-release mechanism by the function T alone, and take the other two compo-

nents as implicitly given.1

The random seed U induces a probability on the output of a data-release mechanism in the standard

(push-forward) way:

DefinitionA.1.3. Given x ∈ X , thedistributionPx of a data-releasemechanismT(x,U) is the probability

on the measurable space (T ,F [x]
T ) given by

Px(T(x,U) ∈ S) = P
(
U ∈ {u ∈ U : T(x, u) ∈ S)

)
,

for all S ∈ F
[x]
T .

The σ-algebras F
[x]
T should not be freely chosen, since they can be manipulated to artificially reduce

privacy loss. For an extreme example, if F [x]
T is the trivial σ-algebra {∅, T }, then T(x, ·) is always measur-

able and Px does not vary with x (or with T). HenceDPr(Px,Px′) = 0 for all x, x′ ∈ [x]. This implies that

perfect privacy (ε = 0) can be achieved, regardless of the behavior of the data-release mechanism T. More

1Adata-release mechanism can be considered as a generalisation of aMarkov kernel, since we do not require that
the σ-algebra on T is fixed and that x 7→ Px(B) is measurable for all B ∈ F

[x]
T .
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generally, one can coarsenF
[x]
T to reduceDPr(Px,Px′) by removing sets S fromF

[x]
T on which Px and Px′

differ.

To avoid the possibility of such manipulation, we recommend settingF
[x]
T to be the σ-algebra induced

by the data-release mechanism’s output:

Definition A.1.4. Given a functionT : X ×U → T and a probability space
(
U ,FU ,P(U ∈ ·)

)
, define

the σ-algebra

F x
T = {S ⊂ T : {u ∈ U : T(x, u) ∈ S} ∈ FU}.

The σ-algebra induced by T and [x] is given by

F
T,[x]
T =

⋂
x′∈[x]

F x′
T .

In the above definition, the set {u ∈ U : T(x, u) ∈ S} is the inverse image of S under the map T(x, ·).

This means F x
T is the largest σ-algebra such that T(x, ·) is measurable and thus F

T,[x]
T is the largest σ-

algebra such that T(x′, ·) is measurable for all x′ ∈ [x].

Larger F
[x]
T will typically result in larger values of DPr(Px,Px′). This is why we recommend using

F
T,[x]
T . SinceF

T,[x]
T depends upon the choice ofFU – with smallerFU resulting in smallerF T,[x]

T – the

choice ofFU is also important. Typically the random seedU is uniformly distributed on [0, 1], equipped

with the Borel σ-algebra. (Theoretically this is sufficient for most purposes, since such U can generate

countablymany independent real-valued random variables of arbitrary distributions.) IfT(x′, ·) is contin-

uous (for all x′ ∈ [x]) and surjective (for some x′ ∈ [x]), then F
T,[x]
T is the Borel σ-algebra on T .
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A.2 What CanWe Say About the Budget?

Proposition A.2.1. Suppose that DPr(P,Q) =∞whenever dTV(P,Q) = 1. Then, for any (non-random)

data-release mechanism f : X → T , the following statements are equivalent:

(A) f satisfies εD-DP(X ,D , dX ,DPr) with finite budget εD <∞; and

(B) f is a function of [x].

Moreover, if these statements hold then f has zero privacy loss.

The assumption in Proposition A.2.1 (that dTV(P,Q) = 1 implies DPr(P,Q) = ∞) is only used in

proving (A) implies (B). The other direction of Proposition A.2.1 provides the following corollary.

Corollary A.2.2. For any DP specification εD-DP(X ,D , dX ,DPr), the (non-random) data-release mech-

anism

b(x) = {εD : D ∈ D such that x′ ∈ D for some x′ ∈ [x]},

satisfies ε′D-DP(X ,D , dX ,DPr) with ε′D = 0.

The function εD can always be releasedwithout privacy loss, since the constant data-releasemechanism

x 7→ εD is trivially a function of [x]. (In the literature, the function εD has been called the “policy” to distin-

guish it from the actual privacy loss budget associated to a particular universeD (Seeman et al., 2023).) The

above corollary describes what the data custodian can say about the privacy loss budgets associated to the

true confidential dataset x∗. The data custodian can release the set of budgets for all universes containing

some x′ which is implicitly comparable to x∗ (Definition A.1.1). Furthermore, under the assumption of

Proposition A.2.1, the data custodian cannot be more specific about the budgets associated to x∗ without

adding some noise to the answer. For example, the data-release mechanism

b′(x) = {εD : D ∈ D such that x ∈ D},
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has infinite privacy loss unless b(x) = b′(x) for all x ∈ X . However, b(x) has cardinality at most one, and

hence b(x) = b′(x), for all x ∈ X if either of the following two conditions hold: I)D ∩ D′ = ∅ for all

distinct universes D,D′ ∈ D ; or, more generally, II) for all distinct x, x′ ∈ X , if dX (x, x′) or dX (x′, x)

is finite, then x and x′ cannot both be in two different universes. (To prove this, observe that condition II

implies [x] ⊂ D for someD ∈ D , assuming D 6= ∅.) In particular, for an invariant-induced multiverse

Dc (defined below (2.4)), condition I holds and so the data custodian can release the realised budget εDc(x∗)

without incurring additional privacy loss.

A.3 Connections Between the Input Premetric dX and the Mul-
tiverseD

If the privacy loss budget εD is constant inD, the effects of themultiverseD can be encoded into aDP spec-

ification using only the input premetric dX . More exactly, by redefining dX we can remove the multiverse

D without affecting the DP guarantee, as the following proposition demonstrates.

Proposition A.3.1. Given a DP flavor (X ,D , dX ,DPr), define

d′X (x, x′) =



0 if x = x′,

dX (x, x′) else if there existsD ∈ D such that x, x′ ∈ D,

∞ otherwise.

Then, for any constant privacy loss budget εD = ε,

M(X ,D , dX ,DPr, εD) =M(X , {X}, d′X ,DPr, εD).

The notation εD is slightly overloaded in the above proposition. We use it denote both the constant
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function with domain D in the context ofM(X ,D , dX ,DPr, εD) and also the constant function with

domain {X} in the context ofM(X , {X}, dX ,DPr, εD).

The above proposition shows how to translate a multiverse D into an input premetric dX , provided

that the privacy loss budget is constant. In the other direction, an input premetric may introduce its own

universes. We can do this trivially by settingD to be the set of pairs {x, x′}with finite dX (x, x′):

Proposition A.3.2. Given a premetric dX , define

D =
{
{x, x′} : x, x′ ∈ X such that dX (x, x′) <∞

}
.

Then, for all constant privacy loss budgets εD = ε,

M(X , {X}, dX ,DPr, εD) =M(X ,D , dX ,DPr, εD).

More generally,

M(X ,D0, dX ,DPr, εD) =M(X ,D1, dX ,DPr, ε′D′),

for any multiverse D0 and any budget εD : D0 → [0,∞], where D1 = {D0 ∩ D : D0 ∈ D0,D ∈

D such thatD0 ∩ D 6= ∅} and ε′D′ = inf{εD : D ∈ D0 withD′ ⊂ D}.

The above proposition shows that we can always restrict the DP specification to universes of pairs of

protection objects. However, interpreting the resulting multiverse is not easy because it is possible (and in

practice, quite likely) that the universes overlap. As a result, there are implicit Lipschitz constraints which

are implied by the restricted DP specification ε′D′ -DP(X ,D1, dX ,DPr) but not explicitly encoded in that

specification. For example, suppose there exists x1, x2, x3 ∈ X such that 1) dX (x1, x3) = dX (x1, x2) +

dX (x2, x3) <∞; 2) x1 and x2 are in some universeD ∈ D1; 3) x2 and x3 are in another universeD′ ∈ D1;
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but 4) no universe inD1 contains both x1 and x3. Then

DPr(Px1 ,Px3) ≤ max(ε′D, ε′D′)dX (x1, x3), (A.1)

is an implicit Lipschitz condition of ε′D′ -DP(X ,D1, dX ,DPr) (assumingDPr satisfies the triangle inequal-

ity). But this condition is not one of the conditions explicitly set down by this DP specification.

Instead, it is more informative to consider the multiverse which is induced by the invariants of dX . An

invariant-inducedmultiverse always partitionX , so its universes never overlap. (Assuming dX satisfies the

triangle inequality) if the universes in D do not overlap, then there are no implicit Lipschitz conditions

(like (A.1)) hidden in a DP specification εD-DP(X ,D , dX ,DPr). Therefore, examining the multiverse

induced by dX ’s invariants provides a clearer protection of how choices of dX can reduce the protection

provided byDP. Proposition A.3.1 showed that dX can encode arbitrary invariants. The following propo-

sition describes the invariants encoded by an arbitrary dX . As such, we see that dX can reduce the protec-

tion by DP in exactly the same way as invariants. The intuition is that an input premetric dX ’s invariants

are given by the connected components of the graph (X ,∼)where∼ is the relation defined by:

x ∼ x′ if dX (x, x′) <∞.

PropositionA.3.3. Given a premetric dX , define the relation∼ by x ∼ x′ if dX (x, x′) <∞. Let∼cl be the

symmetric- and transitive-closure of∼. Define the invariant c(x) = [x]which sends x ∈ X to its equivalence

class [x] under∼cl. Then, for all constant privacy loss budgets εD = ε,

M(X , {X}, dX ,DPr, εD) =M(X ,Dc, dX ,DPr, εD).
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More generally,

M(X ,D0, dX ,DPr, εD) =M(X ,D1, dX ,DPr, εD),

for any multiverse D0 and budget εD : D0 → [0,∞], where D1 = {D0 ∩ D : D0 ∈ D0,D ∈

Dc such thatD0 ∩ D 6= ∅} and ε′D′ = inf{εD : D ∈ D0 withD′ ⊂ D}.

Moreover, suppose that there exists someD0 ∈ D0 such that one of the connected components of the graph

(D0,∼cl) is not inD0. ThenD1 6= D0.

The above proposition proves that, more than just trivially inducing universes of size two, the input pre-

metric dX can implicitly induce invariants. Specifically, whenever the graph (X ,∼) is not fully connected,

dX induces invariants because

M(X , {X}, dX ,DPr, εD) =M(X ,Dc, dX ,DPr, εD),

withDc 6= {X}. If x, x′ arenot in the sameuniverse ofDc then theDPspecification εD-DP(X , {X}, dX ,DPr)

places no restrictions onDPr(Px,Px′), explicitly or implicitly. Hence, the invariants of dX are non-trivial

limitations to the protection provided by εD-DP(X ,D , dX ,DPr).

A.4 CommonChoices for the Input Premetric dX

A direct encoding of many common DP formulations in the literature – including the original Defini-

tion 2.3.1 ofDwork et al. (2006b) – into the equivalentDP specifications would use the following premet-
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ric for dX :

dr(x, x′) =



0 if x = x′,

1 else if x r∼ x′,

∞ otherwise,

(A.2)

where the relation r onX captures some notion of ‘neighboring’ datasets: x r∼ x′ if and only if x and x′ are

‘neighbors.’ There aremultiple different relations rused in theDP literature but they are all formalizations

of the following intuitive definition: Datasets x and x′ are neighbors – i.e. x r∼ x′ – if x and x′ differ only

by a single record. Such a definition of a neighboring relation r onX requires thatX ⊂
⋃∞

n=0Rn, where

R is the set of all theoretically-possible records (andRn is the n-fold cartesian product ofR).

OnceR has been fixed, there are two common choices for r:

A) Bounded DP: x and x′ are neighbors if x and x′ have the same number of records and exactly one
record is different in x as compared to x′:

x rbs∼ x′ if |x| =
∣∣x′∣∣ and 1

2
∣∣x	 x′

∣∣ = 1, (for unordered datasets x, x′)

or

x rbv∼ x′ if |x| =
∣∣x′∣∣ and there exists a unique

j ∈ {1, . . . , |x|} such that xj 6= x′j, (for ordered datasets x, x′)

(where	 is the symmetric set difference).

B) UnboundedDP: x and x′ are neighbors if x′ can be formed by adding or subtracting a single record
from x:

x rus∼ x′ if
∣∣x	 x′

∣∣ = 1, (for unordered datasets x, x′)
or

x ruv∼ x′ if there exists some j ∈ {1, . . . ,max(|x|,
∣∣x′∣∣)}

such that x = x′−j or x−j = x′, (for ordered datasets x, x′)

(where the notation v−j denotes the vector (v1, . . . , vj−1, vj+1, . . . , vn)where the j-th element of v
has been removed).
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In the literature, DP definitions which use rbs or rbv are referred to as boundedDP and those which use

rus or ruv are called unbounded. These terms arise from the fact that rus and ruv relates datasets of differing

lengthwhile neighbors under rbs and rbvmust have the same length. The distinctionbetweenbounded and

unbounded DP is important because bounded DP reduces the number of implicitly-comparable datasets

(Definition A.1.1). Reducing the set of implicitly-comparable datasets is equivalent to partitioning the

universes into finer universes and affects inference for both the attacker and the legitimate analyst (Bailie

and Drechsler, 2024; Bailie and Gong, 2023a).

It is also important to distinguish between the neighbor relations for unordered and ordered datasets.

A DP flavor for unordered datasets is stronger than the corresponding flavor for ordered datasets – that is,

M(X ,D , drbs ,DPr, εD) ⊂M(X ,D , drbv ,DPr, εD)

and the same result holds when drbs and drbv are replaced with drus and druv respectively. (These results

follow by Proposition 2.4.15.) The other direction does not hold; for example, local DP mechanisms

(such as randomized response) satisfy the ordered DP specification ε-DP(X , {X}, dbv,DMult) (for the

appropriate choice of X and ε), but they do not satisfy the corresponding unordered DP specification

ε-DP(X , {X}, dbs,DMult, ) for any finite ε (assuming that X =
⋃∞

n=1Rn). For this reason, ordered

DP specifications should only be used when the ordering of the dataset is meaningful to an attacker (for

example, if the indices of the dataset are pseudo-identifying, whichwould imply that, in the counterfactual

scenario where a respondent changes their data, they keep the same index).

A premetric dr built from a relation r as in (A.2) can be sharpened to a metric d∗r as follows. Here

d∗r (x, x′) is defined as the length of a shortest path between x and x′ in the graph onX with edges given by

r:
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DefinitionA.4.1. Given a domainX and a relation ronX , let the graphG = (V,E)have verticesV = X

and edges

E = {(x, x′) ∈ X 2 | x r∼ x′}.

Define d∗r (x, x′) to be the length of a shortest path between x and x′ inG.

More generally, for a premetric dX on X , let the weighted and directed graph G = (V,E,w) have

verticesV = X and edges

E = {(x, x′) ∈ X 2 | dX (x, x′) <∞}

and weights

w(x, x′) = dX (x, x′).

Define d∗X (x, x′) be the length of a shortest (weighted and directed) path between x and x′ inG.

For example, the metrics for the above neighbor relations rbs, rbv, rus and ruv are given by:

A1) The sharpening of drbs (bounded, unordered neighbors) is the Hamming distance on unordered
datasets:

duHamS(x, x′) =

{
1
2 |x	 x′| if |x| = |x′|,
∞ otherwise.

(A.3)

A2) The sharpening of drbv (bounded, ordered neighbors) is the Hamming distance

duHam(x, x′) =

{∑n
i=1 1{xi 6= x′i} if |x| = |x′| = n,

∞ otherwise.

B1) The sharpening of drus (unbounded, unordered neighbors) is the symmetric difference distance:

duSymDiff(x, x
′) =

∣∣x	 x′
∣∣. (A.4)

B2) The sharpening of druv (unbounded, ordered neighbors) is

du∗ruv(x, x
′) = min{|I|+ |J| : I ⊂ {1, . . . , |x|}, J ⊂ {1, . . . ,

∣∣x′∣∣}, x−I = x′−J},
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(where, for I ⊂ {1, 2, . . . , |v|}, the notation v−I denotes the vector (vi : i /∈ I) where, for every
i ∈ I, the i-th element of v has been removed).

The superscript u emphasizes that these distances are defined with respect to a choice of resolution

u. Each choice of resolution u defines a different version of the Hamming distance duHamS (and different

versions of duHam, duSymDiff and d
u∗
ruv), since the resolution defines the elements of themulti-set x and hence

the operation	. (This also applies for the premetrics rbs, rbv, rus and ruv – they are only well-defined up

to the choice the unit, although this is not made explicit in their notation.) In this article, this distinction

is important since we use dpHamS and d
h
HamS for persons and household records.

Under mild assumptions, we have that

M(X , {X}, dr,DPr, ε) =M(X , {X}, d∗r ,DPr, ε),

if and only if DPr is a metric (Bailie et al., 2025a). That is, one can equivalent use dr or the associated

metric d∗r wheneverDPr is a metric. Therefore, while a direct encoding of a typical DP formulation would

set dX to be the premetric dr as in (A.2), the sharpening d∗r could also be used (as long asDPr is a metric).

(Another corollary of this result is that group privacy with linear decrease in privacy loss is equivalent to

DPr being a metric (Bailie et al., 2025a).)

Another common choice of dX is to encode invariants, ormore generally, to encode themultiverse: For

any DP specification εD-DP(X ,D , dX ,DPr)where the budget εD = ε is constant inD,

M(X ,D , dX ,DPr, εD) =M(X , {X}, dD
X ,DPr, ε),
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where

dD
X (x, x′) =


dX (x, x′) if there existsD ∈ D with x, x′ ∈ D,

∞ otherwise.

Thus, the actual advantages of the multiverse D are that 1) it allows for the possibility of having different

privacy budgets for different universes (as in Bun et al. (2022) and Seeman et al. (2023)); 2) becauseD and

dX perform separate functions (as the scope of protection and the unit of protection respectively), it is

more explainable and interpretable to keep these functions separate. Setting aside these two advantages,

one can always encode the function of the multiverse D using only the input premetric dX when εD is

constant.

In the other direction, having unconnected protection objects x, x′ ∈ X (such as in bounded DP)

is equivalent to employing a non-totally-vacuous multiverse. (Given a DP flavor (X ,D , dX ,DPr), two

protection objects x, x′ ∈ X are unconnected if d∗X (x, x′) = ∞ or d∗X (x′, x) = ∞ (here d∗X is given in

Definition A.4.1); and a multiverse is totally-vacuous if for all distinct x 6= x′ ∈ X , there exists a universe

D ∈ D with x, x′ ∈ D.) This is demonstrated by the following proposition:

Proposition A.4.2. Given a DP specification εD-DP(X ,D , dX ,DPr),

M(X ,D , dX ,DPr, εD) =M(X ,Di, dX ,DPr, εD),

for i = 1, 2 whereDi = {D ∩ [x] : D ∈ D , x ∈ X} andD2 = {{x, x′} : x, x′ ∈ X with x′ ∈ [x]}.

D ′ is non-totally-vacuous whenever there are unconnected protection objects. In particular, when

D = {X} then D1 = {[x] : x ∈ X}. In bounded DP, [x] is all datasets with the same number of

records as x. Hence, bounded DP is equivalent to using the number of records as an invariant.
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A.5 The Post-Processing and CompositionMechanisms

Definition A.5.1. Given a DP flavor (X ,D , dX ,DPr), a data-release mechanism
(
T : X × U → T ,(

U ,FU ,P(U ∈ ·)
)
, {F [x]

T }x∈X
)
and a function f : T → T ′, the post-processing mechanism is a data-

release mechanism consisting of

1. the function f ◦ T : X × U → T ′;

2. the probability space
(
U ,FU ,P(U ∈ ·)

)
inherited from T; and

3. for each connected component [x], the σ-algebra

F
[x]
T ′ =

{
S ⊂ T ′ : f−1(S) ∈ F

[x]
T

}
.

Note that the σ-algebra F
[x]
T ′ of the post-processed mechanism is the largest σ-algebra such that f is

measurable with respect to the σ-algebraF
[x]
T of the mechanism T.

For post-processingwith a randomised function f : T ×U ′ → T ′, the post-processingmechanism con-

sists of the function f(T(x,U),U′); the probability space (U×U ′,FU⊗FU ′ ,P)whereP is the product of

theprobabilitymeasures of the seedsU andU′; and the σ-algebrasF [x]
T ′ =

{
S ⊂ T ′ : f−1(S) ∈ F

[x]
T ⊗FU ′

}
.

As described in Section 2.5, immunity to randomized post-processing is implied by immunity to non-

randomized post-processing, assuming that we can compose the post-processing function’s random seed

without additional privacy loss. We now formalize this idea.

Definition A.5.2. DPr is invariant to extraneous noise if DPr(P1 × Q,P2 × Q) = DPr(P1,P2) for all

P1,P2 ∈ P(Ω,F ) and allQ ∈ P(Ω′,F ′).

Invariance to extraneous noise can be thought of as the composition of two data-release mechanisms in

the special case where one mechanism is constant in x and so has zero privacy loss.
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Proposition A.5.3. Suppose that DPr is invariant to extraneous noise. Then a DP flavor (X ,D , dX ,DPr)

is immune to randomised post-processing if and only if (X ,D , dX ,DPr) is immune to non-randomised post-

processing.

Corollary A.5.4. Fix a probability premetric DPr. The DP flavor (X ,D , dX ,DPr) is immune to ran-

domised post-processing for allX ,D and dX if and only if

DPr(P1,P2) ≥ DPr(f∗(P1 × Q), f∗(P2 × Q)), (A.5)

for all P1,P2 ∈ P(Ω,F ), allQ ∈ P(Ω′,F ′) and all measurable f : Ω1 ×Ω2 → T .

Nowwewill define the compositionof twodata-releasemechanisms,T1 andT2, whichhave the seedsU1

andU2 respectively. It is possible thatU1 andU2 are not independent. Such behavior arises for Pufferfish

data-releasemechanisms, since they share the samedata-generating step (Kifer andMachanavajjhala, 2014).

More generally,U1 andU2 are not independent wheneverT1 andT2 share some steps of the data life cycle

in common – for example, whenT1(x,U1) andT2(x,U2) are outputs of the same sample drawn from the

population x (Bailie and Drechsler, 2024).

