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Motivation

• Data swapping interchanges the values of sensitive variables in a randomly

selected subset of records (Dalenius and Reiss 1982; Fienberg and McIntyre 2004).

• It was used as the primary disclosure avoidance method in the 1990, 2000

and 2010 US Censuses.

• For the 2020 Census, disclosure avoidance was overhauled with the primary

aim of satisfying differential privacy (DP) (Dwork et al. 2006b).

Can we also understand data swapping from the perspective of DP?
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Differential privacy (Dwork et al. 2006b)

Object of interest: a statistic T – i.e. a function of the data x

and some auxiliary

random noise Z .

For example,

T(x) =
1
n

n∑
i=1

xi + Z

Differential privacy is Lipschitz continuity: for all possible data values x, x′
,

where Px is the distribution of T induced by the random noise Z .

“the output of T doesn’t change much if the input doesn’t change much” (robustness)
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Output divergence dPr and data divergence dX

dX is typically a graph distance on the data space X .

dX (x, x′) = k ⇔ “k units changed their responses”

dPr can be the multiplicative distance (pure DP):

dMult(P,Q) = sup
E

∣∣∣∣ln P(E)
Q(E)

∣∣∣∣,
between probability distributions P,Q, or the normalised Rényi metric Dnor (zero

concentrated DP):

Dnor(P,Q) = sup
α>1

1√
α
max

[√
Dα(P||Q),

√
Dα(Q||P)

]
.

where Dα is the Rényi divergence of order α.
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Does data swapping satisfy differential privacy?

• Not under the traditional formulation of DP...

• Because swapping has invariants cSwap – functions of the observed data

which are released without noise.

If a mechanism T contains an invariant (and x, x′ have different values for this

invariant), then Px and Px′ do not have common support, and so

dMult

[
Px,Px′

]
= Dnor

[
Px,Px′

]
= ∞.
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Does the 2020 US Census satisfy differential privacy?

• Not under the traditional formulation of DP...

• Because the TopDown Algorithm (TDA) has invariants cTDA.– functions of
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Does the 2020 US Census satisfy differential privacy?

• Not under the traditional formulation of DP...

• Because the TopDown Algorithm (TDA) has invariants cTDA.– functions of

the observed data which are released without any noise added.

Modifying the definition of DP:

dPr
[
Px,Px′

]
≤ ϵ dX (x, x′).

for all possible data values x, x′
which agree on the invariants.

▶ This is a necessary and sufficient modification for the release of invariants.
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Swapping satisfies DP, subject to its invariants

Permutation Swapping

Input: a dataset x.
Define strata as groups of records which match on the swap key VMatch.
Within each stratum:

1. Select each record independently with probability p (the swap rate).

2. Randomly derange swapping variable V Swap of selected records.

Output: the swapped dataset w.

Permutation Swapping is DP subject to its invariants, with input divergence

dX = du
Ham

, output divergence dPr = dMult and budget

ϵ =

ln(b + 1)− ln o if 0 < p ≤ 0.5,

max
{
ln o, ln(b + 1)− ln o

}
if 0.5 < p < 1,

where o = p/(1− p) and b is the maximum stratum size.
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Swap Rate to Privacy Loss Budget (Nominal) Conversion

Conversion between the swap rate (p) and the nominal PLB (ϵ) at different levels

of b. Note that:
1. For each b, there’s a smallest attainable ϵb > 0;
2. For each b, every ϵ > ϵb is satisfied by two different swap rates;

3. (counterintuitive) For the same swap rate, the larger the b, the larger the ϵ!
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Examples from the US Decennial Censuses

dPr dX (Unit) Invariants Privacy Loss Budget

TopDown
∗ Dnor dp

Ham
(person) Population (state) PL & DHC:

Total housing units (block) ρ2 = 15.29
Occupied group quarters (block) ϵ = 52.83 (δ = 10−10

)

Structural zeros

SafeTab
∗∗ Dnor dp

Ham
(person) None DDHC-A: ρ2 = 19.776

DDHC-B & S-DHC: TBD.

Swapping dMult dh
Ham

(household) Varies but greater ϵ between 9.37-19.38

than TDA

∗
(Abowd et al. 2022)

∗∗
(Tumult Labs 2022)
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Four Components of a DP Flavour (X ,D , dX , dPr)

Intuition: DP is a bound on the derivative of a data-release mechanism

d
dxP(T(x) ∈ ·) at every dataset x in the data universe D.

