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MOTIVATION

• Machine learning ≈ minimizing expected loss.

• Robustification against set of possible probability dis-
tributions: multi-distribution learning (MDL) ≈ min-
imizing worst-case expected loss.

• Relatedly, distributionally robust optimization (DRO)
= worst-case stochastic programming.

• What can a model learn when trained via MDL?

• What does a model learn when trained via MDL?

• (Asymptotically) an MDL model learns the IP-
property elicited by its loss function.

• Thus, property elicitation on IP is a useful theory for
answering the above two questions.

• Read this poster if: you like penguins!

BACKGROUND: PROPERTY ELICITATION

Definition

Let R ⊆ Rp be some set of property values. A prop-
erty is a function f : P → 2R for some P ⊆ ∆(Z). For
θ ∈ R, the level set Lθ of a property is defined as

Lθ = {P ∈ P : θ ∈ f(P )}.
A property f is elicitable if there exists a loss func-
tion ℓ : R×Z → R such that for all P ∈ P,

f(P ) = argmin
θ∈R

EZ∼P [ℓ(θ, Z)].

Bayes Pair. Let ℓ : R×Z → R be a loss function. The prop-
erty pair (Θ, LΘ) is called a Bayes pair if Θ is the property
elicited by ℓ and, for all P ∈ P,

LΘ(P ) = min
θ∈R

EZ∼P [ℓ(θ, Z)].

Example (Squared error elicits the mean and variance Bayes
pair). Suppose Z ⊆ R and R ⊆ Z . Let ℓ(θ, z) = (θ − z)2 be
the loss function.

Suppose that P is the set of all distributions with finite sec-
ond moments.

For P ∈ P, the property Θ(P ) of the corresponding Bayes
pair is the mean of P , because

EZ∼P [(θ − Z)2] = θ2 − 2θEZ∼P [Z] + EZ∼P [Z
2] ,

is minimized at θ = EZ∼P [Z].

The corresponding LΘ(P ) is the variance of P since

min
θ∈R

EZ∼P [ℓ(θ, Z)2] = EZ∼P [(EZ∼P [Z]− Z)2] .

IP-PROPERTIES

Definition

Let R ⊆ Rp be a set of property values. An IP-
property is a function f : P → 2R for some P ⊆
2∆(Z) with ∅ /∈ P . For θ ∈ R, the level set Lθ of a
property is defined as

Lθ = {P ∈ P : θ ∈ f(P)},
An IP-property f is elicitable if there exists a loss
function ℓ : R×Z → R such that, for all P ∈ P ,

f(P) = argmin
θ∈R

sup
P∈P

EZ∼P [ℓ(θ, Z)].

Γ-minimax and DRO. Let ℓ be the loss of a decision maker,
with R a finite set of possible decisions. Then f is the corre-
sponding Γ-minimax—or equivalently DRO—decision rule
(cf. Troffaes, 2007; Rahimian and Mehrotra, 2022).
Given an imprecise probability P , e.g. a credence about na-
ture’s state, f(P) is the decision which minimizes the worst-
case risk.

Proper Scoring Rules. When ℓ is a strictly proper scor-
ing rule for forecasts, f(P) can be interpreted as the set of
forecasts which are Γ-minimax admissible under P (as first
introduced in Schervish et al., 2025, Definition 2.1).

Mean and Variance. Consider the binary outcome set Z =
{0, 1}. We denote probabilities p ∈ ∆(Z) as p ∈ [0, 1]. Let
ℓ(θ, z) = (θ − z)2 be the loss function which elicits f . Then,
for P = [0, 0.5],

f(P) = argmin
θ∈R

sup
p∈[0,0.5]

θ2 − p(2θ − 1) = 0.5.

Note that, for Q = {0}, f(Q) = argminθ∈R θ2 = 0, while for
Q′ = {0.5}, f(Q′) = argminθ∈R θ2 = 0.5. Hence, there exist
Q,Q′ ∈ P such that f({Q}) ̸= f(P) = f({Q′}). In particu-
lar, observe that f(P) = f({Q′}) for Q′ being the maximal
variance distribution in the set P .

