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e Data swapping interchanges the values of sensitive variables in a randomly
selected subset of records (Dalenius and Reiss 1982; Fienberg and Mclntyre 2004).

e It was used as the primary disclosure avoidance method in the 1990, 2000
and 2010 US Censuses.

e For the 2020 Census, disclosure avoidance was overhauled with the primary

aim of satisfying differential privacy (DP) (bwork et al. 2006b).

[ Can we also understand data swapping from the perspective of DP? ]
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Differential privacy owor et ai 2006

Object of interest: a statistic T — i.e. a function of the data x and some auxiliary
random noise Z.

For example,
1 n
T = — i Z
(x) = - ;x +

Differential privacy is Lipschitz continuity:

dPr [an Px’} S ed;((x, x,)a
for all possible data values x, x, where P, is the distribution of T induced by the
random noise Z.

“the output of T doesn’t change much if the input doesn’t change much” (robustness)
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Output divergence dp, and data divergence dy

dy is typically a graph distance on the data space X.

dv(x,x’) = k < “kunits changed their responses”

dp, can be the multiplicative distance (pure DP):

mﬂ%

dMULT<P7 Q) = S%p Q(E)

between probability distributions P, Q, or the normalised Rényi metric Dy, (zero

concentrated DP):

Dir(P, Q) = sup = max [ /D (FI]Q), v/D.(QIIP)] -

a>1 «Q
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Does data swapping satisfy differential privacy?

e Not under the traditional formulation of DP...

e Because swapping has invariants cs,, — functions of the observed data

which are released without noise.

If a mechanism T contains an invariant (and x, x’ have different values for this

invariant), then P, and P, do not have common support, and so

dMULT [an Px’} = Dnor [Pm Px/} = .
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Does the 2020 US Census satisfy differential privacy?

e Not under the traditional formulation of DP...

e Because the TopDown Algorithm (TDA) has invariants ctpa.

Modifying the definition of DP:
dPr [Pm Px’:| <e€ dX(x7 xl)'

for all possible data values x, x’ which agree on the invariants.

» This is a necessary and sufficient modification for the release of invariants.
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Swapping satisfies DP, subject to its invariants

Permutation Swapping

Input: a dataset x.
Define strata as groups of records which match on the swap key V..
Within each stratum:

1. Select each record independently with probability p (the swap rate).
2. Randomly derange swapping variable V., of selected records.
Output: the swapped dataset w.
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Swapping satisfies DP, subject to its invariants

Permutation Swapping

Input: a dataset x.
Define strata as groups of records which match on the swap key V...
Within each stratum:

1. Select each record independently with probability p (the swap rate).
2. Randomly derange swapping variable V., of selected records.
Output: the swapped dataset w.

\.

Permutation Swapping is DP subject to its invariants, with input divergence

dy = dj,, output divergence dp, = du,.; and budget

In(b+1)—1Ino if 0 <p<0.5,
€ =

max {Ino,In(b+1) —Ino} if0.5<p<1,

where 0 = p/(1 — p) and b is the maximum stratum size. -



Swap Rate to Privacy Loss Budget (Nominal) Conversion

swap rate

b (largest stratum size)

—_—2

10
100
1000

= 100000

1000000

Conversion between the swap rate (p) and the nominal PLB (¢) at different levels

of b. Note that:

1. For each b, there’s a smallest attainable €, > 0;

2. For each b, every € > ¢, is satisfied by two different swap rates;

3. (counterintuitive) For the same swap rate, the larger the b, the larger the !
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Examples from the US Decennial Censuses

Privacy Loss Budget

dpr dy (Unit) Invariants

TopDown* Dror deAM (person) Population (state) PL & DHC:

Total housing units (block) p? =15.29
Occupied group quarters (block) €=52.83(6 =10719)

Structural zeros
SafeTab™* Dhor deAM (person) None DDHC-A: ,o2 = 19.776
DDHC-B & S-DHC: TBD.

Swapping dmur dﬁ’lAM (household) Varies but greater € between 9.37-19.38

than TDA

*(Abowd et al. 2022)

**(Tumult Labs 2022)
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Four Components of a DP Flavour (X, 2, dy, dp,)

Intuition: DP is a bound on the derivative of a data-release mechanism
4p(T(x) € ) at every dataset x in the data universe D.

Derivatives measure change in output per change in input. How do we measure
change?
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Four Components of a DP Flavour (X, 2, dy, dp,)

Intuition: DP is a bound on the derivative of a data-release mechanism
4p(T(x) € ) at every dataset x in the data universe D.
X
Derivatives measure change in output per change in input. How do we measure
change?
1. Data space X (the set of all theoretically-possible datasets).
3. Divergence dy on X.
4. Divergence dp, on the space of (probability distributions over) the output.