Derivatives measure change in output per change in input. How do we measure

change?

1. Data space X (the set of all theoretically-possible datasets).

3. Divergence dX on X .

4. Divergence dPr on the space of (probability distributions over) the output.

2. Allow for multiple data universes D ⊂ X from a data multiverse D .
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Four Components of a DP Flavour (X ,D , dX , dPr)

Definition

A differential privacy flavour is a tuple (X ,D , dX , dPr).
A data release mechanism T satisfies DP(X ,D , dX , dPr) with budget ϵ if

dPr
(
Px(T(x) ∈ ·),Px′(T(x′) ∈ ·)

)
≤ ϵdX (x, x′),

for all data universes D ∈ D and all datasets x, x′ ∈ D.

We aren’t doing anything new here!
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Four Components of a DP Flavour (X ,D , dX , dPr)

4. dPr: (ϵ, δ)-approximate DP (Dwork et al. 2006a) Rényi DP (Mironov 2017) concentrated DP (Bun and Steinke

2016) f -divergence privacy (Barber and Duchi 2014; Barthe and Olmedo 2013) f -DP (including Gaussian DP) (Dong

et al. 2022).

3. dX : (R, ϵ)-generic DP (Kifer and Machanavajjhala 2011) edge vs node privacy (Hay et al. 2009; McSherry and Mahajan

2010) d-metric DP (Chatzikokolakis et al. 2013) Blowfish privacy (He et al. 2014) element level DP (Asi et al. 2022)

distributional privacy (Zhou et al. 2009) event-level vs user-level DP (Dwork et al. 2010).

2. D : privacy under invariants (Ashmead et al. 2019; Gong and Meng 2020; Gao et al. 2022; Dharangutte et al. 2023)

conditioned or empirical DP (Abowd et al. 2013; Charest and Hou 2016) personalized DP (Ebadi et al. 2015; Jorgensen et al.

2015) individual DP (Soria-Comas et al. 2017; Feldman and Zrnic 2022) bootstrap DP (O’Keefe and Charest 2019) stratified DP

(Bun et al. 2022) per-record DP (Seeman et al. 2023+) per-instance DP (Wang 2018; Redberg and Wang 2021).

1. X : DP for network data (Hay et al. 2009) for geospatial data (Andrés et al. 2013) Pufferfish DP (Kifer and

Machanavajjhala 2014) noiseless privacy (Bhaskar et al. 2011) privacy under partial knowledge (Seeman et al. 2022)

privacy amplification (Beimel et al. 2010; Balle et al. 2020; Bun et al. 2022). 11 / 17
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Five Building Blocks of DP (X ,D , dX , dPr, ϵD)

1. The protection domain (what can be protected?): as defined by the dataset

space X ;

2. The scope of protection (to where does the protection extend?): as

instantiated by the data multiverse D , which is a collection of data

universes D ⊂ X ;

3. The protection unit (who are the units for data perturbation?): as

conceptualized by the divergence dX on the dataset space X ;

4. The standard of protection (how to measure the output variations?): as

captured by the divergence dPr on the output probability distributions; and

5. The intensity of protection (how much protection is afforded?): as quantified

by the privacy-loss budget ϵD.
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The TopDown Algorithm (TDA) (Abowd et al. 2022)

Two-step procedure:

0. Start with a Census edited file x ∈ XCEF.

1. Add Gaussian noise to cells:

T(x) = q(x) +W ,

where W ∼ NZ(0,Σ), so that T satisfies DP(XCEF, {XCEF}, dp
Ham

,Dnor) with

budget ρTDA (Canonne et al. 2022).

2. “Post-process”: find dataset z with q(z) close to T(x) such that

cTDA(z) = cTDA(x).

TDA satisfies DP(XCEF,DcTDA , d
p
Ham

,Dnor) with budget ρTDA.
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Theorem: TDA satisfies DP, subject to its Invariants

Denote the space of possible Census Edited Files by XCEF.

Let cTDA : XCEF → Rl
be the invariants of TDA and let DcTDA be the induced data

multiverse:

DcTDA = {D ⊂ XCEF | cTDA(x) = cTDA(x′) ∀x, x′ ∈ D}.

• TDA satisfies DP(XCEF,DcTDA , d
p
Ham

,Dnor) with privacy budget ρTDA = 2.63
(for the PL Redistricting File) and ρTDA = 15.29 (for the DHC).