In these situations, the distribution of the composition T = (T1,T2) does not factor as the product

of T1 and T2’s distributions. To specify the distribution of T, we need to know the joint distribution

of U1 and U2. It is not sufficient to know only the data-release mechanisms T1,T2 and their (marginal)

probability distributions Px(T1 ∈ ·),Px(T2 ∈ ·), we need additional information specifying how they

interact. This discussion motivates the following definition:

Definition A.5.5. Given a DP flavor (X ,D , dX ,DPr), two data release mechanisms

(
T1 : X × U1 → T1,

(
U1,FU1 ,P(U1 ∈ ·)

)
, {F [x]

T1
}x∈X

)
,
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(
T2 : X × U2 → T2,

(
U2,FU2 ,P(U2 ∈ ·)

)
, {F [x]

T2
}x∈X

)
,

and the joint distribution P(U1 ∈ ·,U2 ∈ ·) of the seeds associated with T1 and T2, the composition

mechanism is the data-release mechanism consisting of

1. the function T = (T1,T2) defined as

X1 × (U1 × U2)→ T1 × T2(
x, (u1, u2)

)
7→
(
T1(x, u1),T2(x, u2)

)
,

2. the probability space (
U1 × U2,FU1 ⊗FU2 ,P(U1 ∈ ·,U2 ∈ ·)

)
,

and

3. for each connected component [x], the product σ-algebraF
[x]
T1
⊗F

[x]
T2
.

A.6 Blackwell’s Theorem and Post-Processing

This appendix briefly reviews and builds on some of the results in Dong et al. (2022) and Su (2024).

Given two probabilities P,Q ∈ P(Ω,F ) and some data X ∈ Ω, consider testing H0 : X ∼ P versus

H1 : X ∼ Q. A decision rule for this hypothesis test is a measurable function φ : Ω → [0, 1] which

specifies the probability φ(x) of rejecting the null upon observing X = x. Its size and power are given by

EX∼P[φ(X)] and EX∼Q[φ(X)] respectively.

Definition A.6.1. For P,Q ∈ P(Ω,F ), the tradeoff function Tr(P,Q) : [0, 1]→ [0, 1] is defined as

Tr(P,Q)(α) = sup
φ
{EX∼Q[φ(X)] : EX∼P[φ(X)] ≤ α},
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where the supremum is over all level-α decision rulesφ for the hypothesis testH0 : X ∼ P versusH1 : X ∼

Q.

Let FTr be the set of functions f : [0, 1] → [0, 1] which are continuous, concave, non-decreasing and

which satisfy f(α) ≥ α for all α ∈ [0, 1]. Proposition 1 of Dong et al. (2022) proves that FTr is the set of

all tradeoff functions:

FTr = {Tr(P,Q) : P,Q ∈ P(Ω,F ) for any (Ω,F )}.

Given f, g ∈ FTr, we write f ≼ g if f(α) ≤ g(α) for all α ∈ [0, 1].

Theorem A.6.2 (Blackwell (1953); Kairouz et al. (2017); Dong et al. (2022)). For P,Q ∈ P(Ω,F ) and

P′,Q′ ∈ P(Ω′,F ′), the following statements are equivalent:

1. Tr(P,Q) ≽ Tr(P′,Q′).

2. There exists aMarkov kernel κ such that P′ = κ ◦ P andQ′ = κ ◦ Q.

In the language of DP, the Markov kernel κ is a (generalisation of a) randomised post-processing func-

tion.2

We can also use this idea to create new probability premetrics which satisfy post-processing:

2Formally, given a probability P ∈ P(Ω,F), a measurable space (Ω′,F ′) and a Markov kernel κ : F ′ ×Ω →
[0, 1], define the probability measure κ ◦ P ∈ P(Ω′,F ′) by

(κ ◦ P)(S) =
∫
Ω
κ(S, ω)dP(ω),

for all S ∈ F ′.
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Proposition A.6.3. Let λ : FTr → R be a function of tradeoff functions. Define λ2 : FTr → R by

λ2(g) = λ(g) − λ(f) where f(α) = α. Then λ2 ◦ Tr is a probability premetric satisfying invariant to

extraneous noise and 5.2 if and only if λ is non-decreasing.

A.7 Proofs

Proof of Proposition 2.4.11. T is constant within the universes D. Therefore DPr(Px,Px′) = 0 for all

x, x′ ∈ D. This proves thefirst half of theProposition. Toprove the secondhalf, observe thatDPr(Px1 ,Px2) =

∞ but dX (x1, x2) <∞.

Proof of Proposition 2.4.12. This proposition relies on the metric axiomDPr(P,Q) > 0 if P 6= Q. This

impliesDPr(Px1 ,Px2) > 0.

Lemma A.7.1. Given two DP specifications εD-DP(X ,D , dX ,DPr) and ε′D′ -DP(X ,D ′, dX ,DPr), sup-

pose that, for all D′ ∈ D ′ and all δ > 0, there exists D ∈ D such that D′ ⊂ D and εD ≤ ε′D′ + δ.

Then

M(X ,D , dX ,DPr, εD) ⊂M(X ,D ′, dX ,DPr, ε′D′).

Proof. Suppose that T ∈ M(X ,D , dX ,DPr, εD). Let D′ ∈ D ′ and δ > 0. Suppose x, x′ ∈ D′. By

assumption, there existsD ∈ D such thatD′ ⊂ D and

DPr(Px,Px′) ≤ εDdX (x, x′) ≤ (ε′D′ + δ)dX (x, x′).

SinceDPr(Px,Px′) ≤ (ε′D′ + δ)dX (x, x′) holds for all δ > 0, it follows thatDPr(Px,Px′) ≤ ε′D′dX (x, x′).

This proves T ∈M(X ,D ′, dX ,DPr, ε′D′).
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Proof of Proposition 2.4.13. Because D ′ is a refinement of D , the assumption of Lemma A.7.1 holds for

both choices of the budgets εD and ε′D′ . The results then follow by this lemma.

Proof of Proposition 2.4.15. Suppose T ∈M(X ,D , dX ,DPr, εD). Let x, x′ ∈ D ∈ D . Then

DPr(Px,Px′) ≤ εDdX (x, x′) ≤ εDd′X (x, x′)/l.

The second half of the proposition follows analogously.

Proof of Proposition 2.5.3. “⇐”: Suppose T1 and T2 satisfy (X ,D , dX ,DPr) with budgets ε(1)D and ε(2)D

respectively. Let U1 and U2 be the seeds of T1 and T2 respectively. We may assume that U1 and U2 are

independent. Then, for any x, x′ ∈ D and anyD ∈ D ,

DPr
[
Px
(
(T1,T2) ∈ ·

)
,Px′

(
(T1,T2) ∈ ·

)]
= DPr

[
Px
(
T1 ∈ ·

)
× Px

(
T2 ∈ ·

)
,Px′

(
T1 ∈ ·

)
× Px′

(
T2 ∈ ·

)]
≤ DPr

[
Px(T1 ∈ ·),Px′(T1 ∈ ·)

]
+DPr

[
Px(T2 ∈ ·),Px′(T2 ∈ ·)

]
≤ (ε(1)D + ε(2)D )dX (x, x′),

where the first line follows since U1 and U2 are independent; the second by (2.10); and the third because

T1 and T2 are DP.

“⇒”: SetX = {x1, x2} andD = {X}. Define the premetric dX by dX (x1, x2) = 1 and dX (x2, x1) =

∞. Define the mechanism T1 : X ×U → ΩbyPx1(T1 ∈ ·) = P andPx2(T1 ∈ ·) = Q. Similarly define

T2 : X × U → Ω′ by Px1(T2 ∈ ·) = P′ and Px2(T2 ∈ ·) = Q′, with the seed of T2 independent of the

seed of T1.

T1 and T2 satisfy (X ,D , dX ,DPr) with ε(1)X = DPr(P,Q) and ε(2)X = DPr(P
′,Q′) respectively. By
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assumption (T1,T2) also satisfies (X ,D , dX ,DPr)with ε
(1)
X + ε(2)X . Then

DPr(P× P′,Q× Q′) = DPr
[
Px
(
(T1,T2) ∈ ·

)
,Px′

(
(T1,T2) ∈ ·

)]
≤ ε(1)X + ε(2)X

= DPr(P,Q) +DPr(P
′,Q′).

Proof of Proposition 2.5.4. “⇐”: Suppose that (2.11) holds for all P,Q ∈ P(Ω,F ) and all measurable

f : (Ω,F ) → (Ω′,F ′). Let T : X × U → Ω satisfy εD-DP(X ,D , dX ,DPr). Since Px(f ◦ T ∈ S) =

f⋆[Px(T ∈ ·)](S),

DPr[Px(f ◦ T ∈ ·),Px′(f ◦ T ∈ ·)] ≤ DPr[Px(T ∈ ·),Px′(T ∈ ·)] ≤ εDdX (x, x′),

for all x, x′ ∈ D and allD ∈ D . Hence f ◦ T satisfies εD-DP(X ,D , dX ,DPr).

“⇒”: SetX = {x1, x2} andD = {X}. Define the premetric dX by dX (x1, x2) = 1 and dX (x2, x1) =

∞. Define the mechanism T : X × U → Ω by Px1(T ∈ ·) = P and Px2(T ∈ ·) = Q. Then T satisfies

εD-DP(X ,D , dX ,DPr)with εX = DPr(P,Q) and hence

DPr
[
f⋆(P), f⋆(Q)

]
= DPr

[
Px1(f ◦ T),Px2(f ◦ T)

]
≤ εXdX (x1, x2) = DPr(P,Q).

Proof of Proposition A.2.1. Suppose that f(x) is a functionof [x]. LetD ∈ D and x, x′ ∈ D. IfdX (x, x′) =

∞ then the Lipschitz condition (2.3) is satisfied with εD = 0. Otherwise, x′ ∈ [x] so that f(x′) = f(x).

This impliesDPr(Px,Px′) = 0 so that(2.3) is again satisfiedwith εD = 0. This proves f satisfies εD-DP(X ,

D , dX ,DPr)with zero privacy loss.

In the other direction, suppose that f satisfies εD-DP(X ,D , dX ,DPr) with εD < ∞. Let x, x′ ∈ X

with x ∈ [x′]. We will show that f(x) = f(x′) by induction. Let G be the graph with nodes X and edges
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(x1, x2) if x1 and x2 are explicitly comparable (Definition A.1.1). Since x ∈ [x′], there exists a finite path

P = (x = x1, x2, x3, . . . , xn−1, xn = x′) of distinct nodes inG from x to x′.

Now we proceed with the proof by induction on n. The base case is trivial: f(x) = f(x). For the step

case, assume f(xn−1) = f(x) so that, in order to prove f(x) = f(x′) it suffices to show f(x′) = f(xn−1).

Because xn−1 and x′ = xn are explicitly comparable, there must exist some D ∈ D such that xn−1, x′ ∈

D. Moreover, dX (xn−1, x′) < ∞ or dX (x′, xn−1) < ∞. By the Lipschitz condition 2.3, this implies

DPr(Pxn−1 ,Px′) orDPr(Px′ ,Pxn−1) is also finite. Hence dTV(Pxn−1 ,Px′) < 1. But Pxn−1 is a point mass at

f(xn−1). Thus f(xn−1) = f(x′).

Proof of Corollary A.2.2. Clearly f(x) is a function of [x]. Using the reasoning in the proof of Proposi-

tion A.2.1, this implies f(x) satisfies ε′D-DP(X ,D , dX ,DPr)with ε′D = 0.

Proof of Proposition A.3.1. Suppose thatT ∈M(X ,D , dX ,DPr, εD), where εD = ε is a constant privacy

loss budget, and let x, x′ ∈ X . There are three cases:

1. Suppose x = x′. ThenDPr(Px,P
′
x) = 0 = εd′X (x, x′).

2. Suppose x 6= x′ but there exists somedata universeD ∈ D such that x, x′ ∈ D. Then εd′X (x, x′) =
εdX (x, x′) ≥ DPr(Px,Px′).

3. Suppose x 6= x′ and there does not exist a universeD ∈ D such that x, x′ ∈ D. Then εd′X (x, x′) =
∞ ≥ DPr(Px,Px′).

This proves T ∈M(X , {X}, d′X ,DPr, εD).

Now suppose that T ∈ M(X , {X}, d′X ,DPr, εD), again with a constant privacy loss budget εD = ε.

LetD ∈ D and x, x′ ∈ D. Then

εdX (x, x′) = εd′X (x, x′) ≥ DPr(Px,Px′).

This proves T ∈M(X ,D , dX ,DPr, εD).

323



Proof of Proposition A.3.2. SinceD1 is a refinement ofD0, one direction

M(X ,D0, dX ,DPr, εD) ⊂M(X ,D1, dX ,DPr, ε′D′),

is immediate by Proposition 2.4.13. In the other direction, suppose T ∈ M(X ,D1, dX ,DPr, ε′D′) and

let x, x′ ∈ D0 for some D0 ∈ D0. If dX (x, x′) = ∞, then the Lipschitz condition (2.3) holds trivially.

Otherwise, {x, x′} ∈ D and hence {x, x′} ∩ D0 ∈ D1. Thus,

DPr(Px,Px′) ≤ ε′{x,x′}∩D0
dX (x, x′) ≤ εD0dX (x, x′).

This proves T ∈M(X ,D0, dX ,DPr, εD).

Proof of Proposition A.3.3. As in theproof ofPropositionA.3.2, onedirection followsbyProposition2.4.13.

In the other direction, suppose that T ∈ M(X ,D1, dX ,DPr, ε′D′) and let x, x′ ∈ D0 for someD0 ∈ D0.

If dX (x, x′) = ∞, then the Lipschitz condition (2.3) holds trivially. Otherwise, [x] = [x′] so that

Dc(x) = Dc(x′) ∈ Dc. Then

DPr(Px,Px′) ≤ ε′D0∩Dc(x)dX (x, x
′) ≤ εD0dX (x, x′),

where the first inequality follows by noting that x, x′ ∈ D0 ∩ Dc(x) ∈ D1 and T ∈ M(X ,D1, dX ,DPr,

εD) and the second by the definition of ε′D′ .

To prove the last part of the proposition, observe that the connected components of the graph (D0,∼cl)

are exactly the equivalence classes of ∼cl, when restricting ∼cl to D0 – that is, the equivalence classes of

∼cl ∩(D0 ×D0). But by definition, the set of these equivalence classes is

{D0 ∩ D : D ∈ Dc such thatD0 ∩ D 6= ∅}.
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Hence, this set is not inD0 iff the connected components of (D0,∼cl) are not inD0 (assuming thatD0 6=

∅). Therefore, D1 6= D0 iff there existsD0 ∈ D0 such that one of its connected components is not in D0

(assuming that ∅ /∈ D0).

Proof of Proposition A.5.3. Onedirection (fromrandomisedpost-processing tonon-randomisedpost-processing)

is trivial. In the other direction, letT : X×U → T be a data-releasemechanismwhich satisfies εD-DP(X ,

D , dX ,DPr) for some εD and let f : T × U ′ → T ′ be a randomised function. Denote the random seeds

of T and f by U and U′ respectively. The law of f(T(x,U),U′) is equal to f⋆
(
Px(T ∈ ·) × P(U′ ∈ ·)

)
.

Therefore,

DPr

[
Px(f(T(x,U),U′) ∈ ·), Px′(f(T(x′,U),U′)

]
= DPr

[
f⋆
(
Px(T ∈ ·)× P(U′ ∈ ·)

)
, f⋆
(
Px′(T ∈ ·)× P(U′ ∈ ·)

)]
≤ DPr

[
Px(T ∈ ·)× P(U′ ∈ ·),Px′(T ∈ ·)× P(U′ ∈ ·)

]
= DPr[Px(T ∈ ·),Px′(T ∈ ·)],

where the first inequality follows by non-randomised post-processing and the second becauseDPr is invari-

ant to extraneous noise.

Lemma A.7.2. Fix a probability premetric DPr. Suppose that, for allX ,D and dX , the DP flavor (X ,D ,

dX ,DPr) is immune to randomised post-processing. Then DPr is invariant to extraneous noise.

Proof. Let P1,P2 ∈ P(Ω,F ) andQ ∈ P(Ω′,F ′). SetX = {x1, x2} and D = {X}. Define the premetric

dX by dX (x1, x2) = 1 and dX (x2, x1) = ∞. Define the mechanism T : X × U → Ω × Ω′ by

Px1(T ∈ ·) = P1 × Q and Px2(T ∈ ·) = P2 × Q. Then T satisfies εD-DP(X ,D , dX ,DPr) with

εX = DPr(P1×Q,P2×Q). Define the projection f(ω,ω′) = ω. Since f is (non-random) post-processing,
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f ◦ Tmust also satisfy εD-DP(X ,D , dX ,DPr)with the same privacy loss budget. Hence

DPr(P1,P2) = DPr
(
Px1(f ◦ T ∈ ·),Px2(f ◦ T ∈ ·)

)
≤ εX .

This proves DPr(P1,P2) ≤ DPr(P1 × Q,P2 × Q). For the opposite inequality, define the mechanism

T′ : X × U → Ω by Px1(T ∈ ·) = P1 and Px2(T ∈ ·) = P2. Then T′ satisfies εD-DP(X ,D ,

dX ,DPr) with εX = DPr(P1,P2). Let f(t,U′) = (t,U′) be the identity function on T × Ω′ where

U′ ∼ Q. Now f is random post-processing, so f[T(x,U),U′] must again satisfy εD-DP(X ,D , dX ,DPr)

where εX = DPr(P1,P2). Hence

DPr(P1 × Q,P2 × Q) = DPr

[
Px1
(
f[T(x1,U),U′] ∈ ·

)
,Px2

(
f[T(x2,U),U′] ∈ ·

)]
≤ εX .

This provesDPr(P1 × Q,P2 × Q) ≤ DPr(P1,P2).

Proof of Corollary A.5.4. By Lemma A.7.2 and Propositions A.5.3 and 2.5.4, the DP flavor (X ,D , dX ,

DPr) is immune to randomised post-processing for allX ,D and dX if and only if the following two con-

ditions hold:

1. DPr is invariant to extraneous noise; and

2. DPr satisfies (2.11) (for all P,Q and f).

Thus, all we must prove is thatDPr satisfies (A.5) (for all P1,P2, allQ and all f) if and only if the above

two conditions hold. In one direction, clearly (A.5) implies (2.11). Further, by setting f in (A.5) to be the

identity map, we get

DPr(P1,P2) ≥ DPr(P1 × Q,P2 × Q),

and by setting f to be the projection map onto the first coordinate

DPr(P1 × Q,P2 × Q) ≥ DPr(f⋆(P1 × Q× Q′), f⋆(P2 × Q× Q′)) = DPr(P1,P2).
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This proves that (A.5) impliesDPr is invariant to extraneous noise.

In the other direction, suppose thatDPr is invariant to extraneous noise and satisfies (2.11). Then

DPr(P1,P2) = DPr(P1 × Q,P2 × Q) ≥ DPr
[
f⋆(P1 × Q), f⋆(P2 × Q)

]
.

This proves thatDPr satisfies A.5.
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B
Appendices to Chapter 3

B.1 Background onData Swapping

Invented by Dalenius and Reiss [1978; 1982] and further expanded upon by Fienberg and McIntyre

[2004], data swapping (also called record swapping, particularly in Europe) refers to a family of SDCmeth-

ods which select some subset of records and permute the values these records take for a subset of variables.

Thesemethods differ onwhich variables are swapped, how records are selected to be swapped, and how the

interchanging of the values of the swapping variables between the selected records is conducted. (See (De-

Persio et al., 2012; Kim, 2015; Shlomo et al., 2010; Fienberg andMcIntyre, 2004) for examples of different

data swapping methods.) Traditionally, claims of SDC protection provided by swapping methods have

been based on the intuition that a successful disclosure requires linking inferred information about a sensi-

tive variable to an individual entity using some quasi-identifying variables. By sensitive variable, we mean

a variable that is plausibly of interest to an attacker – for example, a person’s race or a household’s income.
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Learning the value of a sensitive variable for an individual record may not be problematic on its own since

the attacker does not know to whom the record belongs. Thus, an attacker has two goals: 1) to infer the

value of a sensitive variable for an individual record and 2) to determine, using quasi-identifying variables,

the individual entity associated with that record. Since the sensitive variable and the quasi-identifiers must

belong to the same record, the attacker needs to infer them jointly. The idea behind data swapping is to

hinder such joint inference by randomly permuting the records’ quasi-identifiers while keeping the sensi-

tive variables fixed (or visa versa). In this way, there are multiple plausible values for the original dataset

which are compatible with the swapped dataset – thereby adding uncertainty to the relationship between

any record’s sensitive variables and its quasi-identifiers.

It is important to emphasize that the above discussion is only an intuitive justification for data swapping.

Amajormotivation for this paper is to supplement such intuitive argumentswithmathematical SDCguar-

antees. Some such guarantees are provided by the PSA’s DP specification. In fact, Theorem 3.2.4 can be

interpreted as a formalization of the above intuitive argument because it provides a bound on how plausi-

ble the true confidential dataset is compared to other compatible datasets. This bound ensures a degree of

uncertainty in the relationship betweenVSwap andVHold \VSwap. TakingVSwap to be the quasi-identifiers

andVHold\VSwap the sensitive variables (or visa versa), this recovers the above argument. However, theoret-

ically any set of variables can function as quasi-identifiers, depending on the attacker’s auxiliary knowledge

and the context of the data collection (see e.g. Sweeney (2000, 2002); Machanavajjhala et al. (2007); Co-

hen (2022)). As such, arguments that rely on knowingwhat variables are quasi-identifiersmayhave limited

utility outside the scope of context-specific SDC analyses.

Data swapping is widely utilized – typically in combination with other SDC methods – by statistical
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offices across the globe. As we remark in the main body of this paper, it has been used and studied exten-

sively by the USCB (McKenna and Haubach, 2019; Steel and Zayatz, 2003; Zayatz et al., 2010; Zayatz,

2007; Lauger et al., 2014; Lemons et al., 2015). The Office for National Statistics (ONS) of the United

Kingdom (UK) has employed it for their 2001, 2011 and 2021Censuses (Spicer, 2020;Office forNational

Statistics, 2023; Shlomo et al., 2010). It is one of the two protectionmethods recommended by Eurostat’s

Centre of Excellence on Statistical Disclosure Control (Glessing and Schulte Nordholt, 2017) and was used

(or is intended to be used) for protecting census data by 15 of 30 European Union states surveyed by de

Vries et al. (2023). The Australian Bureau of Statistics uses it as one of their primary SDC methods for

releasing microdata (Australian Bureau of Statistics, 2021b). And it has been explored as a method for

protecting the Japanese Population Census (Ito and Hoshino, 2014).

While we largely focuses on the swapping procedure used in the 2010 US Census, much of this paper

also applies to other statistical agencies, especially when their swapping mechanisms are similar to the US

2010Census DAS. In particularly, the ONS’s Targeted Record Swapping (UK Statistics Authority, 2021)

closely aligns with the procedure used in the 2010 US Census and hence this work is also relevant for the

2021 UKCensus.

B.2 Other RelatedWork

In this appendix, we briefly review some relatedworkwhichwas not covered in themain body of this paper.