2. Allow for multiple data universes D C X from a data multiverse Z.
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Four Components of a DP Flavour (X, 2, dx, dp;)

Definition
A differential privacy flavour is a tuple (X, 2, dx, dp,).
A data release mechanism T satisfies DP(X, 2, dx, dp,) with budget € if

dpr(Px(T(x) € ), Pu(T(x) € -)) < edy(x, %),

for all data universes D € & and all datasets x, x’ € D.

We aren’t doing anything new here!
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Four Components of a DP Flavour (X, Z, dy, dp,)
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et al. 2022).
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(Bun et al. 2022) per-record DP (seeman et al. 2023) per-instance DP wang 201 Redberg and Wang 2021).
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1. The protection domain (what can be protected?): as defined by the dataset
space X;

2. The scope of protection (to where does the protection extend?): as
instantiated by the data multiverse &, which is a collection of data
universes D C X;

3. The protection unit (who are the units for data perturbation?): as
conceptualized by the divergence dy on the dataset space &’;

4. The standard of protection (how to measure the output variations?): as
captured by the divergence dp, on the output probability distributions; and

5. The intensity of protection (how much protection is afforded?): as quantified

by the privacy-loss budget ep.
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Two-step procedure:
0. Start with a Census edited file x € Xgr.

1. Add Gaussian noise to cells:
T(x) = q(x) + W,

where W ~ A7(0, %), so that T satisfies DP(Xcgr, { Xcer}, df)

budget PTDA (Canonne et al. 2022).

Dpor) With

AM?

2. “Post-process”: find dataset z with g(z) close to T(x) such that

CTDA(Z) = CTDA(x)-

TDA satisfies DP(Xcgr, Zerpy s dhans Door) With budget prpa.
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Theorem: TDA satisfies DP, subject to its Invariants
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Denote the space of possible Census Edited Files by Xcgg.
Let erpa : Xcgr — R/ be the invariants of TDA and let 2.

multiverse:

be the induced data

TDA

Derpn = {D C Xcgr | ema(x) = empa(x’) Vx,x' € D}.

o TDA satisfies DP(Xcgp, Zerny s @huy> Duor) With privacy budget prpa = 2.63

Ham»

(for the PL Redistricting File) and prpy = 15.29 (for the DHC).

e Let ¢’ be any proper subset of TDA’s invariants. TDA does not satisfy
DP(Xcgr, Ze, dx, Dnor) With any finite budget p.
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Contributions

e We supply a framework for capturing and comparing different flavours of DP which

highlights often their overlooked components.

e We prove that swapping satisfies DP, subject to its invariants, putting its privacy

guarantees on a comparable footing to the TopDown Algorithm.

e Our framework may help data custodians to systematically understand how

traditional SDC methods can provide formal privacy protection.
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Contributions

e We supply a framework for capturing and comparing different flavours of DP which

highlights often their overlooked components.
e We prove that swapping satisfies DP, subject to its invariants, putting its privacy
guarantees on a comparable footing to the TopDown Algorithm.

e Our framework may help data custodians to systematically understand how

traditional SDC methods can provide formal privacy protection.

Implications:
e What is the performance of reconstruction attacks on other formally-private
mechanisms with invariants?
e Algorithmic and probabilistic transparency of swapping methods (for better data
utility).
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What if the 2020 Census used swapping?

The total nominal € achievable by applying swapping to the 2020 Decennial

Census for a variety of Vyich, Vswap, and swap rate choices.

VMatch Vswap b total € totale  Largest stratum

p=5% p=50%

state county 13680081 19.38 16.43  California

state X household size county 3653802 18.06 15.11  California, 3-household
county tract 3445076 18.00 15.05 LA County

county X household size tract 853003 16.60 13.66 LA County, 3-household
block group block 21535 12.92 9.98  aFL block group

block group x household size  block 11691 12.31 9.37  aFL block group, 3-household

Note. For a fixed (Vyiich, Vswap, p) setting, the nominal € would be the total PLB
for all data products derived from the swapped dataset, including P.L. 94-171,
DHC, Detailed DHC for both persons and household product types.
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A Perverse Guide to Reducing the Privacy Loss €

(without adding more noise)

1. Add more invariants

2. Increase the granularity of the privacy units (inflate dy)

e Persons instead of households

e One day’s worth of data, instead of all of an individual’s data over time
3. Artificially shrink the output divergence dp,

e Use (¢,d)-DP instead of e-DP.
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Data swapping visualisation

