PROPERTY ELICITATION ON IMPRECISE PROBABILITIES

James Bailie^{1*} & Rabanus Derr^{2*}

*Authors listed alphabetically

¹Harvard University, USA

²University of Tübingen and Tübingen AI Center, Germany

MOTIVATION

- Machine learning \approx minimizing *expected* loss.
- Robustification against set of possible probability distributions: multi-distribution learning (MDL) \approx minimizing *worst-case expected* loss.
- Relatedly, distributionally robust optimization (DRO) = *worst-case* stochastic programming.
- What can a model learn when trained via MDL?
- What *does* a model learn when trained via MDL?
- (Asymptotically) an MDL model learns the IP-property *elicited* by its loss function.
- Thus, property elicitation on IP is a useful theory for answering the above two questions.
- Read this poster if: you like penguins!

BACKGROUND: PROPERTY ELICITATION

Definition

Let $\mathcal{R} \subseteq \mathbb{R}^p$ be some set of property values. A **property** is a function $f : \mathbb{P} \to 2^{\mathcal{R}}$ for some $\mathbb{P} \subseteq \Delta(\mathcal{Z})$. For $\theta \in \mathcal{R}$, the **level set** \mathcal{L}_{θ} of a property is defined as

$$\mathcal{L}_{\theta} = \{ P \in \mathbb{P} \colon \theta \in f(P) \}.$$

A property f is **elicitable** if there exists a loss function $\ell : \mathcal{R} \times \mathcal{Z} \to \mathbb{R}$ such that for all $P \in \mathbb{P}$,

$$f(P) = \underset{\theta \in \mathcal{R}}{\operatorname{arg min}} \mathbb{E}_{Z \sim P}[\ell(\theta, Z)].$$

Bayes Pair. Let $\ell \colon \mathcal{R} \times \mathcal{Z} \to \mathbb{R}$ be a loss function. The property pair (Θ, L_{Θ}) is called a **Bayes pair** if Θ is the property elicited by ℓ and, for all $P \in \mathbb{P}$,

$$L_{\Theta}(P) = \min_{\theta \in \mathcal{R}} \mathbb{E}_{Z \sim P}[\ell(\theta, Z)].$$

Example (Squared error elicits the mean and variance Bayes pair). Suppose $\mathcal{Z} \subseteq \mathbb{R}$ and $\mathcal{R} \subseteq \mathcal{Z}$. Let $\ell(\theta, z) = (\theta - z)^2$ be the loss function.

Suppose that \mathbb{P} is the set of all distributions with finite second moments.

For $P \in \mathbb{P}$, the property $\Theta(P)$ of the corresponding Bayes pair is the mean of P, because

$$\mathbb{E}_{Z \sim P}[(\theta - Z)^2] = \theta^2 - 2\theta \mathbb{E}_{Z \sim P}[Z] + \mathbb{E}_{Z \sim P}[Z^2],$$

is minimized at $\theta = \mathbb{E}_{Z \sim P}[Z]$.

The corresponding $L_{\Theta}(P)$ is the variance of P since

$$\min_{\theta \in \mathcal{R}} \mathbb{E}_{Z \sim P}[\ell(\theta, Z)^2] = \mathbb{E}_{Z \sim P}[(\mathbb{E}_{Z \sim P}[Z] - Z)^2].$$

IP-PROPERTIES

Definition

Let $\mathcal{R} \subseteq \mathbb{R}^p$ be a set of property values. An **IP-property** is a function $f: \mathscr{P} \to 2^{\mathcal{R}}$ for some $\mathscr{P} \subseteq 2^{\Delta(\mathcal{Z})}$ with $\emptyset \notin \mathscr{P}$. For $\theta \in \mathcal{R}$, the **level set** \mathscr{L}_{θ} of a property is defined as

$$\mathcal{L}_{\theta} = \{ \mathcal{P} \in \mathscr{P} : \theta \in f(\mathcal{P}) \},$$

An IP-property f is **elicitable** if there exists a loss function $\ell: \mathcal{R} \times \mathcal{Z} \to \mathbb{R}$ such that, for all $\mathcal{P} \in \mathscr{P}$,

$$f(\mathcal{P}) = \underset{\theta \in \mathcal{R}}{\operatorname{arg \, min}} \sup_{P \in \mathcal{P}} \mathbb{E}_{Z \sim P}[\ell(\theta, Z)].$$

 Γ -minimax and DRO. Let ℓ be the loss of a decision maker, with \mathcal{R} a finite set of possible decisions. Then f is the corresponding Γ -minimax—or equivalently DRO—decision rule (cf. Troffaes, 2007; Rahimian and Mehrotra, 2022).