Firstly, there is existing literature examining DP under invariants. One branch of this literature develops

DP mechanisms which report invariants without noise. In addition to the USCB’s work on the TDA

(Abowd et al., 2022a), other papers in this branch include Gong andMeng (2020); Gao et al. (2022) and

Dharangutte et al. (2023). As invariants canbe viewed froman attacker’s perspective as backgroundknowl-
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edge, work addressing how to incorporating this knowledge into DP (Kifer and Machanavajjhala, 2014;

He et al., 2014; Kifer and Machanavajjhala, 2011; Desfontaines et al., 2020) is also relevant. In particular,

Seeman et al. (2022) applies the Pufferfish privacy framework to construct a DP formulation which can

handle invariants, although with the additional complication that the data must be modeled. Although

not specifically addressing invariant-respecting DP, Protivash et al. (2022) demonstrates that related DP

formulations – which, like invariants, also restrict the data universes – may not provide sufficient SDC.

More recent work on invariants includes Cho and Awan (2024).

There is also related work studying SDC for the US Decennial Census. Ashmead et al. (2019) and

Kifer et al. (2022) describe DP semantics for the 2020 Census, with the former focusing on the impact of

invariants. Abowd et al. (2023) examines the 2010DAS, using a reconstruction attack to demonstrate that

aggregation did not provide SDC, as has traditionally been assumed. Christ et al. (2022) compares data

swapping with standard ε-DPmechanisms. And the paper which first proposed data swapping (Dalenius

and Reiss, 1982) includes theoretical justification for the SDC provided by data swapping, which was

reviewed by Fienberg andMcIntyre (2004).

For a review of literature related to the system of DP specifications introduced in Part I, see Subsec-

tion 2.3.2.

B.3 Proof of Theorem 3.2.4

In this appendix, we prove that Algorithm 3.2.1 (the PSA) satisfies εD-DP(X ,DcSwap , drHamS,DMult) for

the valueof εD given inTheorem3.2.4. Assume throughout this appendix the conditionsofTheorem3.2.4:

that all x ∈ X share a common set of variables, partitioned into subsetsVSwap andVHold; and that the PSA

swaps records at the same resolution as drHamS.
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By Proposition 1, we may also assume that there is exactly one matching variable, one non-matching

holding variable and one swapping variable. For ease of exposition, we assume that each of these variables

can take on a finite number of values, which we denote by m = 1, . . . ,M and h = 1, . . . ,H and s =

1, . . . ,S respectively, although the proof immediately generalizes beyond this assumption. Recall that

nxmhs is the count of records in xwhich take the value (m, h, s). Replacing a categorym, h, swith · denotes

amarginal count – for example, nxm·s =
∑H

h=1 nxmhs. Wewill drop x in the superscript and · in the subscript

when this does not cause ambiguity.

Write (Mx
i ,Hx

i , Sxi ) for the i-th record in x, so that we can write x as the vector [(Mi,Hi, Si)]ni=1, where

n = nx··· = |x| is the number of records in x. With this notation, nxmhs =
∑n

i=1 1Mx
i=m1Hx

i=h1Sxi=s.

Let ℓr1(x, x′) be the ℓ1-distance on the interior cells of the fully-saturated contingency table

ℓr1(x, x′) :=
∑
m,h,s

∣∣∣nxmhs − nx
′

mhs

∣∣∣. (B.1)

Lemma B.3.1. ℓr1(x, x′) = 2drHamS(x, x′) if |x| = |x′|.

Lemma B.3.2. DMult is a metric on the space of a.e. equal random variables (over the same probability

space T ).

Proof. It is easy to see thatDMult is symmetric andDMult(X,Y) = 0 if and only if X = Y a.e. All that

remains is to verify the triangle inequality. Let {En} ⊂ F such that

∣∣∣∣ln P(X ∈ En)

P(Z ∈ En)

∣∣∣∣→ DMult(X,Z),

as n→∞. Then

∣∣∣∣ln P(X ∈ En)

P(Z ∈ En)

∣∣∣∣ ≤ |ln[P(X ∈ En)]− ln[P(Y ∈ En)]|+ |ln[P(Y ∈ En)]− ln[P(Z ∈ En)]|
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≤ DMult(X,Y) +DMult(Y,Z).

Recall that σm is the random perturbation sampled by the PSA which deranges the selected records in

matching stratumm. Let σ be the permutation defined by σ(i) = σMi(i). Since σm fixes iwheneverMi 6=

m, it is the case that σ = σM◦· · ·◦σ1. (Note that σ is a random function of the input dataset x, althoughwe

leave this dependence implicit.) For a permutation g, write g(x) as shorthand for the dataset in which the

the values of the swapping variables have been permuted according to g. That is, if x = [(Mi,Hi, Si)]ni=1

then g(x) = [(Mi,Hi, Sg(i))]ni=1. Given an input dataset x, the swapped dataset σ(x) generated by the PSA

is denoted by Z.

Let Px denote the probability induced by the randomness in the PSA (i.e. the randomness in selecting

records and in sampling the permutation σ), taking the input dataset x as fixed. Recall that the output of

the PSA is the fully saturated contingency table C(Z) = [nZjkl].

Lemma B.3.3. If x and x′ differ only by reordering of rows (i.e. drHamS(x, x′) = 0), then

DMult[Px(C(Z)),Px′(C(Z))] = 0.

Proof. The contingency table [nZmhs] is invariant to reordering of rows ofZ. ThusPx(C(Z)) = Px′(C(Z)).

Lemma B.3.4. Fix some data universeD ∈ DcSwap and some x, x′ ∈ D with drHamS(x, x′) = Δ. Then there

exists a permutation ρ which fixes exactly n− Δ records such that C(ρ(x)) = C(x′).

Proof. Wehave that Δ <∞ since the invariants cSwap imply that all datasets inD have the same number of

records. Hence the symmetric difference x	 x′ contain 2Δ records, with Δ records from x and Δ records
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from x′. Denote the records in x	x′ which come from x by x0 and the records from x′ by x′0, so that x	x′

is the disjoint union of x0 and x′0.

Without loss of generality, we may assume that there is a single matching category (M = 1). (If there

is more than one matching category, apply the following argument to each category separately.) Then the

dataset x (disregarding the order of the records) can be represented as the matrix C(x) = [nxhs].

We will need the following result (∗) whose proof is straightforward: For any x′′, x′′′ ∈ X , the matrix

C(x′′)−C(x′′′) = [nx′′hs − nx′′′hs ] has zero row- and column-sums if and only if x′′ ∈ DcSwap(x′′′). Moreover,

x′′ ∈ DcSwap(x′′′) implies x′′0 ∈ DcSwap(x′′′0 ) and C(x′′)− C(x′′′) = C(x′′0)− C(x′′′0 ).

By the above result (∗), the marginal counts of x0 and x′0 agree: n
x0
h = nx

′
0
h and nx0s = nx

′
0s for all h and

s. But the interior cells disagree: if nx0hs > 0 then nx
′
0
hs = 0 (and visa versa, swapping x0 and x′0). Further

C(x0)− C(x′0) has positive entries which sum to Δ and negative entries which sum to−Δ, and zero row-

and column-sums.

By construction of x0 and x′0, if we can permute x0 to produce x′0 thenwe can use the same permutation

to produce x′ from x (up to reordering of records). Critically, permutations of x0 can only derange Δ

records (since there are only Δ records in x0) and indeedmust derange Δ records to produce x′0 (since there

are no records in common between x0 and x′0). Therefore we have reduced the problem: we need to find

a permutation ρ (regardless of the number of records it fixes) such that C(ρ(x0)) = C(x′0).

We construct this permutation ρ by induction on Δ = drHamS(x, x′) = drHamS(x0, x′0). There are two

base cases: The case Δ = 1 is vacuous since drHamS(x, x′) = 1 implies that x, x′ are not in the same data

universe. Why? If ℓr1(x, x′) = 2 then C(x) − C(x′) only has one or two non-zero cells. But this implies

C(x)− C(x′) has a row or column with non-zero sum.
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For Δ = 2, the result (∗) implies that the 2× 2 top-left submatrix of A = C(x0)− C(x′0) looks like

A1:2,1:2 =

 1 −1

−1 1

,
(up to re-ordering of rows and columns). Therefore, (up to reordering of records) x0 and x′0 differ by a

single swap: if h, h′, s, s′ are indices such that Ahs = Ah′s′ = 1 then define ρ to be the swap of the records

(k, l) and (k′, l′) in x0. We have C(ρ(x0)) = C(x′0) as desired.

This completes the base cases. Nowwewill prove the induction step. By (∗), we can always re-order the

rows and columns of A = C(x0)− C(x′0) such that the 2× 2 top-left submatrix looks like

A1:2,1:2 =

A11 A12

A21 A22

,
with A11,A22 > 0 and A21 < 0. Define x1 by swapping the records (1, 1) and (2, 2) in x0. Then the

top-left submatrix of A′ = C(x1)− C(x′0) looks like

A′
1:2,1:2 =

A11 − 1 A12 + 1

A21 + 1 A22 − 1

,
and the rest of A′ is the same as A. If A12 < 0 then ℓr1(x1, x′0) = ℓ1(A′) = ℓ1(A) − 4. If A12 ≥ 0 then

ℓ1(A′) = ℓ1(A)− 2. In both cases, we can use the induction hypothesis to give us a permutation ρ1 of x1

which produces x′0 (up to reordering of records). Define the permutation ρ as the composition of ρ1 with

the swap of (1, 1) and (2, 2). Then C(ρ(x0)) = C(x′0) as desired.

Proof of Theorem 3.2.4. Fix x and x′ in the same data universe D ∈ DcSwap . Let Δ = drHamS(x, x′). We

335



need to prove thatDMult[Px(C(Z)),Px′(C(Z))] ≤ ΔεD or equivalently

Px[C(σ(x)) = C(z)] ≤ exp(ΔεD)Px′
[
C(σ(x′)) = C(z)

]
,

for all possible swapped datasets z, where the probability is over the random permutation σ sampled by

the PSA. Since the output C(Z) does not depend on the ordering of the records in the input x, we may

without loss of generality reorder the records in x′. Hence, there exists a permutation ρwhich fixes exactly

n− Δ records such that ρ(x′) = x by Lemma B.3.4.

Since

Px[C(σ(x)) = C(z)] =
∑
z′

Px
[
σ(x) = z′

]
,

where the sum is over datasets z′ with drHamS(z, z′) = 0, it suffices to show

Px[σ(x) = z] ≤ exp(ΔεD)Px′
[
σ(x′) = z

]
, (B.2)

for all possible swapped datasets z.

Recall

b = max{0, nm·· | there are two records with different values in matching stratumm}.

If b = 0, then x and x′ only differ by reordering of rows and hence εD = 0 satisfies the DP condition (B.2)

by LemmaB.3.3. Having taken care of the case b = 0, from herein wemay assume b ≥ 2. (The case b = 1

is not possible.)

If p ∈ {0, 1} then εD =∞ and the DP condition (B.2) holds vacuously.

All that remains is to prove (B.2) holds in the case where 0 < p < 1. Since x and x′ themselves differ

by the permutation ρ, we can permute x to produce z if and only if we can permute x′ to produce z. Thus,
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either Px(σ(x) = z) and Px′(σ(x′) = z) are both zero, or they are both non-zero. We need only focus on

the case where both probabilities are non-zero.

Recall that any permutation σ selected with non-zero probability by the PSA can be decomposed as

σ = σM ◦ . . . ◦ σ1, where σm will leave any unit i with matching categoryMi 6= m fixed. Write xm for

the records of xwithMi = m. Because we perform random selection and permutation independently for

each stratumm,

Px(σ(x) = z)
Px′(σ(x′) = z)

=

∏M
m=1 Px(σm(xm) = zm)∏M
m=1 Px′(σm(x′m) = zm)

.

Thus, to prove (B.2) it suffices to show

Px(σm(xm) = zm)
Px′(σm(x′m) = zm)

≤ exp(ΔmεD), (B.3)

for allmwhere Δm = drHamS(xm, x′m).

Fix somem. For notation simplicity, whenever it is not essential to indicate the role ofm, we will drop

the subscriptm fromherein (until the endwhenweneed tooptimize overm). (This is the same as assuming

VMatch is empty.)

Let Gx→z = {permutation g : g(x) = z}. We use the notation g instead of σ to emphasise that g is

not random, while the permutation σ chosen by Algorithm 3.2.1 is random. There is a bijection between

Gx→z andGx′→z given by g 7→ g ◦ ρ. Since

Px(σ(x) = z) =
∑

g∈Gx→z

Px(σ = g),

we will prove (B.3) by showing

Px(σ = g) ≤ exp(ΔεD)Px′(σ = g ◦ ρ),
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for all g ∈ Gx→z. (Note that this may not obtain the best possible bound for specific x and x′, but it is

mathematically easier to bound Px(σ = g)/Px′(σ = g ◦ ρ) than bound the desired ratio∑
g∈Gx→z

Px(σ = g)∑
g∈Gx→z

Px′(σ = g ◦ ρ)

directly. Yet in the case whereGx→z andGx′→z are singletons, this approach gives tight bounds.)

Let kg be the number of records (in categorym) which were deranged (i.e. not fixed) by g and let d(k)

denote the k-th derangement number (i.e. the number of derangements of size k):

d(k) = k!
k∑

j=0

(−1)j

j!

= kd(k− 1) + (−1)k for k ≥ 0. (B.4)

Fix g ∈ Gx→z and g′ = g◦ρ. We now computePx(σ = g). The permutation g is sampled inAlgorithm

3.2.1 via a two-step procedure. Firstly records are independent selected for derangement with probability

p. Suppose that g deranges records {i1, . . . , ikg}. Since we disallow the possibility of selecting only one

record,

Px(the selected records are {i1, . . . , ikg}) =
pkg(1− p)n−kg

1− Px(exactly 1 record selected)
.

Secondly we sample uniformly from the set of all derangements of kg records. Hence, we sample g with

probability [d(kg)]−1and therefore,

Px(σ = g) =
pkg(1− p)n−kg

[1− Px(exactly 1 record selected)]d(kg)
.

This gives

Px(σ = g)
Px′(σ = g′)

= oδ
d(kg − δ)
d(kg)

, (B.5)

338



where o = p/(1− p) and δ = kg − kg′ .

Our aim is now to bound the RHS of (B.5) by exp(ΔεD). Since g′ and g differ only by the permutation

ρ (which fixes n−Δ records), we must have kg −Δ ≤ kg′ ≤ kg +Δ. Therefore, there are at most 2Δ+ 1

possible cases:

δ ∈ S =
{
δ ∈ Z | −Δ ≤ δ ≤ Δ and

(
kg − δ = 0 or 2 ≤ kg − δ ≤ n

)}
=
{
δ ∈ Z | max(−Δ, kg − n) ≤ δ ≤ min(Δ, kg) and δ 6= kg − 1

}
.

Suppose 0 < p ≤ 0.5. Since d(k) is non-decreasing (except at k = 1 which is not realizable by g or g′)

and (1− p)/p ≥ 1, the RHS of (B.5) is maximised when kg′m = nm and kgm = nm − Δm (i.e. δ = −Δm),

in which case

Px(σ = g)
Px′(σ = g′)

= o−Δ
M∏
m=1

d(nm)
d(nm − Δm)

≤ o−Δ
M∏
m=1

(nm + 1)Δm

≤ o−Δ(b+ 1)Δ

= exp(ΔεD), (B.6)

for εD = ln(b+ 1)− ln o. (The second line uses Lemma B.3.5 which is given below this proof.)

Now suppose 0.5 < p < 1. In the case of δm = Δm, the ratio (B.5) is maximised at oΔm when

kgm = Δm = 2. Moreover, oΔm also dominates oδm d(kgm−δm)
d(kgm )

for all 0 ≤ δm ≤ Δm and all possible kgm .

Thus,

Px(σ = g)
Px′(σ = g′)

≤
M∏
m=1

max
{
oΔm , oδm

d(kgm − δm)
d(kgm)

: δm ∈ Sm and δm < 0
}
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≤
M∏
m=1

max
{
oΔm , oδm(kgm − δm + 1)−δm : δm ∈ Sm and δm < 0

}
≤

M∏
m=1

max
{
oΔm , o−δm(nm + 1)δm : 0 < δm ≤ Δm

}
≤ max

{
oΔ, o−δ(b+ 1)δ : 0 < δ ≤ Δ

}
.

If o−1(b+ 1) ≥ 1 then o−δ(b+ 1)δ is maximised at δ = Δ. Otherwise o−δ(b+ 1)δ < 1 < oΔ. Hence

Px(σ = g)
Px′(σ = g′)

≤ exp(ΔεD), (B.7)

for εD = max
{
ln o, ln(b+ 1)− ln o

}
. Combining (B.6) and (B.7), we have

εD =


ln(b+ 1)− ln o if 0 < p ≤ 0.5 and b > 0,

max
{
ln o, ln(b+ 1)− ln o

}
if 0.5 < p < 1 and b > 0.

(B.8)

When b > 0, we have b ≥ 2 and hence also max
{
ln o, ln(b + 1) − ln o

}
= ln(b + 1) − ln o for

0.5 < p ≤
√
b+ 1/(

√
b+ 1+ 1). Thus, (B.8) simplifies to

εD =


ln(b+ 1)− ln o if 0 < p ≤

√
b+1√

b+1+1 and b > 0,

ln o if
√
b+1√

b+1+1 < p < 1 and b > 0.

as required.

Lemma B.3.5. For any k ∈ N and any a ∈ N satisfying 0 ≤ a ≤ k and a 6= k− 1,

d(k)
d(k− a)

≤ (k+ 1)a,

where d(k) is the number of derangements of k elements (see equation (B.4)).

Proof. We use induction on k. The base cases k = 0, 1, 2 are straightforward to verify since d(0) =
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d(2) = 1 and d(1) = 0. For the induction step, we can assumem ≥ 3 so that d(k− 1) ≥ 1 and hence

d(k)
d(k− a)

=
d(k)

d(k− 1)
d(k− 1)
d(k− a)

≤ d(k)
d(k− 1)

ka−1

by the induction hypothesis. The result then follows by the identity (B.4):

d(k)
d(k− 1)

=
kd(k− 1) + (−1)k

d(k− 1)

≤ k+ 1.

B.4 Optimality of Theorem 3.2.4

Throughout this appendix wemake the following assumptions. Following Proposition 1, wemay assume

there is a single matching variable, a single non-matching holding variable and a single swapping variable.

LetM ,H andS be the domains for the matching variable, the non-matching holding variable and the

swapping variable respectively. DefineX× =
⋃∞

k=1(M ×H ×S )k. (NoteXCEF ⊂ X×, but we cannot

assume the reverse inclusion.)

Recall that b = max{0, nm·· | there are two records with different values in matching stratumm ∈

M }; that o = p/(1− p); and that d(k) denotes the k-th derangement number (see equation (B.4)).

Theorem B.4.1. Assume that |H |, |S | ≥ 2 (so thatD ∈ DcSwap are not all singletons and swapping is not

completely vacuous).

Suppose that the PSA satisfies εD-DP(X×,DcSwap , drHamS,DMult). Then:

(A) If p ∈ {0, 1}, then there exists a universeD0 ∈ DcSwap such that εD0 =∞.

(B) If 0 < p < 1, then there exists a universeD0 ∈ DcSwap such that εD0 ≥ ln o.
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(C) If 0 < p < 1, then there exists a universeD0 ∈ DcSwap such that εD0 ≥ 0.5 ln[d(b)/d(b−2)]− ln(o).

The above values of εD0 describe lower bounds on the privacy loss of the PSA; any DP specification for

the PSA must have a privacy loss budget at least equal to these values. Comparing these lower bounds to

the privacy loss budget ε(1)D given in Theorem 3.2.4 shows that ε(1)D is optimal in the weak sense that there

exists universesD0 for which ε
(1)
D0

is arbitrarily close to the best possible budget ε(inf)D0
.

Theorem B.4.2. Assume |H |, |S | ≥ 4. For eachD0 ∈ DcSwap , define

ε(inf)D0
= inf{εD0 | the PSA satisfies εD-DP(X×,DcSwap , d

r
HamS,DMult)}.

(That is, ε(inf)D is the pointwise infimum over all privacy loss budgets εD satisfied by the PSA.) Then ε(inf)D is

the smallest budget under which the PSA satisfies the DP flavor (X×,DcSwap , drHamS,DMult).

Let ε(1)D be the privacy loss budget given in Theorem 3.2.4. There existsD0 ∈ DcSwap such that

ε(1)D0
− ε(inf)D0

≤


f(b) if 0 < p <

√
b+1√

b+1+1 and b > 0,

0 otherwise,

where

f(b) =
1
2
ln

[
(b+ 1)2

b(b− 1)
1+ e

2(b−2)!

1− e
2b!

]
,

is a positive, monotonically decreasing function for b ≥ 2 which converges to zero, and satisfies, for example,

f(b) ≤ 0.148 for all b ≥ 10.

We emphasize that this is a weak form of optimality. A budget εD can be tight at the level of the output

(in the sense that Px(C(σ)(x)=z)
Px′ (C(σ)(x′)=z) = exp[εDdrHamS(x, x′)] for all x, x′ ∈ D, all z and allD); or at the level of
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the data (in the sense thatDMult(Px,Px′) = εDdrHamS(x, x′) for all x, x′ ∈ D and allD); or at the level of

the universe (in the sense thatDMult(Px,Px′) = εDdrHamS(x, x′) for some x, x′ ∈ D, and allD ∈ DcSwap).

The optimality of Theorem 3.2.4 is weaker than any of these notions; all we have shown is that, for all

δ > 0, there exists someD0 ∈ DcSwap and some x, x′ ∈ D0 such that ε(1)D0
− DMult(Px,Px′) < δ. Part of

the sub-optimality arises from the fact that ε(1)D is a function only of p and b. We could perform a tighter

analysis of the PSA by allowing εD to depend on D in more complex ways (i.e. by allowing εD to be a

function of other properties ofD, not just b).

Proof of Theorem B.4.1. Result (A) follows from Propositions 2 and 3. Result (B) follows from Proposi-

tion 4. Result (C) follows from Propositions 5 and 6.

Proof of Theorem B.4.2. Because the multiverseDcSwap partitionsX×, the DP constraint imposed on each

universe D is independent of the constraint on another universe D′ 6= D. Hence the PSA does indeed

satisfy ε(inf)D -DP(X×,DcSwap , drHamS,DMult). Clearly, ε(inf)D ≤ εD holds for all D and all budgets εD for

which the PSA satisfies εD-DP(X×,DcSwap , drHamS,DMult). Hence ε(inf)D is the smallest budget for which

the PSA satisfies the DP flavor (X×,DcSwap , drHamS,DMult).