• Let c′ be any proper subset of TDA’s invariants. TDA does not satisfy

DP(XCEF,Dc′ , dX ,Dnor) with any finite budget ρ.
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Contributions

• We supply a framework for capturing and comparing different flavours of DP which

highlights often their overlooked components.

• We prove that swapping satisfies DP, subject to its invariants, putting its privacy

guarantees on a comparable footing to the TopDown Algorithm.

• Our framework may help data custodians to systematically understand how

traditional SDC methods can provide formal privacy protection.

Implications:

• What is the performance of reconstruction attacks on other formally-private

mechanisms with invariants?

• Algorithmic and probabilistic transparency of swapping methods (for better data

utility).
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What if the 2020 Census used swapping?

The total nominal ϵ achievable by applying swapping to the 2020 Decennial

Census for a variety of VMatch, V Swap, and swap rate choices.

VMatch V Swap b total ϵ total ϵ Largest stratum

p = 5% p = 50%

state county 13680081 19.38 16.43 California

state × household size county 3653802 18.06 15.11 California, 3-household

county tract 3445076 18.00 15.05 LA County

county × household size tract 853003 16.60 13.66 LA County, 3-household

block group block 21535 12.92 9.98 a FL block group

block group × household size block 11691 12.31 9.37 a FL block group, 3-household

Note. For a fixed (VMatch, V Swap, p) setting, the nominal ϵ would be the total PLB
for all data products derived from the swapped dataset, including P.L. 94-171,

DHC, Detailed DHC for both persons and household product types.
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A Perverse Guide to Reducing the Privacy Loss ϵ

(without adding more noise)

1. Add more invariants

2. Increase the granularity of the privacy units (inflate dX )

• Persons instead of households

• One day’s worth of data, instead of all of an individual’s data over time

3. Artificially shrink the output divergence dPr
• Use (ϵ, δ)-DP instead of ϵ-DP.
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Data swapping visualisation

State Location Number of adults Number of children Age1 Race1 · · ·
MA Cambridge 2 2 45 White · · ·
TX Houston 1 0 28 Hispanic · · ·
WA Tacoma 5 0 67 Asian · · ·
MA Somerville 2 2 50 Black · · ·
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Data swapping visualisation

Massachusetts: Location by Race (head of household) Contingency Table

White Hispanic Asian Black . . .

Boston

Cambridge

Brookline

Somerville

Watertown

.

.

.

Changes: Interior cells of VHold − VMatch × V Swap.

Invariants:

1. VHold

2. VMatch × V Swap
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Data swapping visualisation
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Permutation Swapping
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Intuition of the proof that Permutation Swapping is DP

1. We need to show that, for fixed datasets x, x′,w in the same data universe D,

Pr(σ(x) = w) ≤ exp(du
Ham

(x, x′)ϵ) Pr(σ′(x′) = w),

2. We can show that there exists a derangement ρ of m records such that x = ρ(x′).

3. There is a bijection between the possible σ and σ′
given by σ′ = σ ◦ ρ.

4. Hence, if mσ is the number of records deranged by σ, we have

mσ −m ≤ mσ′ ≤ mσ +m.

5. This gives a bound on Pr(σ)/Pr(σ′) in terms of omσ−mσ′
and the ratio between the

number of derangements of mσ′ and of mσ .

6. For o ≤ 1, this can be bounded by o−m(b + 1)m using the above inequality. The

result for 0 < p ≤ 0.5 then follows with some algebraic simplification.

35 / 17



The TopDown Algorithm (Abowd et al. 2022)
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Examples of D , dX and dPr

1. An invariant-compliant data universe:

Dc =
{
D ⊂ X : c(x) = c(x′) ∀x, x′ ∈ D

}
,

for some invariants c : X → Rl
.

2. Data divergence dX induced by a “neighbour” relation:

dX (x, x′) =


0 if x = x′,
1 if x and x′ are “neighbours”,
∞ otherwise.
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Examples of D , dX and dPr
3. Divergence dPr on (the probability distributions over) the output space

• Pure ϵ-DP (Dwork et al. 2006b): dPr is the multiplicative distance

Mult(P,Q) = sup

{∣∣∣∣ln P(S)
Q(S)

∣∣∣∣ : event S} .