Given an imprecise probability \mathcal{P} , e.g. a credence about nature's state, $f(\mathcal{P})$ is the decision which minimizes the worst-case risk.

Proper Scoring Rules. When ℓ is a strictly proper scoring rule for forecasts, $f(\mathcal{P})$ can be interpreted as the set of forecasts which are Γ -minimax admissible under \mathcal{P} (as first introduced in Schervish et al., 2025, Definition 2.1).

Mean and Variance. Consider the binary outcome set $\mathcal{Z} = \{0,1\}$. We denote probabilities $p \in \Delta(\mathcal{Z})$ as $p \in [0,1]$. Let $\ell(\theta,z) = (\theta-z)^2$ be the loss function which elicits f. Then, for $\mathcal{P} = [0,0.5]$,

$$f(\mathcal{P}) = \underset{\theta \in \mathbb{R}}{\arg \min} \sup_{p \in [0,0.5]} \theta^2 - p(2\theta - 1) = 0.5.$$

Note that, for $\mathcal{Q}=\{0\}$, $f(\mathcal{Q})=\arg\min_{\theta\in\mathbb{R}}\theta^2=0$, while for $\mathcal{Q}'=\{0.5\}$, $f(\mathcal{Q}')=\arg\min_{\theta\in\mathbb{R}}\theta^2=0.5$. Hence, there exist $Q,Q'\in\mathcal{P}$ such that $f(\{Q\})\neq f(\mathcal{P})=f(\{Q'\})$. In particular, observe that $f(\mathcal{P})=f(\{Q'\})$ for Q' being the maximal variance distribution in the set \mathcal{P} .

NECESSARY CONDITIONS FOR ELICITABILITY

Proposition

Let $f: \mathscr{P} \to 2^{\mathcal{R}}$ be a full,* elicitable IP-property. Then, the following four statements hold:

- (I) For all $\mathcal{P} \in \mathscr{P}$, $f(\mathcal{P}) = f(\overline{co}\mathcal{P})$.
- (II) The level sets of f are convex; i.e. for all $\mathcal{P}, \mathcal{Q} \in \mathcal{L}_{\theta}$ and $\alpha \in [0, 1]$, the IP

$$\alpha \mathcal{P} + (1 - \alpha)\mathcal{Q} = \{\alpha P + (1 - \alpha)Q : P \in \mathcal{P}, Q \in \mathcal{Q}\}$$

is also in \mathcal{L}_{θ} .

- (III) The level sets of f are closed under arbitrary unions. That is, if $\{\mathcal{P}_i\}_{i\in I}\subset \mathscr{L}_{\theta}$, then $\bigcup_{i\in I}\mathcal{P}_i\in \mathscr{L}_{\theta}$.
- (IV) The precise restriction \hat{f} of f is elicitable.

Counterexample to closure under intersection. Consider the outcome set $\mathcal{Z} = \{0,1,2\}$. We denote probabilities $p \in \Delta(\mathcal{Z})$ as $(p_0,p_1,p_2) \in [0,1]^3$. Let $\ell(\theta,z) = (\theta-z)^2$ be the loss function which elicits f.

Then, for $\mathcal{P} = \{(1,0,0), (0.5,0,0.5)\},\$

$$f(\mathcal{P}) = 1,$$

the mean of p=(0.5,0,0.5) which is the maximum variance distribution in $\overline{\text{co}}\mathcal{P}$.

For $Q = \{(1,0,0), (0.25,0.5,0.25)\}$, we obtain,

$$f(Q) = 1,$$

the mean of p=(0.25,0.5,0.25) which is the maximum variance distribution in $\overline{\text{co}}\mathcal{Q}$.

However, it is easy to see that,

$$f(\mathcal{P} \cap \mathcal{Q}) = f(\{(1,0,0)\}) = 0.$$

(0.5,0,0.5) (0.25,0.25,0.5) Y = 0 Y = 1

Mean on simplex. Distributions marked in red are taken from the counterexample on the left.

MINIMAX SOLUTIONS FOR IP-ELICITATION

(Informal) Proposition

Let (Θ, L_{Θ}) be the Bayes pair corresponding to the loss function ℓ . Then, the IP-property $f: \mathscr{P} \to 2^{\mathcal{R}}$ elicited by ℓ satisfies $f(\mathcal{P}) \subseteq \Theta(P^*)$ for all $P^* \in \arg\max_{P \in \mathcal{P}} L_{\Theta}(P)$.