Moving on to the second half of the theorem, we have by Theorem B.4.1 that

ε(1)D0
− ε(inf)D0

= 0,

if b = 0 or p = 0 or
√
b+1√

b+1+1 ≤ p ≤ 1. On the other hand, if 0 < p <
√
b+1√

b+1+1 and b > 0, then

ε(1)D0
− ε(inf)D0

≤ ln(b+ 1)− 1
2
ln[d(b)/d(b− 2)]

=
1
2
ln

(b+ 1)2

⌊
(b−2)!

e + 1
2

⌋
⌊ b!

e + 1
2
⌋

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≤ 1
2
ln

[
(b+ 1)2

b(b− 1)
1+ e

2(b−2)!

1− e
2b!

]

= f(b),

where the first line follows by Proposition 5 and the second line by the identity d(k) =
⌊ k!

e + 1
2
⌋
. The

second term inside the logarithm
1+ e

2(b−2)!

1− e
2b!

has a numerator which decreases with b and a denominator which increases. Hence this term is monoton-

ically decreasing. The first term inside the logarithm (b+1)2
b(b−1) has negative first derivative and hence is also

decreasing. Therefore, f(b) is monotonically decreasing. Moveover, f(b) is positive and converges to zero

because both terms inside the logarithm are greater than one and converge to one.

Proposition 2. Suppose p = 0 and |H |, |S | ≥ 2. Then there existsD0 ∈ DcSwap such that C(x) 6= C(x′)

for some x, x′ ∈ D0. Hence the PSA does not satisfy εD-DP(X×,DcSwap , drHamS,DMult) for any finite εD0

and any suchD0.

Proof. Firstwe showthat such auniverseD0 ∈ DcSwap exists. Given |H |, |S | ≥ 2, thedatasets [(m, h, s), (m, h′, s′)]

and [(m, h, s′), (m, h′, s)] (for any choice of m ∈ M , h 6= h′ ∈ H and s 6= s′ ∈ S ) are in the same

universeD0 ∈ DcSwap and satisfy C(x) 6= C(x′).

Let x, x′ ∈ X× be datasets which are in the same universe D0. Suppose C(x) 6= C(x′). If p = 0

then the permutation σ sampled by the PSA must be the identity. Thus, Px′(C(σ(x′)) = C(x)) = 0 but

Px(C(σ(x)) = C(x)) = 1. Since drHamS(x, x′) <∞, the DP condition

Px(C(σ(x)) = C(x)) ≤ exp[drHamS(x, x′)εD0 ]Px′(C(σ(x′)) = C(x)),
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cannot be satisfied by a finite εD0 .

Proposition 3. Suppose p = 1 and |H |, |S | ≥ 2. Then there existsD0 ∈ DcSwap with nm0h0 = nm0h′0 =

nm0s0 = nm0s′0 = 1 for some m0 ∈M , h0 6= h′0 ∈ H and s0 6= s′0 ∈ S . Hence the PSA does not satisfy

εD-DP(X×,DcSwap , drHamS,DMult) for any finite εD0 and any suchD0.

Proof. The universe given in the proof of Proposition 2 satisfies the property: nm0h0 = nm0h′0 = nm0s0 =

nm0s′0 = 1 for somem0 ∈M , h0 6= h′0 ∈H and s0 6= s′0 ∈ S .

Now take anyD0 ∈ DcSwap which satisfies this property. Then there exists x, x′ ∈ D0 which differ by a

single swap between (m0, h0, s0) and (m0, h′0, s′0) – that is,

x =
[
(m0, h0, s0), (m0, h′0, s′0), x3:n

]
,

x′ =
[
(m0, h0, s′0), (m0, h′0, s0), x3:n

]
,

where x3:n = [(Mi,Hi, Si), i = 3, . . . , n]. Then nxm0h0s0 = nxm0h′0s′0
= 1 and nxm0hs0 = nxm0h0s = 0 for all

h 6= h0 and all s 6= s0. Since no records can be fixed by σwhen p = 1, we have nσ(x)m0h0s0 = 0 for any possible

σ and hence Px(C(σ(x)) = C(x)) = 0 but Px(C(σ(x′)) = C(x)) > 0.

Proposition 4. Suppose that 0 < p < 1 and |H |, |S | ≥ 2. Then there existsD0 ∈ DcSwap andm0 ∈M

such that nm0 ≥ 2 and nm0h, nm0s ∈ {0, 1} for all h ∈ H and s ∈ S . A necessary condition for the PSA

to satisfy εD-DP(X×,DcSwap , dhhHamS,DMult) is that εD0 ≥ ln o for any suchD0.

Proof. Let x, x′ ∈ D0 with drHamS(xm0 , x′m0) = 2 and drHamS(xm, x′m) = 0 for allm 6= m0. (Such a pair

of datasets exist because nm0 ≥ 2.) Reorder the records in x′ so that there exists a permutation ρ which

deranges exactly two records and satisfies ρ(x′) = x. (Such a permutation exists by Lemma B.3.4.)
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Because nm0h, nm0s ∈ {0, 1} for allm ∈M and s ∈ S , there are no vacuous swaps in them0 stratum.

That is, g(xm0) 6= xm0 for all permutations g which are not the identity id. Hence Gxm0→xm0
= {id}.

Thus,

Px(C(σ(x)) = C(x))
Px′(C(σ(x′)) = C(x))

=
Px(C(σm0(xm0)) = C(xm0))

Px′(C(σm0(x′m0)) = C(xm0))

=
Px(σm0 = id)

Px′(σm0 = ρ)

= o−2.

Hence,Px′(C(σ(x′)) = C(x)) ≤ exp[drHamS(x, x′)εD0 ]Px(C(σ(x)) = C(x)) if and only if εD0 ≥ ln o.

Proposition 5. Suppose that 0 < p < 1 and |H |, |S | ≥ 4 . Then there existsD0 ∈ DcSwap which has the

following properties:

max
h

nm0h ≤
b
2
− 1 and max

s
nm0s ≤

b
2
− 1, (B.9)

for some m0 ∈M with nm0 = b, and there exists h1 6= h2 ∈H and s1 6= s2 ∈ S such that

nm0h1 = nm0h2 = nm0s1 = nm0s2 = 1. (B.10)

A necessary condition for the PSA to satisfy εD-DP(X×,DcSwap , drHamS,DMult) is that

εD0 ≥ 0.5 ln[d(b)/d(b− 2)]− ln(o),

for anyD0 satisfying the above properties.

Wewill use the following two lemmata in the proof of Proposition 5.

Lemma B.4.3. For any x and any permutation g,

drHamS(x, g(x)) ≤ kg,
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where kg is the number of records which are deranged by g.

Proof. For every record (Mi,Hi, Si) permuted by g, the counts in the fully-saturated contingency table

can change by at most 2: the count nMiHiSi will decrease by (at most) 1 and the count nMi,Hi,Sg(i) will

increase by (at most) 1. Thus, in sum, the counts nmhs can change by at most 2kg. That is,

ℓr1(x, g(x)) =
∑
m,h,s

∣∣∣nxmhs − ng(x)mhs

∣∣∣ ≤ 2kg.

The desired result then follows by Lemma B.3.1.

Lemma B.4.4. Suppose thatD0 ∈ DcSwap satisfies (B.9). Then there exists x ∈ D0 and a derangement g of

xm0 such that

drHamS(xm0 , g(xm0)) = b.

(In fact, such an x and g exist if and only ifD0 satisfies (B.9).)

Proof. We suppress the subscriptm0 in xm0 throughout the proof.

We begin by consider the cases b = 1 and b = 0 individually. Equation (B.9) implies that b 6= 1.

Similarly, no derangement of x exists when b = 1. In the case of b = 0, the result is also trivial. Hence we

may assume throughout that b ≥ 2.

“⇒”: Suppose that D0 does not satisfy (B.9). Then nm0 < b or there exists (WLOG) a swapping

category s0 such that nm0s0 ≥ b/2. In the first case, any permutation g of x deranges at most nm0 records

and hence drHamS(x, g(x)) < b byLemmaB.4.4. By the pigeonhole principle, the second case implies every

derangement g of xm0 must send a record with swapping value s0 to a record which also has value s0. Yet
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the counts nmhs are unaffected by permutations of records within the same swapping category s. Hence

∑
h,s

∣∣∣nxm0hs − ng(x)m0hs

∣∣∣ ≤ 2(kg − 1) < 2b,

(where the first inequality follows by the reasoning in the proof of Lemma B.4.3). The desired result then

follows by Lemma B.3.1.

“⇐”: Assume for now that b is even. By equation (B.9), there exists x ∈ D0 whose records are ordered

so that every odd record has a different VSwap and VHold compared to the subsequent record. That is,

Hi 6= Hi+1 and Si 6= Si+1 for all odd i. (One can construct x by picking any x′ ∈ D0, ordering the records

of x′ ∈ D0 so that the values of VHold differ between consecutive records, and then permuting VSwap so

that their values also differ between consecutive records.)

Construct g by swapping odd and even records:

g(i) =


i+ 1 if i odd,

i− 1 if i even.

Then kg = b and drHamS(g(x), x) = b.

Now suppose that b is odd. Then equation (B.9) implies that there exists x ∈ D0 such that

1) Hi 6= Hi+1 and Si 6= Si+1 for all odd i < nm0 ; and

2) Hnm0
/∈ {Hnm0−1,Hnm0−2} and Snm0

/∈ {Snm0−1, Snm0−2}.

Why is this true? We already know that 1) must be true by the proof for even b. Suppose that 2) is not

true for any x. Then it must not be true for any x′ which are just reorderings of the records of x. Hence, for

every adjacent pair (i, i+ 1) (with i < nm0 odd), we must haveHnm0
∈ {Hi,Hi+1} or Snm0

∈ {Si, Si+1}.

Yet this would contradict equation (B.9).
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Construct g by swapping odd and even records, bar the final three records, which are permuted. That

is,

g(i) =



i+ 1 if i < nm0 odd,

i− 1 if i < nm0 − 1 even,

nm0 if i = nm0 − 1,

nm0 − 2 if i = nm0 .

As before, kg = b and drHamS(g(x), x) = b.

Proof of Proposition 5. Fix someD0 ∈ DcSwap which satisfies the properties (B.9) and (B.10). Such a uni-

verse exists when |H |, |S | ≥ 4 because, for example,

x = [(m0, h1, s1), (m0, h2, s2), (m0, h3, s3), (m0, h3, s3), (m0, h4, s4), (m0, h4, s4)],

satisfies these properties.

Let ε0 = 0.5 ln[d(b)/d(b− 2)]− ln(o). We want to prove that

Px(C(σ(x)) = C(z))
Px′(C(σ(x′)) = C(z))

= exp
[
drHamS(x, x′)ε0

]
, (B.11)

for some x, x′, z ∈ D0.

We will construct x and x′ so that they are identical except within the matching categorym0. Then by

independence between matching categories,

Px(C(σ(x)) = C(z))
Px′(C(σ(x′)) = C(z))

=
Px(C(σm0(xm0)) = C(zm0))

Px′(C(σm0(x′m0)) = C(zm0))
.

This justifies dropping the subscriptm0 from xm0 and ignoring recordswithmatching categories not equal
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tom0 throughout the remainder of the proof.

We construct x as follows: The first two records of x are (m0, h1, s1) and (m0, h2, s2). The remainder

of the records satisfy (B.9). Hence construct the remainder of x according to the procedure given in the

proof of Lemma B.4.4. Let x′ be the same as x, except interchange the values of the swapping variable of

the first two records. That is, x′ = [(m0, h1, s2), (m0, h2, s1), x3:n].

Lemma B.4.4 implies there exists a permutation g0 which fixes the first two records and deranges the

remaining records such that

drHamS(x, g0(x)) = b− 2.

Moreover, for g′0 = g0 ◦ (12), we have

drHamS(x′, g′0(x′)) = b.

Set z = g0(x) = g′0(x′).

Now we will prove (B.11) holds for these choices of x, x′ and z. We have

Px(C(σ(x)) = C(z))
Px′(C(σ(x′)) = C(z))

=

∑
z′ re-ordering of z

Px(σ(x) = z′)∑
z′ re-ordering of z

Px′(σ(x′) = z′)
.

Fix some z′which is a re-orderingof z– i.e. some z′withC(z′) = C(z). Wewill showthat Px(σ(x)=z′)
Px′ (σ(x′)=z′) =

exp(2ε0), when assuming that one of the numerator or the denominator is non-zero (which implies the

other is also non-zero, since x and x′ differ by a single swap). Since both the numerator and denominator

are non-zero when z′ = z, this result will prove (B.11).

We know that drHamS(z, z′) = 0 and drHamS(x′, z) = b. Then using the triangle inequality (twice, once

for≤ and once for≥), drHamS(x′, z′) = b. Lemma B.4.3 implies that kg = b for all g ∈ Gx′→z′ .

By the same reasoning, drHamS(x, z′) = b−2. This implies kg ≥ b−2 for all g ∈ Gx→z′ byLemmaB.4.3.
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We now show that, in fact, kg = b− 2. By construction,

nxm0h1s1 = nxm0h2s2 = 1 and nxm0h1s = nxm0h2s = nxm0hs1 = nxm0hs2 = 0,

for all h /∈ {h1, h2} and s /∈ {s1, s2}. These equations also hold for z and hence also for z′. Thus, all

g ∈ Gx→z′ must fix the first two records and hence kg ≤ b− 2.

In the proof of Theorem 3.2.4, we showed that Px(σ = g) only depends on kg and, furthermore, that

Px(σ = g)
Px′(σ = g′)

=
(1− p)2d(b)
p2d(b− 2)

,

when kg = b− 2 and kg′ = b. Thus,

Px(σ(x) = z′)
Px′(σ(x′) = z′)

=

∑
g∈Gx→z′

Px(σ = g)∑
g′∈Gx′→Z′

Px′(σ = g′)
=

(1− p)2d(b)
p2d(b− 2)

= exp(2ε0),

since kg = b− 2 for all g ∈ Gx→z′ and kg′ = b for all g′ ∈ Gx′→z′ .

Proposition 6. Suppose that 0 < p ≤ 0.5 and |H |, |S | ≥ 2. Then there exists D0 ∈ DcSwap such that

b = 2 and

nm0h1 = nm0h2 = nm0s1 = nm0s2 = 1, (B.12)

for some m0 ∈M with nm0 = b and some h1 6= h2 and s1 6= s2.

A necessary condition for the PSA to satisfy εD-DP(X×,DcSwap , drHamS,DMult) is that

εD0 ≥ 0.5 ln[d(b)/d(b− 2)]− ln(o),

for any suchD0.

Proof. Because |H |, |S | ≥ 2, any dataset of the form [(m0, h1, s1), (m0, h2, s2)] satisfies (B.12). More-

over, x is in some universe D0, thereby proving the first half of the proposition. The second half of the
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proposition followsby the same reasoning as theproof ofProposition5 applied to x = [(m0, h1, s1), (m0, h2, s2)]

and x = [(m0, h1, s2), (m0, h2, s1)].

B.5 Proof andDiscussion of Theorem 3.3.1

Proof of Theorem 3.3.1. We first analyze the TDA for producing the PL file. Abowd et al. (2022a) proves

that the household NMF mechanism Th satisfies ρ-DP(XCEF, {XCEF}, dhhrbs ,DNoR), where ρ2 = 0.07

and dhhrbs is the input premetric corresponding to bounded DP on household-records (Appendix A.4).

But (XCEF, {XCEF}, dhhrbs ,DNoR) and (XCEF, {XCEF}, dhhHamS,DNoR) are equivalent DP flavors by Propo-

sition 27 of Bun and Steinke (2016). Hence Th satisfies ρ-DP(XCEF,DcTDA , d
p
HamS,DNoR) by Proposi-

tions 2.4.15 and 2.4.13 with ρ2 = 0.07. We can similarly conclude that Tp satisfies ρ-DP(XCEF,DcTDA ,

dpHamS,DNoR) with ρ2 = 2.56. Then by composition, the mechanism Tph = [Tp,Th] has privacy loss

budget ρ2 = 0.07+2.56 = 2.63. Proposition 2.4.11 implies the invariants cTDA(xp, xhh) – considered as

a data-release mechanism – satisfies ρ-DP(XCEF,DcTDA , d
p
HamS,DNoR) with ρ2 = 0. Therefore, the com-

posedmechanismT = [Tph, cTDA] has budget ρ2 = 2.63. The second step of the TDA is post-processing

on T and hence has the same budget.

The argument for producing the DHC file is almost analogous. The composed mechanism Tph =

[Tp,Th] has budget ρ2 = 7.70 + 4.96 = 12.66. Now the second step of the TDA also uses the PL file

P. Hence, this second step is post-processing on the composedmechanism [Tph,P, cTDA]. This composed

mechanism has budget ρ2 = 12.66+ 2.63+ 0 = 15.29.

The second half of the theorem follows from Proposition 2.4.11. (Hence it can be generalized from

(XCEF,Dc′ , d
p
HamS,DNoR) to any DP flavor (XCEF,D , dX ,DPr) satisfying the assumptions of this propo-

sition.)
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The second step of the TDA requires access to both theNMF [Tp(xp),Th(xhh)] and the invariant statis-

tics cTDA(xp, xhh) computed on the Census Edited File. Under the DP flavor (XCEF, {XCEF}, dX ,DPr),

the invariant statistics cTDA(xp, xhh) cannot be released with finite budget. So the second step of the TDA

is not post-processing (in the sense given in Section 2.5) under this flavor – it is only post-processing when

conditioning on the invariants. In fact, the second half of Theorem 3.3.1 shows that any argument which

relies on TDA’s second step being post-processing must necessarily use a DP flavor which conditions on

the invariants cTDA.

It is also necessary to use person-records as the resolution of the Hamming distance in the TDA’s DP

specification. While the household mechanism Th satisfies (XCEF,DcTDA , dhhHamS,DNoR), the sensitivity

of the person-level queryQp due to a single change in a household record can be very large. (In the Census

Edited File, themaximumpossible household size is 99,999 (PopulationReference Bureau andUSCensus

Bureau’s 2020Census Data Products andDissemination Team, 2023).) This meansTp can satisfy (XCEF,

DcTDA , dhhHamS,DNoR) only with a very large amplification in the privacy loss budget.

B.6 The 2010 US Census Disclosure Avoidance System

This appendix collates information about the 2010 disclosure avoidance system (DAS) which has been

made public by the US Census Bureau. Most of this information also applies to the 2000 DAS – as it was

very similar to the 2010 DAS – but likely not to the 1990 DAS, which used a significantly different data

swapping procedure (McKenna, 2018).

The main references are McKenna (2018); McKenna and Haubach (2019) and Abowd (2021), with

additional information spread across various other USCB publications (Zayatz et al., 2010; Zayatz, 2003;

Hawala, 2008;USCensusBureau, 2022a, 2021c;Hawes, 2021b;Zayatz, 2007;Lauger et al., 2014;Garfinkel,
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2019;Hawes et al., 2021; Steel andZayatz, 2003; Lemons et al., 2015). However, the publicly available doc-

umentation on the 2010DAS is deliberately incomplete as some implementation details have been deemed

confidential by the USCB due to concerns that they may allow the privacy protections of the 2010 DAS

to be undermined. We are not the only researchers external to the USCB who have attempted to repro-

duce the 2010DAS (Kim, 2015; Radway and Christ, 2023; Christ et al., 2022; Keyes and Flaxman, 2022);

however, we believe this documentation is the most comprehensive of those that are currently publicly

available.

The primary protection method of the 2010 DAS was data swapping. Special tabulations had addi-

tional rules-based protections (seeMcKenna (2018, Appendix A) for these rules). Synthetic datamethods

were used toprotect the confidentiality of groupquarters (GQs) since swappingwas infeasible forGQsdue

to their sparsity and the consequent lack of matching records (Hawala, 2008). These synthetic data meth-

ods involved replacing some GQ data with predicted values from a generalized linear model (McKenna,

2018, Section 6.5).

The data swapping procedure for the 2000 and 2010 DAS had three main steps:

Step 1: A random set S of household records was selected.

Step 2: Each record in Swas paired with a similar, nearby household.

Step 3: The location of each household in Swas swapped with the location of its pair.

We will describe each of these steps in detail below. The data swapping procedure was applied only

to households (i.e. ‘occupied housing units’ (US Census Bureau, 2012)) and not to unoccupied housing

units or group quarters. At the end of step 3, the DAS swapping procedure outputs a dataset – called

the post-swapped dataset – which differs from its input (the Census Edited File) only on the locations of

the selected households and their pairs. All publications from the 2010 Census were derived from this
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post-swapped dataset (Zayatz et al., 2010; Lauger et al., 2014). (The post-swapped dataset is called the

Hundred-percent Detailed File by the USCB.)

Step 1: Household records were randomly selected into the set S with a probability that, for 2010,

depended on (possibly amongst other factors):

(A) The size of the household’s block (larger blocks decreased the probability of selection)

(B) Whether the household contained individuals of a race category not found elsewhere in its block
(unique race categories increased the probability of selection)

(C) The imputation rate within the household’s block (higher imputation rates decreased the probabil-
ity of selection)

(D) Whether the household was unique within their geographical area on some set of variables (such
households were always included in S). (It isn’t clear what geographical area was used, but we spec-
ulate that it may have been either the household’s block group, tract or county.)

(E) Whether thehousehold recordwas imputed andwhatproportionof the recordwas imputed (McKenna,
2018; Abowd, 2021; McKenna and Haubach, 2019).

Note that (at least in 2000) the selection of records into S was not mutually independent. This was

because the number of records in S was capped so that the proportion of swapped records (i.e. the swap

rate) was controlled at pre-specified thresholds at the state level (Steel and Zayatz, 2003). (The swap rates

for each state were approximately equal (Steel and Zayatz, 2003).) There may have also been other depen-

dencies between households’ selection into S.

Exactly how a household’s probability of selection was calculated is not public information. However,

the USCB has confirmed that in 2010, the marginal selection probability (unconditional on other selec-

tions) was zero for totally-imputed households, and was non-zero for all other households (Abowd, 2021;

McKenna, 2018; Hawes et al., 2021).1

Step 2: For each household record in S, the DAS swapping procedure found a household which

1However, this appears to be contradicted by another statement from the USCB: “there was a threshold value
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• had the same number of adults (over 18 years of age);

• had the same number of minors (under 18 years of age);2

• had the same tenure status;3

• was located in the same state; but

• was located in a different block (Abowd, 2021; Garfinkel, 2019; US Census Bureau, 2021c).4

Ahouseholdwhich satisfies these requirements is called amatching household. Each record in Swas paired

with a matching household. In 2000 (and hence plausibly in 2010 as well), the swapping procedure prior-

itized pairings where

1. the matching record was also in S; or

2. both records were geographically close (e.g. they were in the same tract or county); or

3. the matching record had a high “disclosure risk” (Steel and Zayatz, 2003).

for not swapping in blocks with a high imputation rate” (McKenna and Haubach, 2019). Assuming that this im-
putation rate threshold was under 100%, there would be not-totally-imputed household records with zero selection
probability.

