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An aggregate statistic X is a disclosure risk if one contributor can determine another
to within p%:

X —x1—xp < x

P00 100 _

where x1, x2 are the values of the largest and second-largest contributors (Wolf and

Hundepool 2012).
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An aggregate statistic X is a disclosure risk if one contributor can determine another
to within p%:

X—x1—X <X1100
where x1, x2 are the values of the largest and second-largest contributors (Wolf and

Hundepool 2012).

The p% rule can provide assessment of disclosure risk and highlight when treatment is
required. But it does not provide that treatment.
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e We want to develop some method that can provide p% protection.

e How can we add noise to ensure that ‘an attacker can’'t determine a contributor’s
value to within p%'?

o We can use Pufferfish — a customisable, flexible formal privacy framework — to
encode this idea.
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Pufferfish (Kifer and Machanavajjhala 2014)
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A Pufferfish instantiation is a tuple (S, Spairs, D, €) where
1. S are the (potential) secrets.
2. Spairs C S x S are the discriminative pairs.

3. D are the data evolution scenarios. Each 6 € D is a probability distribution over all
possible datasets.

4. € > 0 is the acceptable level of privacy leakage.
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A mechanism M satisfies (S, Spairs, D, €)-Pufferfish if
1. for all pairs (s1,52) € Spairs,
2. for all data evolution scenarios § € D (with P(s;|6) # 0),
3. for all outputs w (with P(M(D) = wl|@) # 0),

the prior-to-posterior odds ratio is bounded:
e PEMO =00) /06 .
P(s2[M(D) = w,0)/ P(s(0)
(Probability is over the randomness of M and D.)
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An Application to ABS Agricultural Statistics e
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Requirements:

e Passive confidentiality
e Protect a certain sensitive variable x° for a given record
® Produce sanitised microdata from which aggregates can be safely published

® Linear relationships between variables. (Let R; be the set of variables linearly related to
the sensitive variable x° of passive claimant i.)
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R Pufferfish mechanism M:

1.

Secrets S are the statements: “The passive claimant’s sensitive variable x° is in the
interval [(1 — p)x, (14 p)x)" for all x € R.

Discriminative pairs (s1,52) € Spairs are secrets on the neighbouring intervals:
— 51 is the statement “x° € [(1 — p)x, (1 + p)x)",
. M 1+p 2 "
— s is the statement “x> € [(1 + p)x, %x) .
6 € D if § encodes the linear relationships between the sensitive variable x° and other

variables. That is: for all related variables x” € R;, there is a constant a" such that
P(xS =a'x"6)=1.

The mechanism M multiplies each variable in R; by e” where v ~ Laplace(0, b) with
b= =%In(1— p). (v is sampled once per passive claimant.)
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Proof sketch

1. Protecting the interval [(1 — p)x, (1 + p)x) is the same as protecting the interval
[Inx +In(1 — p),Inx + In(1 + p)) in the logarithm.

2. Since 1+ p < (1 — p)~L, we can protect [Inx + In(1 — p),Inx + In(1 + p)) by protecting
[Inx+In(1 - p),Inx —In(1 = p)).

3. So we have reduced the problem to ensuring indistinguishability of neighbouring intervals
[x—c,x+¢) and [x + ¢, x + 3¢).

4. We can do this by adding noise u ~ Laplace(0, b) with b = 4{ (Lemma 8.1, Kifer and
Machanavajjhala 2014).
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Where to now? Berauaf
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® Protecting contributors in aggregates (not microdata). Need to encode the
attacker's knowledge about another contributor value into D.
® Designing a mechanism for this type of scenario.
— Adapting the Wasserstein mechanism in (Song et al. 2017)?
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Where to now? Berauaf

Statistics

® Protecting contributors in aggregates (not microdata). Need to encode the
attacker's knowledge about another contributor value into D.

® Designing a mechanism for this type of scenario.
— Adapting the Wasserstein mechanism in (Song et al. 2017)?

Questions?
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