State  Location ~ Number of adults Number of children Age1 Race1
MA  Cambridge 2 2 45 White
X Houston 1 0 28 Hispanic
WA Tacoma 5 0 67 Asian
MA  Somerville 2 2 50

Black
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State  Location =~ Number of adults Number of children Age1l Race1
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X Hoﬁ::n 1 0 28 Hispanic
WA Tatgma 5 0 67 Asian

2 2 50

MA  Cambridge

V Match
VSwap
VHold - VMatch

Black

32/17



Data swapping visualisation

Massachusetts: Location by Race (head of household) Contingency Table
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Somerville +1 -1
Watertown

Changes: Interior cells of Volq — Vmateh X Vswap-
Invariants:
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Permutation Swapping

Input: Dataset X
1: for j=1,...,7 do

2:  if nj =0o0rn; =1then

3 continue

4:  end if

5. for record i with category j do

6: Select i with probability p

7. end for

8 if 0 records selected then

9: continue

10:  else if exactly 1 record selected then

11: go to line 5

12:  end if

13:  Sample uniformly at random a derangement o of the selected records.

14:  /* Permute the swapping variable of the selected records according to o: */
15: Save copy X < X before permutation

16: Let kX (i) be the value of the swapping variable of record i in dataset X.
17: for all selected records i do

18: Set kX (4) « kX0(a(4))

19: end for
20: end for

21: Set Z <+ X to be the swapped dataset.
22: return contingency table [n]Zkl]
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Intuition of the proof that Permutation Swapping is DP

1. We need to show that, for fixed datasets x, x’, w in the same data universe D,
Pr(o(x) = w) < exp(diju(x, x')e) Pr(o’(x') = w),

2. We can show that there exists a derangement p of m records such that x = p(x/).
3. There is a bijection between the possible o and ¢’ given by ¢’ = o o p.

4. Hence, if m, is the number of records deranged by o, we have

me —m< my < my+ m.

5. This gives a bound on Pr(o)/Pr(¢’) in terms of 0™> ™' and the ratio between the
number of derangements of m,+ and of m.

6. For o < 1, this can be bounded by 0™™(b + 1)™ using the above inequality. The

result for 0 < p < 0.5 then follows with some algebraic simplification.
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The TopDown Algorithm weudet ai 202

Input:

Census Edited Files X,, X, at the person and household levels
Person queries @,
Household queries Qp
Privacy noise scales D, and Dy,
Constraints erpa (including invariants, edit constraints and structural zeroes)
(Optional) previously released statistics P, as aggregated from a microdata file (where the
aggregation was achieved using a function H)

1: Step 1: Noise Infusion

2:  Sample discrete Gaussian noise

3: W, NNz(D,Dp)

4: Wi, NNz(D,Dh)

5. Compute Noisy Measurement Files:

6: Tp(Xp) = Qp(X,) + W),

T Th(Xp) < Qu(Xy) + W)

8 Step 2: Post-Processing

9:  Compute Privacy-Protected Microdata Files Z,, Z), as a solution to the optimisation

problem:

10: Minimize loss { between [Tp(X,), Th(X45)] and [Qp(Z,), Qn(Zh))

11: subject to constraints etpa(Z,, Z1,) = erpa(X,, X3) and H(Z,, Z;,) = P.
Output:

Privacy-Protected Microdata Files Z,,, Z,, and
Noisy Measurement Files T},(X ), T),(X}3) at the person and household levels.
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Examples of &, dy and dp,

1. An invariant-compliant data universe:
De = {D CX:c(x)=c(x)Vx,x € D},

for some invariants ¢ : X — R/,
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Examples of &, dy and dp,

1. An invariant-compliant data universe:
De = {D CX:c(x)=c(x)Vx,x € D},
for some invariants ¢ : X — R’
2. Data divergence dy induced by a “neighbour” relation:

0 ifx=x«,
dy(x,x') =<1 if xand x’ are “neighbours”,

oo otherwise.

37/17



Examples of &, dy and dp,

3. Divergence dp, on (the probability distributions over) the output space
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Examples of &, dy and dp,

3. Divergence dp, on (the probability distributions over) the output space
e Pure e-DP (Dwork et al. 2006b): dpy is the multiplicative distance

P(S)
Q(s)

In

Murt(P, Q) = sup {

‘ : event S} .

e Approximate (¢, )-DP (Dwork et al. 2006a):

_ [P(s)—d]" . [Q(s)—d]"
MULT(S(P, Q) = es;%)s { In Q0) ,In ,0} ,
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Examples of &, dy and dp,

3. Divergence dp, on (the probability distributions over) the output space
e Pure e-DP (Dwork et al. 2006b): dpy is the multiplicative distance

0 20 ).

