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Motivation

e The U.S. Census Bureau has committed to adopting formal privacy for all

their data products (uUs Census Bureau 2022).
e Most of their collections are surveys.

e Yet the “science ... does not yet exist” for a formally private solution to the

American Community Survey (for example).

e In implementing differential privacy (DP), surveys come with their own set

of unique challenges and opportunities.
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DP Settings for Surveys

ey

Two considerations
e Where does the DP mechanism start in the data pipeline?

e Which of the previous steps in the pipeline are kept invariant?

For example,
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Ten Possible Settings
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Utility Considerations (1)

Privacy amplification by sampling

If T(s) is e-DP and S(f) randomly samples f fraction of the frame f, then
T' = ToS ise-DP where &' = fe. Balle et al. 2020)
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Utility Considerations (1)

Privacy amplification by sampling

If T(s) is e-DP and S(f) randomly samples f fraction of the frame f, then
T' = ToS ise-DP where &' = fe. Balle et al. 2020)

e Take-away: If the sampling procedure is included, less noise is required to

achieve the same privacy budget.

e Butthere is little privacy amplification when S is a complex sampling

design. (Bun et al 202)
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Utility Considerations (I1)

e Surveys use weighted estimators ) " | w;x;, which have increased

sensitivity.
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Utility Considerations (I1)

e Surveys use weighted estimators ) *  wix;, which have increased
sensitivity.

e Unweighted sums )" | x; have sensitivity |max x; — min x;|, where the
max, min are over all possible values of x;.

e Weighted estimators can have sensitivity
|max w;x; — min wix;| + (n — 1)(max w; — min w;) (|max x;| V |min x;),

because changing a record can change the weights of other records.
e Hence, weighted estimators require more noise to achieve the same privacy
loss.

e Taking the frame as invariant means that the weights do not change.
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Privacy Considerations (I)

Posterior-to-posterior privacy semantics

What would an attacker learn about a single record if it is included in the

input dataset, relative to a counterfactual world in which it is not included?
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Privacy Considerations (I)

Posterior-to-posterior privacy semantics

What would an attacker learn about a single record if it is included in the

input dataset, relative to a counterfactual world in which it is not included?

e If T is e-DP, then the posterior-to-posterior ratio is in [e™%, €°]. («ifer et al. 2022)
e What record (in what input dataset) is being protected depends on where T
starts in the data pipeline; and what counterfactual worlds are possible

depends on what steps are invariant.
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Privacy Considerations (I)

e Suppose T(s) is e-DP and S(f) randomly samples f fraction of f.
e T"=ToSisc-DPwithe' = fe < e.
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Privacy Considerations (I)

e Suppose T(s) is e-DP and S(f) randomly samples f fraction of f.
e T"=ToSisc-DPwithe' = fe < e.

e So the posterior-to-posterior ratio of T’ should be in the interval [e==', ¢7].

Traditional statistical disclosure control attacker models

e The nosy neighbor: Knows that a record is in the sample.

e The journalist: Wants to learn about any record, so picks one in the

sample.

For these attackers, the posterior-to-posterior ratio of T’ is in the interval
[e7¢, €], not the interval [e=¢', e'].
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Privacy Considerations (1)

e The composition theorem does not hold when there is dependency between

the sample designs.
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Privacy Considerations (II)

e The composition theorem does not hold when there is dependency between
the sample designs.

e Forie€ {1,2}, suppose T;(s) ise-DP,and T = T; 0 S.
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losses.
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Privacy Considerations (II)

The composition theorem does not hold when there is dependency between
the sample designs.

For i € {1,2}, suppose T(s) is e-DP,and T, = T; 0 S.

Privacy loss of the composition (T}, T,) is not the sum of T] and T,’s privacy

losses.

This will complicate global privacy loss calculations.
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Privacy Considerations (1)

Privacy loss when there is dependency between samples

— Naive calculation

— True privacy loss

Privacy loss of the composition (77, 7%)
IS

0 1 2 3 4
Privacy loss of T and Tp

S
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Intuition: DP is a bound on the derivative of a data-release mechanism d%Pb(T €-)at
every dataset D in every data universe D.

Derivatives measure change in output per change in input. How do we measure change?
1. Data space Dj (the set of all theoretically-possible datasets).

3. Divergence dp, on D,.

4. Divergence dp, on the space of (probability distributions over) the output.

2. Allow for multiple data universes D C D, from a data multiverse 2.
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Four Components of a DP Flavour (Dy, 2, dp,, dp;)

A differential privacy flavour is a tuple (Dy, Z, dp,, dp;).
A data release mechanism T satisfies DP(Dy, 2, dp,, dp;) with budget € if

dPr(PD(T € ')7 Pb’(T € )) < Edpo(b’b/)v

for all data universes D € 2 and all datasets d,d’ € D.
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2016) f—divergel’lce pl‘ivacy (Barber and Duchi 2014; Barthe and Olmedo 2013) f‘DP (including Gaussian DP) (Dong

et al. 2022).
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conditioned or empirical DP (abowd et al. 2015 Charest and Hou 2016) personalized DP (evadi et al. 2015: jorgensen et al
2015 Individual DP (soria-Comas et al. 2017: Feldman and Zrnic 2022) bootstrap DP (0'keefe and Charest 2019) stratified DP
(Bun et al. 2022) per—record DP (Seeman et al. 2023+) per—instance DP (Wang 2018; Redberg and Wang 2021).

1. Dy: Pufferfish DP (it and Machanavaijhata 201) Noiseless privacy haskar et 2011 privacy under
partial knowledge (scemanet i 2022) privacy amplification (eime et al. 2010; Balle et al. 2020 Bun et al. 2022).
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1. The protection domain (what can be protected?): as defined by the dataset space
Dy;

2. The scope of protection (to where does the protection extend?): as instantiated by
the data multiverse &, which is a collection of data universes D C X;

3. The protection unit (who are the units for data perturbation?): as conceptualized by
the divergence dyx on the dataset space X;

4. The standard of protection (how to measure the output variations?): as captured by
the divergence dp, on the output probability distributions; and

5. The intensity of protection (how much protection is afforded?): as quantified by the
privacy-loss budget ep.
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