There is a possible explanation of this contradiction. All not-totally-imputed households may have had the possi-
bility of being swapped (in step 2) even though some of them had zero probability of being selected into S. Yet this
would require that, for all the not-totally-imputed households h with zero selection probability, there was a house-
hold h′ with non-zero selection probability thatmatched h on the five criteria in step 2 and furthermore that h and h′
could possibly bematched given theDAS’s prioritization of certainmatches over other matches (e.g. 1.-3. in step 2).
It seems infeasible to guarantee such requirements for all possible Census Edited Files.

2As a consequence, the paired housing units alsomatched on the occupancy status (occupied versus unoccupied),
and total number of persons.

3The 2010 Census classified households’ tenure as either owner-occupied (owned outright), owner-occupied
(with a loan or mortgage), renter occupied, or occupied without payment of rent. It is unclear if the swapping
procedure matched households on these categories, or only on the broader categories of A. owner-occupied vs B.
renter-occupied (including without payment of rent) (US Census Bureau, 2012, 2010).

4The public documentation from the USCB is contradictory on whether there were additional requirements
beyond the five listed here (Hawes et al., 2021; Abowd, 2021; US Census Bureau, 2022a).
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It is possible that there were other criteria for deciding the pairing when there were multiple matching

households. It is unclear how these criteria were ranked in their importance. (For example, how did the

swapping procedure decide between I. a pair where both records were in S but were in a different counties;

and II. a pair where both records were in the same block group but one record was not in S?) However, it

is likely that criteria 1. was considered the most important since it minimizes the number of swaps (Steel

and Zayatz, 2003).

Step 3: Steps 1 and 2 produced pairs of household records. These pairs consisted of one record from

S along with its matching record found in Step 2 (which may also be in S). In Step 3, all pairs had their

locations swapped. More exactly, for each household in S, the value of its block, block group, tract, and

countywere swappedwith the corresponding values of its paired record. (Note that a pair of recordsmight

have had the same block group, tract or county, in which case these values did not change. The paired

households were always in the same state (Garfinkel, 2019), so this location variable was never swapped.)

B.6.1 Comparing the 2010 DASwith the PSA

In this subsection, we compare the 2010 data swapping procedure with the PSA. The PSA is a general

algorithm (in the sense that its parameters – such as the swapping and matching variables – are not set

but must be chosen). Thus, for the purposes of this comparison, we will consider the PSA using the

implementation choices which attempt to mirror the 2010 DAS, as given in Subsection 3.2.5.

There are a number of key similarities between the data swapping procedure in the 2010 DAS and the

PSA from Subsection 3.2.5:

1. The swapping units (i.e. the records which are swapped) are household-records for both the 2010
DAS and the PSA.

2. Swap rates: The swap rate is defined as the fraction of records which were swapped. For the 2010
DAS, the swap rate is the fraction of records whichwere selected into S orwere pairedwith a record
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in S. This rate was explicitly controlled by the USCensus Bureau at the state level and all states had
approximately the same swap rate (Zayatz, 2003). Although the USCB has not released the value
of the 2010 DAS’s swap rate, at the national level it is purported to be between 2-4% (boyd and
Sarathy, 2022).

In comparison, the PSA controls the expected swap rate (where the expectation is over the random-
ness in the PSA). An implementer of the PSA cannot precisely fix the swap rate – but only the
expected swap rate (via the parameter p). However, when the number of records n is large, the
swap rate is typically very close to p, since its variance is approximately p(1− p)/n ≈ 0.

Hence, onemay set the PSA’s parameter p so that the swap rates for the PSA and the 2010DAS are
similar at the state and national levels.

3. The matching variables of the 2010 DAS include the household’s state, the number of adult oc-
cupants, the number of child occupants and the household’s tenure status. There may be other
matching variables (which have not been disclosed by the USCB), but Abowd (2021) implicitly
suggests that this is not the case. The PSA could be implemented with exactly the same match-
ing variables. However, the matching variables of the PSA implementation in Subsection 3.2.5 are
the household’s state and counts of adults and children – the household’s tenancy status was not
included. By excluding a matching variable, the PSA from Subsection 3.2.5 has fewer invariants
and its privacy loss budget ε is a conservative estimate, compared to a PSA implementation which
mirrored the 2010 DASmatching variables.

4. The swapping variables of the 2010 DAS and the PSA from Subsection 3.2.5 are the same: the
households’ county, tract, block group and block are swapped by the 2010 DAS and the PSA. (As
wewill discuss later in this subsection, the 2010DAS sometimes used the households’ county, tract
or block group as matching variables in an adaptive matching procedure. For our purposes, they
can still be considered as swapping variables; matching variables can always be swapped since swap-
ping them does not change the data.)

There are a number of significant differences between the PSA and the 2010 swapping procedure:

1. The 2010 DAS swapped pairs of records, whereas the PSA permutes multiple records. While any
permutation is equal to a sequence of multiple pairwise swaps, the 2010 DAS does not allow for
such arbitrary swaps. However, permutation swapping (under the name n-Cycle swapping) was
actively being investigated by theUSCB (DePersio et al., 2012; Lauger et al., 2014) before this work
was supplanted by their shift towards DP (McKenna andHaubach, 2019). The USCB found that
permutation swapping provided both better data utility and better data protection than the pair-
wise swapping used in 1990-2010Censuses; this is corroborated by ourDP analysis of permutation
swapping.
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2. Swap probabilities: The probability of a given household being swapped was not constant in 2010
DAS. In fact, swappingwashighly targeted tohouseholdswhichwere “vulnerable to re-identification”
(Hawes et al., 2021). Moreover, the probability of a household being swapped was dependent
on whether other households were selected for swapping (for example because the absolute state-
wide swap rates were controlled). In comparison, in the PSA, the probability of a household being
swapped is constant and independent of other households.

3. Adaptive matching: The 2010 DAS paired households according to a complicated matching pro-
cedure. For example, they prioritised matching households which shared the same county or tract.
(More details on their matching procedure is given in Step 2 of the 2010 DAS description given
above.) In essence, this means that sometimes the household’s county or tract were included as
matching variables, and sometimes they were not; and whether they were included was a function
of the household as well as its matching households. Thematching procedure for the PSA is much
simpler by comparison: thematching variables are static and the choice of how to swap the selected
matching households is made uniformly at random.

4. Non-vacuous swaps: A swap is vacuous if it does not change the dataset, except (possibly) by reorder-
ing the records. A pairwise swap is not vacuous if and only if the paired records have different values
for both their swapping variablesVSwap and their holding variablesVHold. It is unclear whether the
2010 DAS prohibited vacuous swaps but we suspect so. On the other hand, vacuous swaps are
allowed by the PSA.

B.6.2 Modifying the PSA to Further Alignwith the 2010 DAS

We discuss some possible extensions to the PSA in Part III (Bailie et al., 2025d). Those extensions aimed

to reduce the PSA’s invariants without foregoing its DP guarantee. In this subsection, we propose four

additional extensions to the PSA which are DP while being more faithful to the 2010 DAS. These exten-

sions address the differences between the 2010 DAS and the PSA identified in the previous subsection.

We show that these differences can be bridged without losing the guarantee of DP – at the cost of greatly

complicating the calculation of the privacy loss budget. We do not attempt these calculations; we only

argue why the privacy loss budgets for these extensions remain bounded away from infinity.
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First, we address one aspect of the 2010DASwhich cannot be incorporated into aDP swappingmecha-

nism. The 2010 DAS used disjoint, pairwise swapping (Lauger et al., 2014). This is not a transitive action

– its orbit space does not equal the universe induced by the swapping invariants – and hence it cannot

satisfy differential privacy. (A necessary condition for a mechanism T to be ε-DP is that Px(T ∈ ·) and

Px′(T ∈ ·) have common support for all x and x′ in the same data universe with dX (x, x′) < ∞. When

the SDCmethod is a random group action on x, as is the case for permutation swapping, this condition is

equivalent to the group action being transitive.)

VariableSwappingProbabilities ThePSAuses the same swappingprobability p for all records.

However, we can modify the PSA to use a different swapping probability pi for each record i. As long as

these probabilities are uniformly bounded away from zero and one (so that p−1
i and (1−pi)−1 are bounded

away from infinity), this modificationwill satisfy the sameDP flavor as the original PSA (with a finite bud-

get). The proof would follow the same strategy as in Appendix B.3; only the final computations would

change, as one would need to optimise over oi = pi/(1− pi) for all i.

Non-UniformPermutations ThePSA samples derangements of the selected records uniformly

at random, whereas the 2010 DAS prioritizes certain swaps over others. We can mirror this aspect of the

2010 DAS by sampling from a non-uniform distribution over the derangements. This would allow for

some derangments to be selected with higher probability than other derangments. The advantage here

is that some derangements, which result in poor data utility (such as when geographically-distant records

are swapped), can be under-sampled; while other, more desirable derangements can be over-sampled. This

would mimic the adaptive matching of the 2010 DAS. By reasoning which is analogous to the previous

extension, this extension will also retain the PSA’s DP flavor, provided that Px(σ = g)/Px′(σ = g′) is
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uniformly boundedby exp[O(
∣∣kg − kg′

∣∣)], for all derangements g and g′ (of kg and kg′ records respectively).

Prohibiting ImputedRecords From Being Swapped The 2010 DAS never swaps records

which have been completely imputed. (The rationale is that imputed records do not require privacy pro-

tection.) We can modify the PSA so that pi = 0 for all records i which are imputed. Suppose that the

records which are imputed are constant. If the PSA satisfies εD-DP(XCEF,DcSwap , dhhHamS,DMult), then

this modification would satisfy ε′D-DP(XCEF,DcSwap , d′X ,DMult), where

d′X (x, x′) =


dhhHamS(x, x′) if x, x′ do not differ on any imputed record,

∞ otherwise’

and ε′D ≤ εD since the maximum stratum size b is reduced when the imputed records are removed.

ProhibitingVacuous Swaps A swap (or more generally a permutation) is vacuous if it does not

change the dataset, except perhaps by re-ordering the records.

We assume that the 2010 DAS does not allow vacuous swaps. We can similarly prohibit the PSA from

allowing vacuous swaps. Instead of sampling derangements uniformly at random,wewouldput zero prob-

ability on vacuous derangements. Under the action of non-vacuous derangements, the orbit space is still

the entire data universe. Hence, this modification will still satisfy the same DP flavor as the PSA, however

the calculation of the privacy loss budget εD will be difficult as one must optimise Px(σ = g)/Px′(σ = g′)

over all permutations g and g′ which are non-vacuous with respect to x and x′, over all x, x′ ∈ D.
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C
Appendices to Chapter 5

C.1 Definition of supp(x | t, θ)

Weassume thatX is equippedwith a topology τX and thatG is the Borel σ-algebra induced by τX . Denote

the support of Pθ by

supp(Pθ) =
⋂
{S ⊂ X closed and Borel measurable | Pθ(S) = 1}. (C.1)

Here we mean ‘closed’ with respect to τX , not necessarily the topology induced by the metric d. (Gen-

erally we should not use the topology induced by d: Since d is typically discrete, this topology results in

supp(Pθ) = ∅ whenever X is uncountable1 and then Theorems 5.4.1 and 5.6.3 would be vacuous.) A

standard examplewould beX =
⋃

n∈NRn (i.e. the universe of datasetswith a finite number of real-valued

1IfX is uncountable, thenPθ({x}) = 0. Yet {x}c is closed under the discrete topology, and hence x /∈ supp(Pθ).
This argument applies for all x ∈ X ; thus supp(Pθ) = ∅.
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records) with the topology induced by the map

X → RN

x 7→ (x, 0, 0, . . .),

when RN is equipped with the product Euclidean topology. (We assume that G is Borel to ensure that

supp(Pθ) ∈ G .)

Similarly, assume thatT is equippedwith a topology τT and thatF is theBorel σ-algebra inducedby τT .

Analogously to (C.1), define supp(Px) ⊂ T for each x ∈ X . Write supp0(x | t) = {x | t ∈ supp(Px)}

and finally define

supp(x | t, θ) = supp(Pθ) ∩ supp0(x | t).

We assume that (X , τX ) and (T , τT ) are second countable (that is, there exist countable bases for τX and

τT ) to ensure that

Pθ(E1) = Px(E2) = 0, (C.2)

for any measurable E1 ⊂ supp(Pθ)c and E2 ⊂ supp(Px)c.

C.2 The Density RatioMetric IsWell-Defined

Proposition 7. The density ratio metric dDR is well-defined. That is, dDR(μ, ν) does not depend on the

choice of f, g and τ in (5.18).

For μ, ν ∈ Ω, write μ� ν to denote that μ is absolutely continuous with respect to ν.

We need the following result, which can be found in a standard probability-theory textbook (such as

(Billingsley, 2012, Exercise 32.6)):
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Lemma C.2.1. Let μ, ν, τ ∈ Ω such that μ � ν and ν � τ. Then μ � τ and the Radon-Nikodym

derivative dμ
dν satisfies

dμ
dν

=
f
g
, μ-a.e., (C.3)

where f, g are the τ-densities of μ and ν respectively and, on the RHS of (C.3), 0/0 = 0.

Proof. of Proposition 7: Let τ1, τ2 ∈ Ωand suppose μ and ν are both non-zero and absolutely continuous

with respect to both τ1 and τ2. Let f1 and f2 be the densities of μ with respect to τ1 and τ2 respectively.

Similarly, define g1 and g2 as the densities of νwith respect to τ1 and τ2.

Define τ = τ1 + τ2. Then τ1 � τ and τ2 � τ. By Lemma C.2.1,

f1
g1

=

dμ
dτ

/
dτ1
dτ

dν
dτ

/
dτ1
dτ

=

dμ
dτ
dν
dτ
, τ1-a.e.

Hence

τ1- ess sup
t,t′∈T o

f1(t)
g1(t)

g1(t′)
f1(t′)

= τ1- ess sup
t,t′∈T o

dμ
dτ (t)
dν
dτ(t)

dν
dτ(t

′)
dμ
dτ (t′)

≤ τ- ess sup
t,t′∈T o

dμ
dτ (t)
dν
dτ(t)

dν
dτ(t

′)
dμ
dτ (t′)

(C.4)

(Note we use the notation τ- ess sup to refer to the essential supremumwith respect to the measure τ.)

Now we prove the reverse inequality of (C.4). For any E ∈ F with τ1(E) = 0, we have that

τ
({

dμ
dτ

> 0
}
∩ E
)

= 0. (C.5)

(Otherwise μ(E) =
∫
E

dμ
dτdτ > 0 and hence μ 6� τ1.) By symmetry, (C.5) also holds with dν

dτ in place of

dμ
dτ . This implies

τ1- ess sup
t,t′∈T o

f1(t)
g1(t)

g1(t′)
f1(t′)

≥ τ- ess sup
t,t′∈T o

dμ
dτ (t)
dν
dτ(t)

dν
dτ(t

′)
dμ
dτ (t′)

. (C.6)

By combining (C.5) and (C.6), we get an equality between these two essential suprema. By exactly the
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same reasoning, we have that

τ2- ess sup
t,t′∈T o

f2(t)
g2(t)

g2(t′)
f2(t′)

= τ- ess sup
t,t′∈T o

dμ
dτ (t)
dν
dτ(t)

dν
dτ(t

′)
dμ
dτ (t′)

,

and hence

τ1- ess sup
t,t′∈T o

f1(t)
g1(t)

g1(t′)
f1(t′)

= τ2- ess sup
t,t′∈T o

f2(t)
g2(t)

g2(t′)
f2(t′)

.

Since logarithms are continuous, they are interchangeable with essential suprema:

τ1- ess sup
t,t′∈T o

ln
(
f1(t)
g1(t)

g1(t′)
f1(t′)

)
= ln

(
τ1- ess sup

t,t′∈T o

f1(t)
g1(t)

g1(t′)
f1(t′)

)
.

This proves that the value of dDR(μ, ν) is the same when computed using f1, g1 and τ1, as when computed

using f2, g2 and τ2.

That the density ratio metric dDR is well-defined (Proposition 7) is also an easy corollary of Proposi-

tion 12 below.

C.3 Metric Spaces

Definition C.3.1. Ametric d on a set S is a function S×S→ [0,∞] that satisfies the following properties

for all x, y, z ∈ S:

1. Positive definiteness: d(x, y) = 0 if and only if x = y;

2. Symmetry: d(x, y) = d(y, x); and

3. Triangle inequality: d(x, z) ≤ d(x, y) + d(y, z).

A premetric d on a set S is a function S× S→ [0,∞] that satisfies d(x, x) = 0 for every x ∈ S.

Note that the co-domain of a metric is the extended, non-negative real numbers; we allow a metric to

take the value of positive infinity. Metrics of this kind are sometimes referred to as extended-metrics, or

∞-metrics, to distinguish them from those metrics with co-domain [0,∞).
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Premetrics naturally arise in the context of differential privacy: The distorting function associated with

a DP flavour’s distortionmodel is a premetric Bailie et al. (2025b). It is also common inmanyDP flavours

that the ‘metric’ d onX is not in fact a metric, but only a premetric.

Definition C.3.2. Two metrics d1 and d2 (which are defined on the same set S) are strongly equivalent

(Carothers, 2000, p. 121) if there exist constants 0 < a ≤ b <∞ such that

ad1(x, y) ≤ d2(x, y) ≤ bd1(x, y),

for all x, y ∈ S.

Proposition 13 below proves that the multiplicative distance DMult and the density ratio metric dDR

are strongly equivalent on the space of probability measures (but not on the space Ω of σ-finite measures).

Lemma C.3.3. The multiplicative distance DMult is a metric on the collection of measures on (T ,F ).

Proof. Supposeμ, ν and τ aremeasures on (T ,F ). Toproveproperty 1. of ametric, note thatDMult(μ, ν) =

0 if and only if μ(S) = ν(S) for all S ∈ F . Yet this holds if and only if μ = ν. Property 2. follows by

observing

DMult(μ, ν) = sup
S∈F

∣∣∣∣ln μ(S)
ν(S)

∣∣∣∣ = sup
S∈F

∣∣∣∣− ln
μ(S)
ν(S)

∣∣∣∣ = sup
S∈F

∣∣∣∣ln ν(S)
μ(S)

∣∣∣∣ = DMult(ν, μ).

Property 3. is implied by

DMult(μ, ν) = sup
S∈F

|ln μ(S)− ln ν(S)|

= sup
S∈F

|ln μ(S)− ln τ(S) + ln τ(S)− ln ν(S)|

≤ sup
S∈F

|ln μ(S)− ln τ(S)|+ sup
S∈F

|ln τ(S)− ln ν(S)|
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= DMult(μ, ν) +DMult(τ, ν).

Lemma C.3.4. The density ratio metric dDR is a metric on the spaceΩ1 of probability measures on (T ,F ).

Proof. Suppose P,Q and R are probability measures on (T ,F ). Proof of property 1.: Suppose that

P = Q. Then P andQ are mutually absolutely continuous and have P-densities f and g respectively, with

f(t) = g(t) = 1,

for all t ∈ T . Thus dDR(P,Q) = 0. Now suppose that P 6= Q. If P and Q are not mutually absolutely

continuous, then dDR(P,Q) = ∞ > 0. If they are mutually absolutely continuous, then they have P-

densities f and g respectively. Moreover, because P 6= Q, there exists S ∈ F such that P(S) > Q(S).

Hence P(f > g) > 0. This implies

0 < ess sup
t∈T o

ln
f(t)
g(t)

.

Also, P(Sc) < Q(Sc) (here Sc is the complement of S in T ), so by exactly the same reasoning

0 < ess sup
t′∈T o

ln
g(t′)
f(t′)

.

Combining these two results gives dDR(P,Q) > 0.

Property 2. follows by the symmetry of

f(t)
f(t′)

/
g(t)
g(t′)

=
g(t′)
g(t)

/
f(t′)
f(t)

,

and the fact that t and t′ are interchangeable in the definition of the density ratio metric.

Finally, we prove property 3. Suppose that P andR are not mutually absolutely continuous. ThenQ is
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eithermutually absolutely continuouswithP, orwithR, but not both. HencedDR(P,Q)+dDR(Q,R) =

∞ and thus

dDR(P,R) ≤ dDR(P,Q) + dDR(Q,R),

holds vacuously. Now suppose that P and R are mutually absolutely continuous. We may also suppose

thatQ ismutually absolutely continuouswith respect to bothP andR. (When this is not the case, property

3. again holds vacuously.) Let f, g and h be P-densities of P,Q andR respectively. Define

T o
f,g = {t ∈ T | 0 < f(t), g(t) <∞},

T o
f,h = {t ∈ T | 0 < f(t), h(t) <∞},

T o
g,h = {t ∈ T | 0 < g(t), h(t) <∞}.

Then

dDR(P,R) = ess sup
t,t′∈T o

f,h

ln
(
f(t)
f(t′)

)
− ln

(
h(t)
h(t′)

)

= ess sup
t,t′∈T o

f,h

ln
(
f(t)
f(t′)

)
− ln

(
g(t)
g(t′)

)
+ ln

(
g(t)
g(t′)

)
− ln

(
h(t)
h(t′)

)

≤ ess sup
t,t′∈T o

f,g

ln
(
f(t)
f(t′)

)
− ln

(
g(t)
g(t′)

)
+ ess sup

t,t′∈T o
g,h

ln
(
g(t)
g(t′)

)
− ln

(
h(t)
h(t′)

)

= dDR(P,Q) + dDR(Q,R),

where all the essential suprema are with respect to P. We can exchange T o
f,g, T

o
f,h and T o

g,h in the above

computations because

P
(
T o
f,g

)
= P

(
T o
f,h

)
= P

(
T o
g,h

)
= 1.
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The density ratio metric dDR is not a metric on Ω. While it is easy to verify that properties 2. and

3. hold (follow the same reasoning as in the above proof), dDR does not satisfy property 1: There exists

μ 6= ν ∈ Ω such that dDR(μ, ν) = 0. For example, suppose that

ν(S) = 2μ(S), (C.7)

for all S ∈ F . Then f(t) = 1 and g(t) = 2 are μ-densities of μ and ν respectively. Yet this implies

dDR(μ, ν) = 0.