NECESSARY CONDITIONS FOR ELICITABILITY

Proposition

Let f : P → 2R be a full,∗ elicitable IP-property.
Then, the following four statements hold:

(I) For all P ∈ P , f(P) = f(coP).

(II) The level sets of f are convex; i.e. for all P,Q ∈
Lθ and α ∈ [0, 1], the IP

αP+(1−α)Q = {αP+(1−α)Q : P ∈ P, Q ∈ Q}

is also in Lθ.

(III) The level sets of f are closed under arbitrary
unions. That is, if {Pi}i∈I ⊂ Lθ, then

⋃
i∈I Pi ∈

Lθ.

(IV) The precise restriction f̂ of f is elicitable.

Counterexample to closure under intersection. Consider
the outcome set Z = {0, 1, 2}. We denote probabilities
p ∈ ∆(Z) as (p0, p1, p2) ∈ [0, 1]3. Let ℓ(θ, z) = (θ − z)2 be
the loss function which elicits f .

Then, for P = {(1, 0, 0), (0.5, 0, 0.5)},

f(P) = 1,

the mean of p = (0.5, 0, 0.5) which is the maximum variance
distribution in coP .

For Q = {(1, 0, 0), (0.25, 0.5, 0.25)}, we obtain,

f(Q) = 1,

the mean of p = (0.25, 0.5, 0.25) which is the maximum vari-
ance distribution in coQ.

However, it is easy to see that,

f(P ∩Q) = f({(1, 0, 0)}) = 0.
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Mean on simplex. Distributions marked in red are taken
from the counterexample on the left.
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Variance on simplex. Distributions marked in red are taken
from the counterexample on the above left.

MINIMAX SOLUTIONS FOR IP-ELICITATION

(Informal) Proposition

Let (Θ, LΘ) be the Bayes pair corresponding to the
loss function ℓ. Then, the IP-property f : P → 2R

elicited by ℓ satisfies f(P) ⊆ Θ(P ∗) for all P ∗ ∈
argmaxP∈P LΘ(P ).

Related results in Grünwald and Dawid, 2004; Fröhlich and
Williamson, 2024; Schervish et al., 2025.

Example. If ℓ(z, θ) = (z − θ)2 and Z = [−C,C] for some
constant C > 0, then, for all P ∈ 2∆(Z), ℓ elicits the mean of
maximum variance distribution in P (Embrechts et al., 2021,
Example 1.(iii)).

Technical conditions:

1. The loss function ℓ is lower semi-continuous and con-
vex in θ for every z ∈ Z , and upper semi-continuous
in z ∈ Z for every θ ∈ R.

2. The set of property values R is convex.

3. Let (Θ, LΘ) be the Bayes pair corresponding to the loss
function ℓ.

4. Let P ∈ P be closed and convex, and suppose Θ is
defined for every element in P .

Then the IP-property f : P → 2R elicited by ℓ satisfies
f(P) ⊆ Θ(P ∗) for all P ∗ ∈ argmaxP∈P LΘ(P ).

SUMMARY

• We provide a list of necessary conditions for IP-
properties to be elicitable.

– Only properties which satisfy these conditions
can be learned in MDL.

• We further show that an IP-property f(P) elicited
through Γ-maximin is equal to the standard property
elicited on the maximum Bayes risk distribution in P .

– MDL learns the property of the maximum Bayes
risk distribution.

Open Questions.
1. For (precise) probabilities, elicitability can be related

to identifiability. What is the analogue of identifiabil-
ity in the imprecise case, and how does it relate to elic-
itability (Steinwart et al., 2014)?

2. Comparison of IP-properties for loss functions which
elicit the same property in the precise setting (e.g.
Bregmann divergences).

3. Sufficient conditions for IP-elicitability, and (eventu-
ally) a full characterization of elicitable IP-properties.
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