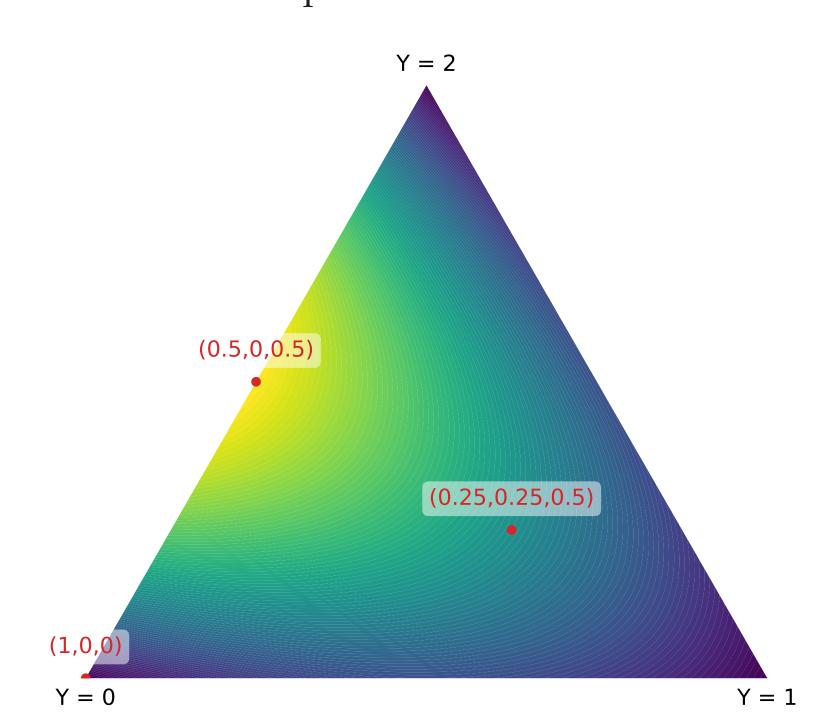
Related results in Grünwald and Dawid, 2004; Fröhlich and Williamson, 2024; Schervish et al., 2025.

Example. If $\ell(z,\theta)=(z-\theta)^2$ and $\mathcal{Z}=[-C,C]$ for some constant C>0, then, for all $\mathcal{P}\in 2^{\Delta(\mathcal{Z})}$, ℓ elicits the mean of maximum variance distribution in \mathcal{P} (Embrechts et al., 2021, Example 1.(iii)).

Technical conditions:

- 1. The loss function ℓ is lower semi-continuous and convex in θ for every $z \in \mathcal{Z}$, and upper semi-continuous in $z \in \mathcal{Z}$ for every $\theta \in \mathcal{R}$.
- 2. The set of property values \mathcal{R} is convex.
- 3. Let (Θ, L_{Θ}) be the Bayes pair corresponding to the loss function ℓ .
- 4. Let $\mathcal{P} \in \mathscr{P}$ be closed and convex, and suppose Θ is defined for every element in \mathcal{P} .

Then the IP-property $f \colon \mathscr{P} \to 2^{\mathcal{R}}$ elicited by ℓ satisfies $f(\mathcal{P}) \subseteq \Theta(P^*)$ for all $P^* \in \arg\max_{P \in \mathcal{P}} L_{\Theta}(P)$.



Variance on simplex. Distributions marked in red are taken from the counterexample on the above left.

ARXIV.ORG/ABS/2507.05857

SUMMARY

- We provide a list of necessary conditions for IPproperties to be elicitable.
 - Only properties which satisfy these conditions can be learned in MDL.
- We further show that an IP-property $f(\mathcal{P})$ elicited through Γ -maximin is equal to the standard property elicited on the maximum Bayes risk distribution in \mathcal{P} .
 - MDL *learns* the property of the maximum Bayes risk distribution.

Open Questions.

- 1. For (precise) probabilities, elicitability can be related to identifiability. What is the analogue of identifiability in the imprecise case, and how does it relate to elicitability (Steinwart et al., 2014)?
- 2. Comparison of IP-properties for loss functions which elicit the same property in the precise setting (e.g. Bregmann divergences).
- 3. Sufficient conditions for IP-elicitability, and (eventually) a full characterization of elicitable IP-properties.

SELECTED REFERENCES

Grünwald and Dawid (2004). "Game theory, maximum entropy, minimum discrepancy and robust Bayesian decision theory". In: *The Annals of Statistics* 32.4, pp. 1367–1433.

Embrechts et al. (2021). "Bayes risk, elicitability, and the expected shortfall". In: *Mathematical Finance* 31.4, pp. 1190–1217.

Fröhlich and Williamson (2024). *Scoring rules and calibration for imprecise probabilities*. arXiv:2410.23001.

Schervish et al. (2025). "Elicitation for sets of probabilities and distributions". In: *The 14th Intl. Symposium on Imprecise Probability: Theories and Applications*. Vol. 290. PMLR, pp. 242–251.