Proposition 8. The density ratio metric dDR is a pseudo-metric on Ω. That is, dDR is a function from

Ω×Ω to the extended real line which satisfies the following properties for all μ, ν, τ ∈ Ω:

1. dDR(μ, μ) = 0;

2. dDR(μ, ν) ≥ 0;

3. dDR(μ, ν) = dDR(ν, μ); and

4. dDR(μ, τ) ≤ dDR(μ, ν) + dDR(ν, τ).

Proof. Properties 1., 3. and 4. follow by the same reasoning as in the proof of Lemma C.3.4 with minor

adjustments to account for the fact that μ, ν or τmay be zero. Property 2. follows by applying Properties

1., 4. and 3. sequentially:

0 = dDR(μ, μ) ≤ dDR(μ, ν) + dDR(ν, μ) = 2dDR(μ, ν).
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C.4 Distorting Functions andDistortionModels

Definition C.4.1. Montes et al. (2020a)A distorting function ddist is a function S× S→ [0,∞]where

S is one of the following spaces:

• the set of all measures on a measurable space (T ,F );

• the set Ω of all σ-finite measures on (T ,F );

• the set of all finite measures on (T ,F );

• the set Ω1 of all probability measures on (T ,F ); or

• the set Ω∗
1 = {P ∈ Ω1 | P({t}) > 0 ∀t ∈ T } of probabilities on (T , 2T )with non-zero mass on

every event E ⊂ T (often with the assumption that T has finite cardinality).

Definition C.4.2. Montes et al. (2020a) Given a distorting function ddist, a positive constant r > 0

(termed the distortion parameter), and a probability P0 ∈ Ω1 (the nucleus), the distortion model on P0

associated with ddist and r is the closed ddist-ball centred at P0 with radius r:

Brddist(P0) = {P ∈ Ω1 | ddist(P,P0) ≤ r}.

One may use Ω∗
1 in place of Ω1 in the above definition, as in Montes et al. (2020a).

Adistortionmodel is one exampleof themore general notionofneighbourhoodmodels, found through-

out the literature on IP and robustness. In general, a neighbourhood model on P0 is simply a set of prob-

abilities which contains P0. An advantage of distortion models is that they are characterised by a small

number of parameters (three). Beyond the symmetric IoM I1(e−εP0, eεP0) and the density ratio neigh-
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bourhood Nr(P0) ∩ Ω1, other examples of distortion models can be found in Montes et al. (2020a,b);

Montes (2023); Miranda et al. (2024); Destercke et al. (2022); Pelessoni et al. (2021); Walley (1991).

Invarianceundermarginalisation, invarianceunderupdating and immunity todilation are threedesider-

ata for distortionmodels. For symmetric IoMs anddensity ratio neighbourhoods, these desiderata are stud-

ied inWasserman and Kadane (1992); Wasserman (1992); Seidenfeld andWasserman (1993). de Campos

et al. (1994) showed that, under certain restrictions, I1(e−εP0, eεP0) is 2-monotone. To the best of our

knowledge, we are not aware of studies investigating the geometry of the symmetric IoM or the density

ratio neighbourhood – for example, are they polytopes and, if so, howmany extremal points do they have?

In Appendix C.3, we showed that the distorting functions DMult and dDR are metrics – that is, they

are positive definite, symmetric and satisfy the triangle inequality on the space Ω1 of probability measures.

Two other desirable properties of a distorting function ddist are:

1. Quasi-Convexity (Montes et al., 2020a;Miranda et al., 2024): Given a real- or complex-vector space
V, a function d : V× V→ [0,∞] is quasi-convex (in its second argument) if

d(v1, αv2 + [1− α]v3) ≤ max{d(v1, v2), d(v1, v3)}, (C.8)

for all α ∈ [0, 1] and all v1, v2, v3 ∈ V.

2. Continuity (Montes et al., 2020a):2 For μ ∈ Ω, let Ων = {ν ∈ Ω | ν � μ} be the set of σ-
finite measures ν which are absolutely continuous with respect to μ. Given S ⊂ Ω, a function
d : S× S→ [0,∞] is continuous (in its second argument) with respect to the supremum norm if,
for all μ ∈ Ω, all ν1, ν2 ∈ S ∩Ωμ and all ε > 0, there exists δ > 0 such that, for all ν3 ∈ S ∩Ωμ,

‖ν2 − ν3‖μ∞ < δ⇒ |d(ν1, ν2)− d(ν1, ν3)| < ε,

where ‖·‖μ∞ denotes the supremum norm.3 (The continuity is uniform if δ does not depend on ν1
or ν2.)

2Note that our definition of continuity is strictly stronger than that given inMontes et al. (2020a) which allows
δ to depend on ν3.

3Given a σ-finite measure space (T ,F , μ), the supremum norm ‖·‖μ∞ on the set Ων is defined as:

‖ν‖μ∞ = ess sup|f(t)|,
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Remark C.4.3. The astute reader may consider (C.8) to be a strange definition of convexity. A more

standard definition of convexity (in the second argument) would be the requirement:

d(v1, αv2 + [1− α]v3) ≤ αd(v1, v2) + (1− α)d(v1, v3), (C.9)

for all α ∈ [0, 1] and all v1, v2, v3 ∈ V. This requirement is strictly stronger than quasi-convexity (equa-

tion (C.8)). (It is straightforward to prove (C.9) is stronger than (C.8) andwe provide some examples later

in this remark to prove strictness.) In fact, (C.9) is often too strong a requirement, for three reasons.

Firstly, if a distorting function ddist on Ω∗
1 satisfies (C.8) and continuity, then the ball {P ∈ Ω∗

1 |

ddist(P,P0) ≤ r} centred at P0 ∈ Ω∗
1 is equal to the credal set induced by the lower envelope of this

ball (Montes et al., 2020a, Proposition 3.1). Further, under (C.8) and continuity, there exist simple nec-

essary and sufficient conditions for this lower envelope to be a probability interval (Montes et al., 2020a,

Propositions 3.3, 3.4). Hence, (C.8) is a useful requirement for a distorting function ddist as it ensures

the distortion model associated with ddist is well-behaved. It would be unnecessary to require the stricter

condition (C.9) solely to ensure this nice behaviour.

Secondly, some of the common distorting functions found in the IP literature do not satisfy (C.9) but

do satisfy (C.8). One example is the linear vacuous distorting function:

dLV : Ω∗
1 ×Ω∗

1 → [0,∞),

(P,Q) 7→ max
∅̸=S⊂T

Q(S)− P(S)
Q(S)

.

Montes et al. (2020a, Proposition 5.1) show that dLV satisfies (C.8). However, the following counterex-

ample demonstrates that dLV does not satisfy (C.9): Let α = 0.5 and T = {1, 2}. Let P1 and P2 be the

where the essential supremum is with respect to μ and f is a μ-density of ν.
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uniform probability on (T , 2T ) and define P3 ∈ Ω∗
1 by P3({1}) = 0.7. Then

dLV(P1, αP2 + (1− α)P3) =
1
6 > 1

7 = αdLV(P1,P2) + (1− α)dLV(P1,P3).

The multiplicative distance DMult also does not satisfy (C.9) (although we show below that it satisfies

(C.8)), even when restricting to Ω∗
1 and to T with finite cardinality. To see this, let α = 0.5 and let P1 be

uniform on T = {1, . . . , 10}; define P2 by P2({1}) = 1/5 and P2({t}) = 8/90 for all t 6= 1; and define

P3 by P3({1}) = 3/10 and P3({t}) = 7/90 for all t 6= 1. Then

DMult(P1, αP2 + (1− α)P3) = ln 2.5 > 1
2(ln 2+ ln 3) = αDMult(P1,P2) + (1− α)DMult(P1,P3).

Thirdly and finally, (C.8) aligns with the notion of convexity which arises independently in the DP

literature Kifer et al. (2022): Under a mild assumption, a DP flavor Bailie et al. (2025b) with distorting

function ddist is convex in the sense of Kifer et al. (2022) if and only if ddist is quasi-convex in the sense

of (C.8). Because most of the commonly used DP flavors are convex, it follows that most of the distorting

functions used in DP are quasi-convex.

Proof. thatDMult satisfies quasi-convexity: Let μ, ν and τ be measures on (T ,F ). For E ∈ F , we have

ln
μ(E)

αν(E) + (1− α)τ(E)
≤ ln

μ(E)
min{ν(E), τ(E)}

≤ sup
S∈F

{
max

{
ln

μ(S)
ν(S)

, ln
μ(S)
τ(S)

}}
≤ max{DMult(μ, ν),DMult(μ, τ)}.

Similarly,

ln
αν(E) + (1− α)τ(E)

μ(E)
≤ ln

max{ν(E), τ(E)}
μ(E)
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≤ sup
S∈F

{
max

{
ln

ν(S)
μ(S)

, ln
τ(S)
μ(S)

}}
≤ max{DMult(μ, ν),DMult(μ, τ)}.

Lemma C.4.4. Let d : S× S→ [0,∞] be a metric (where S ⊂ Ω). The following is a sufficient condition

for d to be continuous: For all μ ∈ Ω, all ν1 ∈ S ∩ Ωμ and all ε > 0, there exists δ > 0 such that, for all

ν2 ∈ S ∩Ωμ,

‖ν1 − ν2‖μ∞ < δ⇒ d(ν1, ν2) < ε.

Proof. This result follows by the triangle inequality and symmetry: |d(ν1, ν2)− d(ν1, ν3)| ≤ d(ν2, ν3).

The following proposition proves thatDMult is continuous, in the setting considered in Montes et al.

(2020a).

Proposition 9. Suppose that T has finite cardinality. LetF = 2T andΩ∗ = {ν ∈ Ω | ν({t}) > 0∀t ∈

T }. Then DMult is continuous when restricted to the domainΩ∗ ×Ω∗.

Proposition 9 implies that the interval of measures I(L,U)∩Ω∗ is closed with respect to the topology

induced by the supremum norm, as long as T has finite cardinality.

Proof. Lemma C.4.4 describes a sufficient condition for continuity. We will prove that this sufficient

condition holds under the assumption that T has finite cardinality and under the restriction to σ-finite

measures νwith ν({t}) > 0.

374



Without loss of generality, we assume that the dominating measure μ is the counting measure on T .

Then Ω∗ ⊂ Ωμ. Let ν1 ∈ Ω∗ and ε > 0. Let f be the μ-density of ν1. Choose some δwhich satisfies

0 < δ < min
t∈T

f(t)(1− e−ε).

(Such a δ exists because f(t) > 0 for all t ∈ T and because T has finite cardinality.) Fix some ν2 ∈ Ω∗

with ‖ν1 − ν2‖μ∞ < δ. Then, for any S 6= ∅,

ν2(S)
ν1(S)

≤ ν1(S) + δ
ν1(S)

≤ max
t∈T

f(t) + δ
f(t)

≤ max
t∈T

f(t)
f(t)− δ

< eε.

(The last inequality follows because δ < f(t)− f(t)e−ε for all t.) Similarly,

ν1(S)
ν2(S)

≤ ν1(S)
ν1(S)− δ

≤ max
t∈T

f(t)
f(t)− δ

< eε.

HenceDMult(ν1, ν2) < ε.

If we remove either of the two restriction in Proposition 9 (to finite T and to μ, ν ∈ Ω∗), thenDMult

is no longer continuous. We will demonstrate that both of these restrictions are necessary with two coun-

terexamples: In the first case, suppose T = {1, 2, . . .} with F = 2T and let μ be the counting measure.

Define ν1({t}) = t−2. Let ε = ln 2 and fix 0 < δ < 1. Define

ν2({t}) =



1− δ/4 if t = 1,

t−2 + δ/4 if t = t0,

t−2 otherwise,
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where t0 =
⌈√

4δ−1 + 1
⌉
. Then ‖ν1 − ν2‖μ∞ < δ but

DMult(ν1, ν2) ≥ ln
t−2
0 + δ/4

t−2
0

> ln 2.

In the second case, let T be finite, F = 2T and μ be the counting measure. For some t0 ∈ T , de-

fine ν1({t0}) = δ/2 and ν2({t0}) = 0, and suppose that ν1({t}) = ν2({t}) for all t 6= t0. Then

‖ν1 − ν2‖μ∞ < δ butDMult(ν1, ν2) =∞.

These two counterexamples can easily be modified so that ν1 and ν2 are probability measures. Hence

DMult is also not continuous on the space of probability measures, except when T is finite and we restrict

to probabilities with support T .

C.5 Supplementary Results

C.5.1 An Equivalent Definition of theMultiplicative DistanceDMult

Lemma C.5.1. Suppose that μ ∈ Ω. Let f be a μ-density of ν. Then ν is σ-finite if and only if f is finite

μ-almost everywhere.

Proof. “⇒” by the contrapositive: (This direction does not require that μ is σ-finite.) Suppose that μ(f =

∞) > 0. Let {En : n ∈ N} ⊂ F be any countable partition of T . We will show that necessarily there

exists some En with ν(En) =∞. Since

0 < μ(f =∞) =
∞∑
n=1

μ(En ∩ {f =∞}),

there exists some En with μ(En ∩ {f =∞}) > 0. Then

ν(En) ≥ ν(En ∩ {f =∞}) =
∫
En∩{f=∞}

fdμ =∞.
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“⇐”: (This direction requires that μ is σ-finite – the case that μ = νwith f = 1 serves as a counterexam-

ple.) Let A = {f = ∞} ∈ F . Then ν(A) = μ(A) = 0 because ν is absolutely continuous with respect

to μ by assumption. Define En = {t ∈ T \ A : n − 1 ≤ f(t) < n} for all n ∈ N. Let {Sm : m ∈ N}

be a partition of T such that μ(Sm) < ∞ for all m ∈ N. Then ν(En ∩ Sm) < nμ(Sm) < ∞. Hence

{A,En∩Sm : n,m ∈ N} is a countable partition of T with each component having finite ν-measure.

The following proposition gives an alternative definition of the multiplicative distanceDMult.

Proposition 10. Let μ, ν ∈ Ω. Then

DMult(μ, ν) =



0 if μ = ν = 0,

ess supt∈T o

∣∣∣ln f(t)
g(t)

∣∣∣ else if μ, ν are mutually absolutely continuous,

∞ otherwise,

where f and g are any densities of μ and ν respectively, with respect to any common dominating measure

τ ∈ Ω; T o = {t ∈ T | 0 < f(t), g(t) <∞}; and the essential supremum is with respect to τ.

To prove the above proposition, we need two lemmata.

Lemma C.5.2. Suppose that μ, ν ∈ Ω are non-zero and mutually absolutely continuous and τ ∈ Ω is a

dominating measure. Let f and g be τ-densities of μ and ν respectively.

Then

sup
S∈F

ln
μ(S)
ν(S)

= ess sup
t∈T o

ln
f(t)
g(t)

,

where the essential supremum is over τ.
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Proof. We first need that (A) f, g < ∞ holds τ-almost everywhere and that (B) f, g > 0 holds μ- and

ν-almost everywhere. (A) is a direct result of Lemma C.5.1. To prove (B), observe that

μ(f = 0) =
∫
{f=0}

fdτ = 0,

and then ν(f = 0) = 0 follows by absolute continuity. That g > 0 holds μ- and ν-almost everywhere has

a similar proof.

For a ∈ R, define Ea = {t ∈ T o | f(t) > exp(a)g(t)}. We need to prove the following result holds

for all a ∈ R: There exists S ∈ F such that μ(S) > exp(a)ν(S) if and only if τ(Ea) > 0. Denote this

result by (∗).

Suppose that there exists S ∈ F such that μ(S) > exp(a)ν(S). By (A) and (B), this implies

μ(S ∩ T o) > exp(a)ν(S ∩ T o),

and hence ∫
S∩T o

(f− eag)dτ > 0.

Thus, there exists some E ⊂ S ∩ T o such that τ(E) > 0 and f(t)− exp(a)g(t) > 0 for all t ∈ E. Hence

τ(Ea) ≥ τ(E) > 0.

In the other direction, suppose τ(Ea) > 0. Then

∫
Ea
(f− eag)dτ > 0,

which implies μ(Ea) > exp(a)ν(Ea). This proves (∗).
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Finally, we have

sup
S∈F

ln
μ(S)
ν(S)

= sup{a ∈ R | there exists S ∈ F s.t. μ(S) > exp(a)ν(S)}

= sup{a ∈ R | τ(Ea) > 0}

= ess sup
t∈T o

ln
f(t)
g(t)

,

where the first line follows by continuity of exp(·); the second by (∗); and the third by the definition of the

essential supremum.

Lemma C.5.3. Let μ, ν ∈ Ω be non-zero and not mutually absolutely continuous. Then

sup
S∈F

ln
μ(S)
ν(S)

=∞ or sup
S∈F

ln
ν(S)
μ(S)

=∞.

Proof. Without loss of generality, there exists some E ∈ F such that μ(E) > 0 but ν(E) = 0. Then

sup
S∈F

ln
μ(S)
ν(S)

≥ ln
μ(E)
ν(E)

=∞.

Proof. of Proposition 10: Suppose that μ = ν = 0. Then, for all S ∈ F , we have that ln μ(S)
ν(S) = ln 0

0 = 0

where we define 0/0 = 1 as in the definition of the multiplicative distance (Definition 5.2.1). Hence

DMult(μ, ν) = 0.

Nowsuppose thatμ and ν are bothnon-zero andnotmutually absolutely continuous. ByLemmaC.5.3,

DMult(μ, ν) =∞.

Finally, suppose that μ and ν are both non-zero and mutually absolutely continuous. Fix a dominating
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measure τ and τ-densities f and g. By symmetry, it suffices to show that

ess sup
t∈T o

ln
f(t)
g(t)

= sup
S∈F

ln
μ(S)
ν(S)

.

This equation is given by Lemma C.5.2.

C.5.2 TheMultiplicative DistanceDMult Is Composable

Proposition 11. Let (T1,F1) and (T2,F2) be measurable spaces and let Ω(i) be the collection of σ-finite

measures on (Ti,Fi). Then, for all μ1, ν1 ∈ Ω(1) and all μ2, ν2 ∈ Ω(2),

DMult
(
μ1 × μ2, ν1 × ν2

)
≤ DMult(μ1, ν1) +DMult(μ2, ν2), (C.10)

where μ1 × μ2 and ν1 × ν2 are product measures.

Proof. Wewill use the definition of the multiplicative distanceDMult given in Proposition 10.

Suppose that μ1 and ν1 are zero. Then μ1 × μ2 and ν1 × ν2 are also zero. Hence (C.10) simplifies to

0 ≤ DMult(μ2, ν2), which always holds becauseDMult is a metric.

Suppose that μ1 and ν2 are non-zero but not absolutely continuous. Then theRHSof (C.10) is infinite,

and so (C.10) holds vacuously.

Suppose that μ1 and ν1 are non-zero and mutually absolutely continuous. Then there exists a common

dominating measure τ ∈ Ω1. Let f and g denote τ-densities of μ1 and ν1 respectively. Then, LemmaC.5.1

and Proposition 10 together imply that

f(t) ≤ g(t) exp
[
DMult(μ1, ν1)

]
, (C.11)
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for τ-a.e. t ∈ T1. Thus, for S ∈ F1 ⊗F2,

(μ1 × μ2)(S) =
∫
T1

μ2(S
t)dμ1(t)

=

∫
T1

μ2(S
t)f(t)dτ(t)

≤
∫
T1

μ2(S
t)g(t) exp

[
DMult(μ1, ν1)

]
dτ(t)

≤
∫
T1

exp
[
DMult(μ2, ν2)

]
ν2(St)g(t) exp

[
DMult(μ1, ν1)

]
dτ(t)

= exp
[
DMult(μ1, ν1) +DMult(μ2, ν2)

] ∫
T1

ν2(St)g(t)dτ(t)

= exp
[
DMult(μ1, ν1) +DMult(μ2, ν2)

]
(ν1 × ν2)(S),

where the third line follows by (C.11) and the fourth by the definition ofDMult (Definition 5.2.1). Hence

ln
(μ1 × μ2)(S)
(ν1 × ν2)(S)

≤ DMult(μ1, ν1) +DMult(μ2, ν2),

for all S ∈ F1 ⊗F2. The proof of the bound

ln
(ν1 × ν2)(S)
(μ1 × μ2)(S)

≤ DMult(μ1, ν1) +DMult(μ2, ν2),

follows analogously.

C.5.3 An Equivalent Definition of the Density RatioMetric dDR

The following proposition gives an alternative definition of the density ratio metric dDR.

Proposition 12. For any non-zero μ, ν ∈ Ω,

dDR(μ, ν) = sup
S∈F

ln
μ(S)
ν(S)

+ sup
S∈F

ln
ν(S)
μ(S)

, (C.12)
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where 0/0 =∞/∞ = 1. Also, dDR(μ, ν) =∞ if exactly one of μ or ν is zero; and dDR(μ, ν) = 0 if μ and

ν are both zero.

Compare the two definitions of the multiplicative distance DMult – Definition 5.2.1 and Proposi-

tion 10 – with the two definitions of the density ratio metric dDR – Definition 5.8.3 and Proposition 12.

Each of these two distances have definitions in terms of densities and in terms of measures.

Proof. of Proposition 12: Firstly, wemust verify that theRHSof (C.12) iswell defined– i.e. that theRHS

cannot take on the form of∞−∞. We need to prove that (∗) both supS∈F ln μ(S)
ν(S) and supS∈F ln ν(S)

μ(S)

are bounded away from negative infinity.

Let E1,E2, . . . be a partition of T such that μ(En) < ∞. Since ν(T ) > 0 there must exist some En

with ν(En) > 0. Then

sup
S∈F

ln
ν(S)
μ(S)

≥ ln
ν(En)

μ(En)
> −∞.

The proof of supS∈F ln μ(S)
ν(S) > −∞ is analogous.

Suppose that μ = ν = 0. Then

ln
μ(S)
ν(S)

= ln
ν(S)
μ(S)

= 0,

for all S ∈ F . Hence (C.12) holds.

Suppose that μ and ν are non-zero and not mutually absolutely continuous. Then by Lemma C.5.3

and (∗),

sup
S∈F

ln
μ(S)
ν(S)

+ sup
S∈F

ln
ν(S)
μ(S)

=∞.

Hence (C.12) holds once again.

Finally, suppose that μ and ν are non-zero and mutually absolutely continuous. Let τ be a dominating
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measure of μ and ν and suppose that f and g are τ-densities of μ and ν respectively. By Lemma C.5.2,

sup
S∈F

ln
μ(S)
ν(S)

+ sup
S∈F

ln
ν(S)
μ(S)

= ess sup
t∈T o

ln
f(t)
g(t)

+ ess sup
t′∈T o

ln
g(t′)
f(t′)

= dDR(μ, ν),

where the essential supremum is over τ.