• Approximate (ϵ, δ)-DP (Dwork et al. 2006a):

Mult
δ(P,Q) = sup

event S

{
ln

[P(S)− δ]
+

Q(S)
, ln

[Q(S)− δ]
+

P(S)
, 0

}
,

• Zero Concentrated DP (Bun and Steinke 2016):

Dnor(P,Q) = sup
α>1

1√
α
max

[√
Dα(P||Q),

√
Dα(Q||P)

]
,

where Dα is the Rényi divergence of order α:

Dα(P||Q) =
1

α− 1
ln

∫ [
dP
dQ

]α
dQ,
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Numerical demonstration: 1940 Census full count data

• V Swap: household’s county;

• VMatch (swap key): the number of persons per household × household’s state;

• VHold − VMatch: dwelling ownership.

The invariants cSwap are

1. Total number of owned vs rented dwellings at each household size at the state level;

2. Total number of dwellings at each household size at the county level.

swap rate 0.01 0.05 0.10 0.50

ϵ 17.08 15.43 14.68 12.48

Table: Conversion of swap rate to ϵ (PLB). Under this swapping scheme, the largest stratum size is b = 264, 331, the
number of all two-person households of Massachusetts.
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Numerical demonstration: 1940 Census full count data

Table: Two-way tabulations of dwelling ownership by county based on the 1940 Census full count for Massachusetts (left)

and one instantiation of the Permutation Algorithm at p = 50% (right). Total dwellings per county, as well as total

owned versus rented units per state, are invariant. All invariants induced by the Algorithm are not shown.

county owned rented total owned rented total

(swapped) (swapped) (swapped)

Barnstable 7461 3825 11286 5907 5379 11286

Berkshire 14736 18417 33153 13770 19383 33153

Bristol 33747 63931 97678 35537 62141 97678

Dukes 1207 534 1741 946 795 1741

Essex 53936 81300 135236 52631 82605 135236

Franklin 7433 6442 13875 6337 7538 13875

Hampden 30597 58166 88763 32267 56496 88763

Hampshire 9427 8630 18057 8145 9912 18057

Middlesex 104144 147687 251831 100372 151459 251831

Nantucket 593 432 1025 471 554 1025

Norfolk 44885 40285 85170 38566 46604 85170

Plymouth 24857 23882 48739 21549 27190 48739

Suffolk 49656 176553 226209 67357 158852 226209

Worcester 53126 78535 131661 51950 79711 131661

total 435805 708619 1144424 435805 708619 1144424
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Numerical demonstration: 1940 Census full count data
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Swap key: persons per household; Invariant geography: state

Accuracy: 1940 Decennial Census, Massachusetts, Dwelling Ownership

Mean absolute percentage error (MAPE) in the two-way tabulation of dwelling ownership by county induced by the

Permutation Algorithm applied to the 1940 Census full count data of Massachusetts, at different swap rates from 1% to

50%. Each boxplot reflects 20 independent runs of the Algorithm at that swap rate.
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Extending “neighbour” divergences to metrics on X
A divergence defined by neighbours:

dX (x, x′) =


0 if x = x′,

1 if x and x′ are “neighbours”,
∞ otherwise,

can always be sharpened to a metric d∗X (x, x′) defined as the length of a shortest path between

X and X ′
in the graph on X with edges given by r . For example the extension of the

bounded-neighbours is the Hamming distance on unordered datasets:

du
Ham

(x, x′) =

{
1
2 |x ⊖ x′| if |x| = |x|,
∞ otherwise

and the extension of unbounded-neighbours is the symmetric difference distance:

duSymDiff(X ,X ′) = |X ⊖ X ′|.

The superscript
u
emphasizes that these distances are defined with respect to a choice of the

privacy unit u.
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Sufficiency and necessity of restricting the data universe D

1. For any dX and dPr, the mechanism T(x) = c(x) that releases the invariants exactly
satisfies (X ,Dc, dX , dPr) with privacy budget ϵD = 0.

2. Now suppose dPr(P,Q) = ∞ if dTV(P,Q) = 1. Let D be a data multiverse such that

there exists datasets x1, x2 in some data universe D0 ∈ D with dX (x1, x2) < ∞ and

c(x1) ̸= c(x2). Then T does not satisfy (X ,D , dX , dPr) for any ϵD0 < ∞.

3. Suppose that a mechanism T varies within some universe D0 ∈ Dc in the sense that

there exists x, x′ ∈ D0 with dX (x, x′) < ∞ but Px ̸= Px′ .

When dPr is a metric, T satisfies (X ,Dc, dX , dPr) only if ϵD0 > 0.
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