PROPERTY ELICITATION ON IMPRECISE PROBABILITIES
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MOTIVATION A

* Machine learning ~ minimizing expected loss.

e Robustification against set of possible probability dis-
tributions: multi-distribution learning (MDL) ~ min-
imizing worst-case expected loss.

e Relatedly, distributionally robust optimization (DRO)
= worst-case stochastic programming.

e What can a model learn when trained via MDL?
e What does a model learn when trained via MDL?

* (Asymptotically) an MDL model learns the IP-
property elicited by its loss function.

e Thus, property elicitation on IP is a useful theory for
answering the above two questions.
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BACKGROUND: PROPERTY ELICITATION

~

Let R C RP be some set of property values. A prop-
erty is a function f : P — 2™ for some P C A(Z). For
0 € R, the level set Ly of a property is defined as

Lo={PeP:0c f(P)}.

A property f is elicitable if there exists a loss func-
tion ¢ : R x Z — R such that for all P € P,

f(P)=argminEz_pll(0, 2)].
0cR

Bayes Pair. Let /: R x Z — R be a loss function. The prop-
erty pair (0, Lg) is called a Bayes pair if © is the property
elicited by ¢ and, for all P € P,

g Lo(P) = minEz..p[((0, 7))

Example (Squared error elicits the mean and variance Bayes
pair). Suppose Z C Rand R C Z. Let £(0,z) = (0 — 2)° be
the loss function.

Suppose that P is the set of all distributions with finite sec-
ond moments.

For P € PP, the property ©(P) of the corresponding Bayes
pair is the mean of P, because

Eyp[(0 — Z2)%] = 6% — 20E4..p|Z] + Ezp|Z?],

is minimized at § = Ez._p|Z].

The corresponding Lg(P) is the variance of P since

min EZNP[K(H, Z)2]

DER - 2)7.

=Ez~p|(Ez~p|Z]

IP-PROPERTIES

\

Let R C RP be a set of property values. An IP-
property is a function f : & — 2™ for some & C

28(Z) with ) ¢ &2. For 0 € R, the level set % of a
property is defined as

O%QZ{PEQZZQEJC(P)},
An IP-property f is elicitable if there exists a loss
function / : R x Z — R such that, for all P € &2,

f(P) = argmin sup Ez.p[£(0, Z)].
fER PeP

\J

['-minimax and DRO. Let /¢ be the loss of a decision maker,
with R a finite set of possible decisions. Then f is the corre-
sponding I'-minimax—or equivalently DRO—decision rule

(cf. Troffaes, 2007; Rahimian and Mehrotra, 2022).

Given an imprecise probability P, e.g. a credence about na-
ture’s state, f(P) is the decision which minimizes the worst-
case risk.

Proper Scoring Rules. When /¢ is a strictly proper scor-
ing rule for forecasts, f(P) can be interpreted as the set of
forecasts which are I'-minimax admissible under P (as first
introduced in Schervish et al., 2025, Definition 2.1).

Mean and Variance. Consider the binary outcome set Z =
{0,1}. We denote probabilities p € A(Z) asp € [0,1]. Let
{(0,2) = (0 — 2)* be the loss function which elicits f. Then,
for P = [0,0.5],

f(P) =argmin sup 6°—p(20 —1)=0.5.

0cR  pel0,0.5]
Note that, for @ = {0}, f(Q) = argminy g 8* = 0, while for
Q' = {0.5}, f(Q') = argminy g 6% = 0.5. Hence, there exist
Q,Q" € P such that f({Q}) # f(P) = f({Q’}). In particu-
lar, observe that f(P) = f({Q'}) for Q" being the maximal
variance distribution in the set P.

NECESSARY CONDITIONS FOR ELICITABILITY

\

Let f: 22 — 2™ be a full,* elicitable IP-property.
Then, the following four statements hold:

(I) Forall P € &2, f(P) = f(coP).

(I) The level sets of f are convex; i.e. for all P, Q &
Zp and « € |0, 1], the IP

aP+(1—a)9Q ={aP+(1—a)Q : P € P,Q € O}

is also in .%.

(III) The level sets of f are closed under arbitrary
unions. Thatis, if {P; };er C £y, thenl,.; P; €
Zp.

(IV) The precise restriction f of f is elicitable.

\J

Counterexample to closure under intersection. Consider
the outcome set Z = {0,1,2}. We denote probabilities
p € A(Z) as (po,p1,p2) € [0,1]3. Let £(0,2) = (0 — 2)? be
the loss function which elicits f.

Then, for P = {(1,0,0), (0.5,0,0.5)},
f(P) =1,

the mean of p = (0.5, 0, 0.5) which is the maximum variance
distribution in coP.

For Q = {(1,0,0), (0.25,0.5,0.25)}, we obtain,
f(Q) =1,

the mean of p = (0.25, 0.5, 0.25) which is the maximum vari-
ance distribution in co Q.

However, it is easy to see that,

f(P M Q) — f({(l,0,0)}) = 0.

MINIMAX SOLUTIONS FOR IP-ELICITATION

~

Let (O, Lg) be the Bayes pair corresponding to the
loss function ¢. Then, the IP-property f: &2 — 2%
elicited by ¢ satisfies f(P) C O(P*) for all P* €
arg maxpcp Lo (P).

Related results in Griinwald and Dawid, 2004; Frohlich and
Williamson, 2024; Schervish et al., 2025.

Example. If /(z,0) = (z — 0)? and Z = [-C, (] for some

constant C' > 0, then, for all P € 22(2) ¢ elicits the mean of

maximum variance distribution in P (Embrechts et al., 2021,
\Example 1.(ii1)).

Technical conditions:

1. The loss function ¢ is lower semi-continuous and con-
vex in 0 for every z € Z, and upper semi-continuous
in z € Z for every 0 € R.

2. The set of property values R is convex.

3. Let (O, Lg) be the Bayes pair corresponding to the loss
function /.

4. Let P € & be closed and convex, and suppose O is
defined for every element in P.

Then the IP-property f: &2 — 2% elicited by ¢ satisfies
f(P) C ©(P*) for all P* € argmaxpcp Lo(P).
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Mean on simplex. Distributions marked in red are taken
from the counterexample on the left.

Y=2

i (0.25,0.25,0.5)

(1,0,0)
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Variance on simplex. Distributions marked in red are taken
from the counterexample on the above left.

SUMMARY

~

e We provide a list of necessary conditions for IP-
properties to be elicitable.

— Only properties which satisfy these conditions
can be learned in MDL.

e We further show that an IP-property f(P) elicited
through I'-maximin is equal to the standard property
elicited on the maximum Bayes risk distribution in P.

— MDL learns the property of the maximum Bayes

\_ risk distribution.

Open Questions.

1. For (precise) probabilities, elicitability can be related
to identifiability. What is the analogue of identifiabil-
ity in the imprecise case, and how does it relate to elic-
itability (Steinwart et al., 2014)?

2. Comparison of IP-properties for loss functions which
elicit the same property in the precise setting (e.g.
Bregmann divergences).

3. Sufficient conditions for IP-elicitability, and (eventu-
ally) a full characterization of elicitable IP-properties.
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