Corollary C.5.4. For finite μ, ν ∈ Ω,

dDR(μ, ν) =



0 if μ = ν = 0,

supS,S′∈F∗ ln μ(S)ν(S′)
μ(S′)ν(S) else if μ, ν are mutually absolutely continuous,

∞ otherwise,

whereF ∗ = {S ∈ F : μ(S) > 0}.

Proof. Proving the result when μ = ν = 0 or when μ, ν not mutually absolutely continuous is straight-

forward. We may thus assume that μ and ν are non-zero and mutually absolutely continuous. Then

F ∗ = {S ∈ F : ν(S) > 0} and moreover

ln
μ(S)
ν(S)

= 0,

for all S /∈ F ∗. Hence

dDR(μ, ν) = sup
S∈F∗

ln
μ(S)
ν(S)

+ sup
S∈F∗

ln
ν(S)
μ(S)

.

The result then follows because 0 < μ(S), ν(S) < ∞ for all S ∈ F ∗ implies we may combine the log-

terms without introducing an undefined operation. That is,

sup
S∈F∗

ln
μ(S)
ν(S)

+ sup
S∈F∗

ln
ν(S)
μ(S)

= sup
S,S′∈F∗

ln
μ(S)ν(S′)
μ(S′)ν(S)

,

because 0 < μ(S), ν(S) <∞ for all S ∈ F ∗.
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Corollary C.5.5. For finite μ, ν ∈ Ω,

dDR(μ, ν) = − ln[1− dCOR(μ, ν)],

where dCOR is the constant odds metric (defined in Remark 5.8.7).

Proof. The cases where μ and ν are zero or not mutually absolutely continuous are straightforward to

verify. When μ and ν are non-zero and mutually absolutely continuous,

1
−dCOR(μ, ν) + 1

= exp(dDR(μ, ν)),

by Corollary C.5.4.

C.5.4 The Multiplicative Distance DMult and the Density Ratio Metric dDR
Are Strongly Equivalent for Probabilities

The following proposition proves that themultiplicative distanceDMult and the density ratio metric dDR

are strongly equivalent (Definition C.3.2) – but not equal – on the set of probability measures. This

proposition also shows thatDMult and dDR are not strongly equivalent on the set Ω of σ-finite measures.

See also Theorem 1 ofWasserman and Kadane (1992), which describes the relationships between inter-

vals of measures (or density bounded classes) and density ratio neighbourhoods.

Proposition 13. Let P,Q ∈ Ω1 be probability measures on (T ,F ). Then

DMult(P,Q) ≤ dDR(P,Q) ≤ 2DMult(P,Q). (C.13)

Moreover, for each of the two inequalities in (C.13):

• there exist P,Q ∈ Ω1 such that the inequality is strict; and
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• there exist probabilities P,Q ∈ Ω1 (which can even be mutually absolutely continuous and not equal)

such that the inequality is an equality.

Finally, when the probabilities P and Q are replaced by measures μ, ν ∈ Ω, the first inequality of (C.13)

does not hold (even up to a non-zero multiplicative constant), but the second does.

Proof. Let P and Q be probability measures on (T ,F ). Proving (C.13) when P = Q is trivial by the

metric properties ofDMult and dDR. Hence, we may assume that P 6= Q. Then there exists S ∈ F such

that P(S) > Q(S) and consequently,

sup
S∈F

ln
P(S)
Q(S)

> 0. (C.14)

Symmetrically,

sup
S∈F

ln
Q(S)
P(S)

> 0. (C.15)

Thus,

DMult(P,Q) = max

(
sup
S∈F

ln
P(S)
Q(S)

, sup
S∈F

ln
Q(S)
P(S)

)

≤ sup
S∈F

ln
P(S)
Q(S)

+ sup
S∈F

ln
Q(S)
P(S)

(C.16)

= dDR(P,Q),

where the second line follows by (C.14) and (C.15), and the third by Proposition 12.

Also,

dDR(P,Q) ≤ sup
S∈F

∣∣∣∣ln P(S)
Q(S)

∣∣∣∣+ sup
S∈F

∣∣∣∣ln Q(S)
P(S)

∣∣∣∣ = 2DMult(P,Q),

by Proposition 12.

Note that the first inequality, DMult(P,Q) ≤ dDR(P,Q), does not hold when P,Q are replaced by
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(non-probability)measures. For example, forμ and νdefined in (C.7),dDR(μ, ν) = 0whileDMult(μ, ν) =

ln 2. (It is easy to modify this example to construct μ and ν such that 0 < dDR(μ, ν) < DMult(μ, ν). Sim-

ply change ν on some E 6= T so that 0 < μ(E) < ν(E) < 2μ(E) while still maintaining ν(E′) =

2μ(E′) > 0 on some other E′.) However, the second inequality. dDR(μ, ν) ≤ DMult(μ, ν), does hold for

any μ, ν ∈ Ω, by the same proof as given above.

The inequalities in (C.13) are tight, evenwhenP andQ aremutually absolutely continuous andP 6= Q:

To see that the first inequality is tight, define the probability P on [−1, 1] by the density

f(x) =


2
3 if x ∈ [−1, 0],

2
3 (1− x) if x ∈ (0, 1],

andQ by

g(x) =


2
3 (1+ x) if x ∈ [−1, 0],

2
3 if x ∈ (0, 1],

.

Then DMult(P,Q) = dDR(P,Q) = ∞. However, if 0 < DMult(P,Q) < ∞, then the inequality

in (C.16) will be strict and thusDMult(P,Q) < dDR(P,Q).

To see that the second inequality in (C.13) is tight, define P,Q on {−1, 1} by P(−1) = Q(1) = 1/3

and P(1) = Q(−1) = 2/3. Then dDR(P,Q) = 2 ln 2 = 2DMult(P,Q). However, it is also possible that

dDR(P,Q) < 2DMult(P,Q): Define P,Q on {1, 2, . . . , 9} by

• P(1) = 9/10;

• P(x) = 1/80 for x = 2, 3, . . . , 9;

• Q(1) = 1/5; and
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• Q(x) = 1/10; for x = 1, 2, . . . , 10.

Then dDR(P,Q) = ln 36 < 2 ln 8 = 2DMult(P,Q).

C.5.5 AnEquivalenceBetweenIntervalsofMeasuresandDensityBoundedClasses

The following proposition provides an equivalence between intervals of measures and density bounded

classes. Recall that μ� ν denotes that μ is absolutely continuous with respect to ν.

Proposition 14. Given L,U, ν ∈ Ω with L ≤ U and U� ν, there exists some ν-densities l ≤ u such that

(a) Every μ ∈ I(L,U) has a ν-density f which is in the density bounded class I(l, u); and

(b) The measure μ(S) =
∫
S fdν given by any density f ∈ I(l, u) is in the interval of measure I(L,U).

Moreover, if ν = U then u is the constant function: u(t) = 1 for all t ∈ T ; and l is a ν-density of L, which

exists because L is absolutely continuous with respect to U.

Additionally, if L = aτ and U = bτ for some τ ∈ Ω with τ � ν and constants 0 < a ≤ 1 ≤ b < ∞,

then l = ag and u = bg, where g is a ν-density of τ.

In the other direction, given some ν ∈ Ω and ν-densities l ≤ u (which are finite ν-almost everywhere),

define L,U ∈ Ω by

L(S) =
∫
S
ldν, (C.17)

U(S) =
∫
S
udν, (C.18)

for all S ∈ F . Then L ≤ U and the properties (a) and (b) above hold.

Note that the condition that l and u are finite ν-almost everywhere is necessary and sufficient for L,U

to be in Ω (see Lemma C.5.1).
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The first half of this proposition (before “In the other direction...”) shows that an interval of measure

I(L,U) can be considered as a density bounded classI(l, u), and the second half shows the converse – that

a density bounded class I(l, u) can be considered as an interval of measure I(L,U).

Proof. Let L,U ∈ Ω and suppose L ≤ U. We first consider the case that ν = U. The fact that L ≤ U

implies that L� U: ifU(S) = 0 then L(S) = 0, for all S ∈ F . Thus, by the Radon-Nikodym theorem,

L has a density lwith respect toU. Define the density u by u(t) = 1 for all t ∈ T . It is straightforward to

verify that u is a density ofUwith respect toU (i.e. u is aU-density ofU).

Suppose, for contradiction, that there existsE ∈ F withU(E) > 0 and l(t) > u(t) for all t ∈ E. Then

0 < U(E) =
∫
E
udU <

∫
E
ldU = L(E),

contradicting the assumption L ≤ U. Hence there exists l̃ such that l̃(t) ≤ u(t) for all t ∈ T and

l̃(t) = l(t), forU-almost all t ∈ T . This implies l̃ is also aU-density of L because

∫
S
l̃dU =

∫
S
ldU = L(S),

for all S ∈ F . From herein, replace l by its modification l̃. This proves l ≤ u.

Now we prove (a). Let μ ∈ I(L,U). Since μ ≤ U, we know that μ is absolutely continuous with

respect toU and hence has aU-density f by the Radon-Nikodym theorem. We know that f(t) ≤ u(t) for

U-almost all t ∈ T . Otherwise there exists E ∈ F with U(E) > 0 and f(t) > u(t) for all t ∈ E, which

would imply

0 < U(E) =
∫
E
udU <

∫
E
fdU = μ(E),

contradicting the assumption μ ≤ U. Thus, f ≤ u,U-almost everywhere. This implies there exists f̃which

388



differs from f on aU-null set such that f̃(t) ≤ u(t) for all t ∈ T . Since f and f̃ differ only on aU-null set, f̃ is

also aU-density of μ. By exactly the same reasoning as above, we can show that f̃ ≥ l,U-almost everywhere

and hence there exists a modification f̌ of f̃ such that

l(t) ≤ f̌(t) ≤ u(t),

and f̌ 6= f̃ only on aU-null set. Thus, f̌ is aU-density of μ such that f̌ ∈ I(l, u). This proves (a).

Next we prove (b). Fix some density f ∈ I(l, u) and define μ ∈ Ω by

μ(S) =
∫
S
fdU.

Then

L(S) =
∫
S
ldU ≤

∫
S
fdU = μ(S),

and

μ(S) =
∫
S
fdU ≤

∫
S
udU = U(S).

This proves μ ∈ I(L,U).

Nowwe consider the general case of the first half of the proposition. Let L,U, ν ∈ Ωwith L ≤ U and

U� ν. Then L� ν as well, and let l and u be ν-densities of L andU respectively. By the same reasoning

as above, we can replace l and u with their modifications l̃, ũ. Hence we may assume that l(t) ≤ u(t) for

all t ∈ T . Now take μ ∈ I(L,U). Since μ � U � ν, the Radon-Nikodym theorem states that μ has

a ν-density f. Analogous to above, we can modify f on a ν-null set to produce a ν-density f̌ of μ such that

f̌ ∈ I(l, u). This proves (a). The proof of (b) is analogous to the case when ν = U with the integrals∫
· dU replaced by

∫
· dν.

389



Finally, we consider when L = aτ and U = bτ for some τ ∈ Ω with τ � ν and constants 0 < a ≤

1 ≤ b < ∞. Define l = ag and u = bg, where g is some ν-density of τ. Then l ≤ u and the proof of

properties (a) and (b) are as before.

We now prove the second half of the proposition (that which follows “In the other direction...”). Let

ν ∈ Ω and suppose l and u are ν-densities. Define L,U ∈ Ω according to equations (C.17) and (C.18).

Then L ≤ U since

L(S) =
∫
S
ldν ≤

∫
S
udν = U(S).

We will show that property (a) is satisfied. Let μ ∈ I(L,U). By the same reasoning as in the proof of

the first half of the proposition, modify the ν-density f of μ on a ν-null set to produce f̌ satisfying l(t) ≤

f̌(t) ≤ u(t). This implies f̌ is a ν-density of μ and that f̌ ∈ I(l, u).

Finally, property (b) also follows by the same reasoning as in the proof of it in the first half of the propo-

sition.

C.5.6 CharacterisingMechanisms with Zero Privacy Loss

The following proposition formalises the relationship between complete privacy and releasing pure noise,

as described on page 175:

Proposition 15. LetM be a data-release mechanism. Denote the set of connected components ofX by

Comp(X ) = {[x] : x ∈ X},

where [x] = {x′ ∈ X | d(x, x′) <∞} (see Definition 5.3.2). The following statements are equivalent:

I M satisfies ε-DP with ε = 0.
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II M is a function of x only through its connected component [x]. That is, there exists a function M′ :

Comp(X )× [0, 1]→ T such thatM = M′ ◦ c, where

c : X × [0, 1]→ Comp(X )× [0, 1],

(x, u) 7→ ([x], u).

III The probability Px induced by M is a function of x only through [x]. That is, Px = Px′ whenever
[x] = [x′], or equivalently, the map x 7→ Px factors as φ ◦ c, where

c : X → Comp(X ),
x 7→ [x],

and φ is some function which maps [x] to a probability on (T ,F ).

Proof. The equivalence between II and III follows by the definition of Px as the probability induced byM

– see equation (5.1).

We now prove that I and III are equivalent. The mechanismM satisfies ε-DP with ε = 0 if and only

if DMult(Px,Px′) = 0 for all x, x′ with d(x, x′) < ∞. Because metrics are positive definite (see Defini-

tionC.3.1.1), this is equivalent toPx = Px′ for all x, x′ with d(x, x′) <∞. ButPx = Px′ holds for x′ ∈ [x]

if and only if Px is a function of x only through [x].

The following proposition formalises the result in Remark 5.4.2, which states that publishing [x] along-

side T = M(x,U) does not increase the privacy loss but ensures that supp(x | t, θ) is connected. (Recall

that [x] is the connected component [x] = {x′ ∈ X | d(x, x′) <∞}.)

Proposition 16. LetM : X × [0, 1]→ T be an ε-DPmechanism. Then the mechanismM′ defined by

M′ : X × [0, 1]→ 2X × T ,

(x, u) =
(
[x],M(x, u)

)
,
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is also ε-DP, and, moreover, the support supp(x | t, θ) for M′ is d-connected for all the possible outputs t ∈

T × 2X ofM′ and all θ ∈ Θ.

Proof. Proposition 15 implies that the data-release mechanism

M0 : X × [0, 1]→ Comp(X ),

(x, u) 7→ [x],

is ε-DP with ε = 0. Observe that Px(M′ ∈ ·) is the product measure of Px(M0 ∈ ·) and Px(M ∈ ·).

ThusM′ is also ε-DP by Proposition 11. This proves the first half of the proposition.

To see the second half of the proposition, fix some θ ∈ Θ and some t ∈ T . Let E ⊂ X . If there does

not exist some x ∈ X with E = [x] then supp(x | (t,E), θ) = ∅ which is trivially d-connected. On

the other hand, if E = [x] for some x ∈ X then supp(x | (t,E), θ) ⊂ [x]. Since [x] is d-connected by

definition, supp(x | (t,E), θ)must also be.

C.5.7 AlternativeCharacterisationsofthePrivatisedDataProbabilityP(T ∈
· | θ)

The following proposition provides a number of characterisations of the privatised data probabilityP(T ∈

· | θ), defined in equation (5.6). Recall that λ is the Lebesgue measure.

Proposition 17. LetM be a data-release mechanism. Then the privatised data probability is given by:

P(T ∈ S | θ) =
∫
X
Px(S)dPθ(x),

=

∫
X×[0,1]

1M(x,u)∈Sd(Pθ × λ)(x, u),
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for every S ∈ F , where Pθ × λ is the product measure of Pθ and λ, and 1M(x,u)∈S is the indicator function:

1M(x,u)∈S =


1 ifM(x, u) ∈ S,

0 otherwise.

Moreover, P(T ∈ · | θ) is a well defined probability on (T ,F ), for every θ ∈ Θ.

Proof. Recall thatM is (G ⊗B[0, 1],F )-measurable. Hence 1M(x,u)∈S : X × [0, 1]→ R is also measur-

able for every S ∈ F . Thus, ∫
X×[0,1]

1M(x,u)∈Sd(Pθ × λ)(x, u)

is a well-defined probability on (T ,F ). Then

∫
X×[0,1]

1M(x,u)∈Sd(Pθ × λ)(x, u) =
∫
X

(∫
[0,1]

1M(x,u)∈Sdu

)
dPθ(x)

=

∫
X
λ
(
{u ∈ [0, 1] : M(x, u) ∈ S}

)
dPθ(x)

=

∫
X
Px(S)dPθ(x),

where the first line follows by Fubini’s theorem, and the second by the definition of the Lebesguemeasure

λ and the third by the definition of Px(S) in equation (5.1). (Note that x 7→ Px(S) is indeed (G ,F )-

measurable – see (Durrett, 2019, Lemma 1.7.3).)

C.5.8 Alternative Characterisations of the Probability of a Data-Provision
ProcedureMG

The following lemma will be useful in proving that the probability of a data-provision procedureMG is

well defined.
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LemmaC.5.6. Let (X,ΣX), (Y,ΣY) and (Z,ΣZ) bemeasurable spaces. Suppose that f : X→ Y is (ΣX,ΣY)-

measurable and g : Y× Z→Wis (ΣY ⊗ ΣZ,ΣW)-measurable.

Then the map

h : X× Z→W,

(x, z) 7→ g(f(x), z),

is (ΣX ⊗ ΣZ,ΣW)-measurable.

Proof. Define

φ : X× Z→ Y× Z,

(x, z) 7→ (f(x), z),

and

E = {E2 ∈ ΣY ⊗ ΣZ | ∃E1 ∈ ΣX ⊗ ΣZ s.t. φ−1(E2) = E1}.

It is easy to verify that E is a σ-algebra because φ−1(∅) = ∅; φ−1(Ec
2) = [φ−1(E2)]

c; and φ−1(∪iE(i)2 ) =

∪iφ−1(E(i)2 ). (Here Ec
2 is the complement of E2 in Y× Z.) Define the rectangles

R = {E× F | E ∈ ΣY, F ∈ ΣZ}.

Because f is measurable,R ⊂ E and hence ΣY ⊗ ΣZ = σ(R) = E .

Now letE3 ∈ ΣW. Because g ismeasurable, there existsE2 ∈ ΣY⊗ΣZ such that g−1(E3) = E2. Because

ΣY ⊗ ΣZ ⊂ E , there exists E1 ∈ ΣX ⊗ ΣZ such that φ−1(E2) = E1. Thus, h−1(E3) = φ−1(g−1[E3]) =

E1.
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The following proposition provides a number of characterisations of the probability P(T ∈ · | θ) of

the output of a data-provision procedureMG, defined in equation (5.15).

Proposition 18. LetMG be a data-provision procedure. The probability onMG’s output T is given by

P(T ∈ S | θ) = λ
(
{u1, u2 ∈ [0, 1] : MG(θ, u1, u2) ∈ S}

)
(C.19)

=

∫
[0,1]2

1MG(θ,u1,u2)∈Sd(u1, u2) (C.20)

=

∫
X
Px(S)dPθ(x), (C.21)

for S ∈ F , where 1MG(θ,u1,u2)∈S is the indicator function:

1MG(θ,u1,u2)∈S =


1 ifMG(θ, u1, u2) ∈ S,

0 otherwise.

Moreover, for each θ ∈ Θ, P(T ∈ · | θ) is a well-defined probability on (T ,F ).

Proof. We first show that P(T ∈ · | θ) is a well-defined probability on (T ,F ). By the definition of

P(T ∈ · | θ) as a pushforward probability in equation (5.15), it suffices to show that the map

MG(θ, ·, ·) : [0, 1]2 → T ,

(u1, u2) 7→MG(θ, u1, u2),

is (B[0, 1]2,F )-measurable for every θ ∈ Θ. (HereB[0, 1]2 is the Borel σ-algebra on [0, 1]× [0, 1].) Recall

that we assume thatM is (G ⊗B[0, 1],F )-measurable and thatG(θ, ·) is (B[0, 1],G )-measurable for all

θ ∈ Θ. Thus, measurability ofMG follows from Lemma C.5.6 because B[0, 1]2 = B[0, 1]⊗ B[0, 1].

Now we prove equations (C.19)-(C.21). Equation (C.19) is simply the definition of P(T ∈ S | θ),
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as given in equation (5.15). Equation (C.20) follows from the definition of the Lebesgue measure λ on

[0, 1]2. Equation (C.21) follows by the calculation:

∫
[0,1]2

1MG(θ,u1,u2)∈Sd(u1, u2) =
∫
[0,1]

(∫
[0,1]

1M(G(θ,u1),u2)∈Sdu2

)
du1

=

∫
[0,1]

(∫
[0,1]

1M(x,u2)∈Sdu2

)
1G(θ,u1)=xdu1

=

∫
[0,1]

Px(S)1G(θ,u1)=xdu1

=

∫
X
Px(S)dPθ(x),

where the first line is Fubini’s theorem; the second line is a substitution of G(θ, u1) with x; the third line

follows by the definition of Px in equation (5.1):

Px(S) = λ
(
{u2 ∈ [0, 1] : M(x, u2) ∈ S}

)
=

∫
[0,1]

1M(x,u2)∈Sdu2,

and the fourth line follows by the definition of Pθ in equation (5.14):

Pθ(X ∈ E) = λ
(
{u1 ∈ [0, 1] : G(θ, u1) ∈ E}

)
=

∫
[0,1]

1G(θ,u1)∈Edu1.

(Note that Px(S) is indeed (G ,F )-measurable – see (Durrett, 2019, Lemma 1.7.3).)

C.5.9 Pufferfish Bounds the Prior-to-Posterior Odds Ratio

The following proposition formalises the result described by equation (5.17).

Proposition 19. Fix a data-generating process G. Let M be a data-release mechanism. Then M satisfies
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ε-PufferF ish(D, S) if and only if

e−ε ≤ Pθ∗(X ∈ E | T = t)
Pθ∗(X ∈ E′ | T = t)

/
Pθ∗(X ∈ E)
Pθ∗(X ∈ E′)

≤ eε, (C.22)

for all θ∗ ∈ D, all10 (E,E′) ∈ S, and all t ∈ T∗, where T c
∗ is a null set under P(T ∈ · | θ∗,X ∈ E) and

under P(T ∈ · | θ∗,X ∈ E′).

Proof. Suppose throughout that ε <∞ (otherwise the proposition is vacuous).