Murt(P, Q) = sup {

e Approximate (¢, )-DP (Dwork et al. 2006a):

_ [P(s)—d]" . [Q(s)—d]"
MULT(S(P, Q) = es;%)s { In Q0) ,In ,0} ,

e Zero Concentrated DP (Bun and Steinke 2016):

Dir(P, Q) = sp —— mmax /D, (P[Q), v/Dul(QIP)|

a>1 «
where D,, is the Rényi divergence of order a:
1 dp 1
D, (P =—1 —| dQ,
(PllQ) = —— n/[dq} Q
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Numerical demonstration: 1940 Census full count data

e Vsyap: household’s county;
o Viach (swap key): the number of persons per household x household’s state;
® Viold — Viaien: dwelling ownership.

The invariants csyap are

1. Total number of owned vs rented dwellings at each household size at the state level;

2. Total number of dwellings at each household size at the county level.

swap rate  0.01  0.05 0.10  0.50
€ 17.08 1543 14.68 12.48

Table: Conversion of swap rate to € (PLB). Under this swapping scheme, the largest stratum size is b = 264, 331, the
number of all two-person households of Massachusetts.
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Numerical demonstration: 1940 Census full count data

Table: Two-way tabulations of dwelling ownership by county based on the 1940 Census full count for Massachusetts (left)
and one instantiation of the Permutation Algorithm at p = 50% (right). Total dwellings per county, as well as total

owned versus rented units per state, are invariant. All invariants induced by the Algorithm are not shown.

county owned  rented total | owned rented total

(swapped)  (swapped)  (swapped)
Barnstable 7461 3825 11286 | 5907 5379 11286
Berkshire 14736 18417 33153 13770 19383 33153
Bristol 33747 63931 97678 | 35537 62141 97678
Dukes 1207 534 1741 946 795 1741
Essex 53936 81300 135236 | 52631 82605 135236
Franklin 7433 6442 13875 | 6337 7538 13875
Hampden 30597 58166 88763 32267 56496 88763
Hampshire 9427 8630 18057 | 8145 9912 18057
Middlesex 104144 147687 251831 100372 151459 251831
Nantucket 593 432 1025 | 471 554 1025
Norfolk 44885 40285 85170 38566 46604 85170
Plymouth 24857 23882 48739 | 21549 27190 48739
Suffolk 49656 176553 226209 | 67357 158852 226209
Worcester 53126 78535 131661 51950 79711 131661
total 435805 708619 1144424 | 435805 708619 1144424
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Numerical demonstration: 1940 Census full count data

Accuracy: 1940 Decennial Census, Massachusetts, Dwelling Ownership
Swap key: persons per household; Invariant geography: state

mean absolute percentage error (%)
B

*
—r—
—(—
——
——
e —
0.01 0.02 0.03 0.04 0.05 0.1 0.2 0.3 0.4 0.5
swap rate

Mean absolute percentage error (MAPE) in the two-way tabulation of dwelling ownership by county induced by the
Permutation Algorithm applied to the 1940 Census full count data of Massachusetts, at different swap rates from 1% to

50%. Each boxplot reflects 20 independent runs of the Algorithm at that swap rate.
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Extending “neighbour” divergences to metrics on X
A divergence defined by neighbours:

0 ifx=x,

dy(x,x')=4¢1 if xand x’ are “neighbours”,

oo otherwise,

can always be sharpened to a metric d% (x x') defined as the length of a shortest path between
X and X' in the graph on X’ with edges given by r. For example the extension of the

bounded-neighbours is the Hamming distance on unordered datasets:
u dlxex| if|x] = x|,
dHAM( ) = H
00 otherwise
and the extension of unbounded-neighbours is the symmetric difference distance
dgymDiff(Xa X/) = |X © X/‘

The superscript * emphasizes that these distances are defined with respect to a choice of the
privacy unit u.
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Sufficiency and necessity of restricting the data universe D

1. For any dy and dp;, the mechanism T(x) = ¢(x) that releases the invariants exactly
satisfies (X, Z., dx, dp;) with privacy budget ep = 0.

2. Now suppose dp;(P, Q) = oo if dry(P, Q) = 1. Let Z be a data multiverse such that
there exists datasets x1, x; in some data universe Dy € Z with dx(x1,x;) < oo and
c(x1) # ¢(xz). Then T does not satisfy (X, 2, dx, dpy) for any ep, < oc.

3. Suppose that a mechanism T varies within some universe D, € . in the sense that
there exists x, x' € Dy with dy(x,x’) < 0o but Py # Py.
When dp; is a metric, T satisfies (X, P, dxy. dp,) only if ep, > 0.
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