“⇒”: Suppose that M satisfies ε-PufferF ish(D, S). Fix some θ∗ ∈ D and some (E,E′) ∈ S such

that Pθ∗(X ∈ · | X ∈ E) and Pθ∗(X ∈ · | X ∈ E′) are both well-defined. By 5.8.1.IV, there is a

common dominating measure ν of P(T ∈ · | θ∗,X ∈ E) and P(T ∈ · | θ∗,X ∈ E′). Additionally,

P(T ∈ · | θ∗,X ∈ E) and P(T ∈ · | θ∗,X ∈ E′) have ν-densities satisfying

e−ε ≤ p(t | θ∗,X ∈ E)
p(t | θ∗,X ∈ E)

≤ eε,

for all t ∈ T . Now Bayes rule states that

Pθ∗(X ∈ E | T = t) ∝ Pθ∗(X ∈ E)p(t | θ∗,X ∈ E), (C.23)

for P(T ∈ · | θ∗,X ∈ E)-almost all t. Let T (1)
∗ be the null set where (C.23) doesn’t hold. Similarly, let

T (2)
∗ be the P(T ∈ · | θ∗,X ∈ E′)-null set where

Pθ∗(X ∈ E′ | T = t) ∝ Pθ∗(X ∈ E′)p(t | θ∗,X ∈ E′),

does not hold. On T∗ = (T ∗
1 ∪ T ∗

2 )
c, the posterior odds is equal to product of the prior odds and the

likelihood ratio:

Pθ∗(X ∈ E | T = t)
Pθ∗(X ∈ E′ | T = t)

=
Pθ∗(X ∈ E)
Pθ∗(X ∈ E′)

p(t | θ∗,X ∈ E)
p(t | θ∗,X ∈ E′)

.
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Hence (C.22) holds for all t ∈ T∗.

“⇐”: Fix some θ∗ ∈ D and some (E,E′) ∈ S such that Pθ∗(X ∈ · | X ∈ E) and Pθ∗(X ∈ · | X ∈ E′)

are both well-defined. Suppose that (C.22) holds. We will show that 5.8.1.II must also hold. Firstly, we

note that P(T ∈ · | θ∗,X ∈ E) is absolutely continuous with respect to P(T ∈ · | θ∗). Also,

Pθ∗(X ∈ E | T = t)
Pθ∗(X ∈ E)

is a P(T ∈ · | θ∗)-density for P(T ∈ · | θ∗,X ∈ E) because

P(T ∈ S | θ∗,X ∈ E) =
∫
S

Pθ∗(X ∈ E | T = t)
Pθ∗(X ∈ E)

dP(t | θ∗)

by Bayes rule. All the above also applies when E is replaced by E′. Hence, for any S ∈ F ,

P(T ∈ S | θ∗,X ∈ E) = P(T ∈ S ∩ T∗ | θ∗,X ∈ E)

=

∫
S∩T∗

Pθ∗(X ∈ E | T = t)
Pθ∗(X ∈ E)

dP(t | θ∗)

≤ eε
∫
S∩T∗

Pθ∗(X ∈ E′ | T = t)
Pθ∗(X ∈ E′)

dP(t | θ∗)

= eεP(T ∈ S ∩ T∗ | θ∗,X ∈ E′)

= eεP(T ∈ S | θ∗,X ∈ E′).

The second half of 5.8.1.II follows analogously.

C.6 Proofs Omitted From theMain Text

Recall that μ� ν denotes that μ is absolutely continuous with respect to ν.

Proof. of Lemma 5.3.4: Fix two σ-finite measures μ, ν ∈ Ω and a constants ε > 0.
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“⇒”: Suppose that ν ∈ I(e−εμ, eεμ). Then, for all S ∈ F ,

ν(S) ≥ e−εμ(S),

and hence

ln
μ(S)
ν(S)

≤ ε.

Similarly,

− ln
μ(S)
ν(S)

= ln
ν(S)
μ(S)

≤ ε,

since ν(S) ≤ eεμ(S). Putting these two results together,

DMult(μ, ν) = sup
S∈F

∣∣∣∣ln μ(S)
ν(S)

∣∣∣∣ ≤ ε.

“⇐”: Suppose thatDMult(μ, ν) ≤ ε. Then, for all S ∈ F ,

μ(S)
ν(S)

≤ eε.

This proves e−εμ ≤ ν. We also have that

− ln
μ(S)
ν(S)

≤ ε,

for all S ∈ F , which implies ν ≤ eεμ. Thus, ν ∈ I(e−εμ, eεμ).

Now we prove the second half of the lemma. Fix two constants 0 < a ≤ 1 ≤ b < ∞. Suppose

ν ∈ I(aμ, bμ). Let ε = max(− ln a, ln b). Since I(aμ, bμ) ⊂ I(e−εμ, eεμ), we have DMult ≤ ε by the

result of the first half of the lemma. Now let ε = min(− ln a, ln b) and supposeDMult(μ, ν) ≤ ε. Then

ν ∈ I(e−εμ, eεμ) ⊂ I(aμ, bμ) as required.

Proof. of Theorem 5.3.5: First we prove that I implies II. Suppose that M satisfies pure ε-DP. Fix some
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S ∈ F and some x, x′ ∈ X with d(x, x′) = 1. By assumption, DMult(Px,Px′) ≤ ε. This implies

Px′(S) ≤ eεPx(S) by Lemma 5.3.4, which is exactly II.

Next we will prove that II implies I. To do this, we need the following lemma (∗): II implies that

DMult(Px,Px′) ≤ ε for all x, x′ ∈ X with d(x, x′) = 1.

To prove this lemma, suppose II holds and fix some x, x′ ∈ X with d(x, x′) = 1. By assumption

Px′(S) ≤ eεPx(S) for allS ∈ F . Yet, by symmetryofd (i.e. becaused(x′, x) = d(x, x′) = 1), II also implies

that Px(S) ≤ eεPx′(S) for all S ∈ F . Then Lemma 5.3.4 provides the desired result: DMult(Px,Px′) ≤ ε.

Now we return to proving that II implies I. Fix x, x′ ∈ X . If d(x, x′) = ∞ then the condition

DMult(Px,Px′) ≤ εd(x, x′) is vacuous. Similarly, if d(x, x′) = 0 then, by the properties of d as a met-

ric, x = x′. Thus Px = Px′ andDMult(Px,Px′) = 0.

On the other hand, if d(x, x′) = n <∞, then by Assumption 5.3.3, there exists x = x0, x1, . . . , xn =

x′ ∈ X with d(xi, xi+1) = 1 for all 0 ≤ i ≤ n− 1. Then,

DMult(Px,Px′) ≤
n−1∑
i=0

DMult(Pxi ,Pxi+1) ≤
n−1∑
i=0

ε = εd(x, x′),

where the first line follows by the triangle inequality (Lemma C.3.3) of DMult, and the second by (∗).

This proves that II implies I.

Now we prove that I is equivalent to III. Fix some x, x′ ∈ X with δ = d(x, x′). Then M is ε-DP if

and only ifDMult(Px,Px′) ≤ δε for all such x, x′ ∈ X . Yet Lemma 5.3.4 states that this is equivalent to

Px′ ∈ I
(
e−δεPx, eδεPx

)
, which is III.

We move to proving that III implies IV. This follows by Proposition 14. Fix x, x′ ∈ X and ν ∈ Ω.

Suppose that x′ and x are d-connected, so that d(x, x′) = δ < ∞. Assume that III holds for these x, x′.

Suppose that Px has a ν-density px. By the Radon-Nikodym theorem, this implies Px � ν. Then we can
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apply Proposition 14(a) with τ = Px, a = exp(−δε), b = exp(δε) and g = px. Then Px′ has a ν-density

which is in the density bounded class I(exp(−δε)px, exp(δε)px). This is precisely IV.

Finally, we prove that IV implies III. Set ν = Px so that Px has a constant ν-density px = 1. Then IV

implies that px′ ∈ I(l, u), where l = exp(−δε) and u = exp(δε) are also constant ν-densities. Apply the

second half of Proposition 14. This states that Px′ ∈ I(L,U)where L andU are defined as

L(S) =
∫
S
e−δεdPx = e−δεPx(S),

and

U(S) =
∫
S
eδεdPx = eδεPx(S).

Yet this is exactly III.

We now turn to proving Theorem 5.4.1. We first need to establish some lemmata.

Lemma C.6.1. Consider the same set-up as in Theorem 5.4.1. If x ∈ supp0(x | t0)
c ∩ supp(Pθ), then

Px(T0) = 0.

Proof. For t ∈ T0, we have

supp0(x | t0)
c ∩ supp(Pθ) ⊂

(
supp(Pθ) ∩ supp0(x | t0)

)c ∩ supp(Pθ)

⊂
(
supp(Pθ) ∩ supp0(x | t)

)c ∩ supp(Pθ)

⊂ supp0(x | t)
c

= {x ∈ X | t ∈ supp(Px)c}.

Therefore, for x ∈ supp0(x | t0)
c ∩ supp(Pθ), we have that T0 ∈ supp(Px)c. The result then follows

by (C.2).
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Lemma C.6.2. Consider the same set-up as in Theorem 5.4.1. Then

∫
supp(x|t0,θ)c

Px(T0)dPθ(x) = 0.

Proof. Compute

∫
supp(x|t0,θ)c

Px(T0)dPθ(x) =
∫
supp(Pθ)c

Px(T0)dPθ(x) +
∫
supp0(x|t0)c∩supp(Pθ)

Px(T0)dPθ(x)

=

∫
supp(Pθ)c

Px(T0)dPθ(x)

≤ Pθ(supp(Pθ)c)

= 0,

where the second line follows by Lemma C.6.1 and the fourth by (C.2).

Lemma C.6.3. Consider the same set-up as in Theorem 5.4.1. Then, a density p(t | θ) for P(T ∈ · | θ)

exists in T0 = {t ∈ T | supp(x | t, θ) ⊂ supp(x | t0, θ)} in the sense that

P(T ∈ S ∩ T0 | θ) =
∫
S∩T0

p(t | θ)dν(t),

for all S ∈ F , where ν is the dominating measure for the density p(t | θ). Moreover, this density satisfies

p(t | θ) ∈ px∗(t) exp(±εd∗), (C.24)

for every t ∈ T0 and every x∗ ∈ supp(x | t0, θ), where d∗ = supx∈supp(x|t0,θ) d(x, x∗).

Proof. Fix some x∗ ∈ supp(x | t0, θ) and some ν ∈ Ω with Px∗ � ν. Let px∗ be a ν-density of Px∗ . By

Theorem 5.3.5.IV and the assumption that supp(x | t0, θ) is d-connected, the probability Px also has a
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ν-density px, for all x ∈ supp(x | t0, θ). For t ∈ T0, define

p(t | θ) =
∫
supp(x|t0,θ)

px(t)dPθ(x).

Wewant to prove that p(t | θ) is a ν-density of P(T ∈ · | θ) in T0 – namely, that

P(T ∈ S ∩ T0 | θ) =
∫
S∩T0

p(t | θ)dν(t),

for all S ∈ F .

We have

∫
S∩T0

p(t | θ)dν(t) =
∫
S∩T0

(∫
supp(x|t0,θ)

px(t)dPθ(x)

)
dν(t)

=

∫
supp(x|t0,θ)

(∫
S∩T0

px(t)dν(t)
)
dPθ(x)

=

∫
supp(x|t0,θ)

Px(S ∩ T0)dPθ(x)

= P(T ∈ S ∩ T0 | θ),

where the second line follows by Fubini’s theorem and the fourth by Lemma C.6.2.

Now we move to proving the upper bound of (C.24):

p(t | θ) =
∫
supp(x|t0,θ)

px(t)dPθ(x)

≤
∫
supp(x|t0,θ)

eεd(x,x∗)px∗(t)dPθ(x)

≤ eεd∗px∗(t),

where the second line follows from Theorem 5.3.5.IV. The lower bound follows similarly.

Proof. of Theorem 5.4.1: By Theorem 5.3.5, we can fix a measure ν ∈ Ω which dominates all Px for
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x ∈ supp(x | t0, θ). Let px denote a ν-density of Px for x ∈ supp(x | t0, θ). Take the essential supremum

with respect to ν over the collection of densities {exp(−εd∗)px∗(t) : x∗ ∈ supp(x | t0, θ)} to produce

lθ,ε(t) = ess sup
x∗∈supp(x|t0,θ)

exp(−εd∗)px∗(t). (C.25)

This function lθ,ε : T → [0,∞] exists and is measurable as ν is σ-finite. Thus, lθ,ε is a ν-density for some

measure Lθ,ε on (T ,F ). By Lemma C.6.3, we can construct a ν-density p(t | θ) for P(T ∈ · ∩ T0 | θ)

which satisfies

p(t | θ) ≥ lθ,ε(t),

for ν-almost all t ∈ T0. This proves that P(T ∈ S | θ) ≥ Lθ,ε(S) for any measurable S ⊂ T0.

Since P(T ∈ · ∩ T0 | θ) is zero outside of T0, technically we must modify lθ,ε to also be zero outside of

T0. It then follows that Lθ,ε(S) ≤ P(T ∈ S∩ T0 | θ) for all S ∈ F . This proves the lower bound of (5.7).

The argument for the upper measureUθ,ε is almost analogous. We can construct uθ,ε on T as the essen-

tial infimum

uθ,ε(t) = ess inf
x∗∈supp(x|t0,θ)

exp(εd∗)px∗(t).

(Note that it is possible that uθ,ε is not finite almost everywhere – even though all of the px∗(t) are – so that

the measureUθ,ε is not σ-finite by Lemma C.5.1.) Then Lemma C.6.3 implies that

p(t | θ) ≤ uε(t),

for ν-almost all t ∈ T0. This proves that P(T ∈ S | θ) ≤ Uθ,ε(S) for any measurable S ⊂ T0. Thus,

P(T ∈ S ∩ T0 | θ) ≤ Uθ,ε(S) for any S ∈ F . This proves the upper bound of (5.7).

Proof. of Theorem 5.5.1: Fix some x∗ ∈ S0 ∪ S1 and some ν ∈ Ωwith Px∗ � ν. By Theorem 5.3.5.IV
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and the assumption that S0 ∪ S1 is d-connected, the probability Px has a ν-density px, for all x ∈ S0 ∪ S1.

For t ∈ T , define

p(t | θi) =
∫
Si
px(t)dPθi(x).

We can show that p(t | θi) is a ν-density of P(T ∈ · | θ0): For any E ∈ F ,

∫
E
p(t | θi)dν(t) =

∫
E

∫
Si
px(t)dPθidν(t)

=

∫
Si

∫
E
px(t)dν(t)dPθi

=

∫
Si
Px(E)dPθi

= P(T ∈ E | θi),

where the second line follows by Fubini’s theorem and the fourth by (C.2).

LetR be the rejection region of a test with size P(T ∈ R | θ0) ≤ α. Then

P(T ∈ R | θ1) =
∫
R
p(t | θ1)dν(t)

≤ exp(d∗∗ε)
∫
R
p(t | θ0)dν(t)

≤ α exp(d∗∗ε),

where the second line follows by the computation:

p(t | θ1) =
∫
S1
px(t)dPθ1(x)

=

∫
S0

(∫
S1
px(t)dPθ1(x)

)
dPθ0(x

′)

∈
∫
S0

(∫
S1
exp(±εd∗∗)px′(t)dPθ1(x)

)
dPθ0(x

′)
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= exp(±εd∗∗)
∫
S0

(∫
S1
dPθ1(x)

)
px′(t)dPθ0(x

′)

= exp(±εd∗∗)p(t | θ0).

In the above computation, the third line follows from Theorem 5.3.5.IV and the other lines simply pull

constant factors into – or out of – some integral over dPθi .

WebeginprovingTheorem5.6.2by establishing the following lemma (which is analogous toLemmaC.6.3).

Lemma C.6.4. Consider the same set-up as in Theorem 5.6.2. Then, a density p(t) for the prior predictive

probability P(T ∈ ·) exists in T0 in the sense that

P(T ∈ S ∩ T0) =
∫
S∩T0

p(t)dν(t), (C.26)

for all S ∈ F , where ν is the dominating measure for the density p(t). Moreover, this density satisfies

p(t) ∈ px∗(t) exp(±εd∗), (C.27)

for every t ∈ T0 and every x∗ ∈ supp(x | t0), where d∗ = supx∈supp(x|t0) d(x, x∗).

Proof. We proceed as for the proof of Lemma C.6.3. Fix some x∗ ∈ supp(x | t0 and some ν ∈ Ω with

Px∗ � ν. Let px∗ be a ν-density of Px∗ . By Theorem 5.3.5.IV and the assumption that supp(x | t0) is

d-connected, the probability Px also has a ν-density px, for all x ∈ supp(x | t0). For t ∈ T0, define

p(t) =
∫
Θ

(∫
supp(x|t0)

px(t)dPθ(x)

)
dπ(θ).

We can compute

∫
S∩T0

p(t)dν(t) =
∫
S∩T0

∫
Θ

∫
supp(x|t0)

px(t)dPθ(x)dπ(θ)dν(t)
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=

∫
Θ

∫
supp(x|t0)

∫
S∩T0

px(t)dν(t)dPθ(x)dπ(θ)

=

∫
Θ

∫
supp(x|t0)

Px(S ∩ T0)dPθ(x)dπ(θ)

=

∫
Θ
P(T ∈ S ∩ T0 | θ)dπ(θ)

= P(T ∈ S ∩ T0),

where the second line follows by Fubini’s theorem and the fourth by Lemma C.6.2. This proves (C.26).

Now we move to proving the upper bound of (C.27):

p(t) =
∫
Θ

(∫
supp(x|t0)

px(t)dPθ(x)

)
dπ(θ)

≤
∫
Θ

(∫
supp(x|t0)

eεd(x,x∗)px∗(t)dPθ(x)

)
dπ(θ)

≤ eεd∗px∗(t),

where the second line follows from Theorem 5.3.5.IV. The lower bound of (C.27) follows similarly.

Proof. of Theorem 5.6.2: This is exactly analogous to the proof of Theorem 5.4.1, where references to

LemmaC.6.3 are replaced by references to LemmaC.6.4; p(t | θ) is replaced with p(t); and supp(x | t0, θ)

is replaced with supp(x | t0).

Proof. of Theorem 5.6.3: By Theorem 5.3.5, we can fix a measure ν ∈ Ω which dominates all Px for

x ∈ supp(x | t0. Let px denote a ν-density of Px for x ∈ supp(x | t0). Define

p(t | θ) =
∫
supp(x|t0)

px(t)dPθ(x).

Exactly as in the proof of Lemma C.6.3, we can show that p(t | θ) is a ν-density of P(T ∈ · | θ) in T0.
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Since t0 ∈ T0, we can use this density to compute the posterior via Bayes rule:

π(θ | t0) =
p(t0 | θ)π(θ)∫

Θ p(t0 | θ′)dπ(θ′)
.

We have that

p(t0 | θ)π(θ)∫
Θ p(t0 | θ′)dπ(θ′)

≤ p(t0 | θ)π(θ)∫
Θ exp(−εd∗∗)p(t0 | θ)dπ(θ′)

= exp(εd∗∗)π(θ), (C.28)

where the first line follows by the calculations

p(t0 | θ′) =
∫
supp(x|t0)

px(t)dPθ′(x)

=

∫
supp(x|t0)

(∫
supp(x|t0)

px(t)dPθ′(x)

)
dPθ(x′)

≤
∫
supp(x|t0)

(∫
supp(x|t0)

exp(εd∗∗)px′(t)dPθ′(x)

)
dPθ(x′)

= exp(εd∗∗)
∫
supp(x|t0)

px′(t)dPθ(x′)

= p(t0 | θ).

In the above computation, the third line follows from Theorem 5.3.5.IV and the other lines simply pull

constant factors into – or out of – some integral over dPθ(x′) or dPθ′(x).

Using (C.28), we obtain the upper bound of (5.12):

π(θ ∈ S | t0) =
∫
S
π(θ | t0)dμ(θ)

≤
∫
S
exp(εd∗∗)π(θ)dμ(θ)
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= exp(εd∗∗)π(θ ∈ S),

where μ is the dominating measure of the prior density π(θ). The proof of the lower bound of (5.12) is

analogous.
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D
Appendices to Chapter 6

D.1 Proofs

Proof of Lemma 6.2.7. Let T ∈ M(X ,D ′, dD0 ,DPr, εD′). Take some D ∈ D and some d, d′ ∈ D.

Then

DPr(Pd,Pd′) ≤ inf{εD′dD0(d, d
′) : D′ ∈ D ′ s.t. d, d′ ∈ D′}

≤ inf{εD′dD0(d, d
′) : D′ ∈ D ′ s.t.D ⊂ D′}

= εDdD0(d, d
′),

where

εD = inf{εD′ : D′ ∈ D ′ s.t.D ⊂ D′}.
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Proof of Lemma 6.2.11. LetD′ ∈ D . Then there exists someD ∈ D and d ∈ D such thatD′ = D∩ [d].

Since every d′, d′′ ∈ [d] are connected, it follows that every d′, d′′ ∈ D′ are also connected. This proves

thatD is complete.

Suppose that T ∈ M(X ,D , dD0 ,DPr, εD′). Take some D ∈ D and some d, d′ ∈ D. We wish to

show that

DPr(Pd,Pd′) ≤ εDdD0(d, d
′). (D.1)

We may assume without loss of generality that dD0(d, d
′) < ∞. Define D′ = D ∩ [d]. Since D′ ∈ D

and d, d′ ∈ D′, we know that

DPr(Pd,Pd′) ≤ εD′dD0(d, d
′).

(D.1) then follows by observing that εD′ ≤ εD.

Suppose that T ∈M(D0,D , dD0 ,DPr, εD). Take someD′ ∈ D and some d, d′ ∈ D′. Then

DPr(Pd,Pd′) ≤ inf{εDdD0(d, d
′) : D ∈ D s.t. d, d′ ∈ D}

≤ inf{εDdD0(d, d
′) : D ∈ D s.t.D′ ⊂ D}

= εD′dD0(d, d
′).

Proof of Theorem 6.4.3. LetD ∈ D and d, d′ ∈ D. The density of Pd(T ∈ ·) is

fx(t) = (2Δq([x]D))−k exp
(
−
‖t− q(d)‖1
Δq([x]D)

)
.
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Thus,

DMult(Pd,Pd′) = sup
t∈R

∣∣∣∣ln fx(t)
fx′(t)

∣∣∣∣
= sup

t∈R

∣∣∣∣‖t− q(d′)‖1 − ‖t− q(d)‖1
Δq([x]D)

∣∣∣∣
≤ εdD0(d, d

′),

where the first line follows by Proposition 38 of Bailie and Gong (2024), the second because [d]D = [d′]D

and the third by the reverse triangle inequality.
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