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What is disclosure...

▶ Releasing statistics while maintaining privacy

A population Dataset X Statistics T (X,U)Data collection Data release

▶ A long history

▶ Dalenius (1977), Duncan & Lambert (1986):

If the release of the statistics T makes it possible to determine [a record
Xi] more accurately than is possible without access to T , a disclosure
has taken place.



What is disclosure...

▶ Releasing statistics while maintaining privacy

A population Dataset X Statistics T (X,U)Data collection Data release

▶ A long history

▶ Dalenius (1977), Duncan & Lambert (1986):

If the release of the statistics T makes it possible to determine [a record
Xi] more accurately than is possible without access to T , a disclosure
has taken place.



What is disclosure...

▶ Releasing statistics while maintaining privacy

A population Dataset X Statistics T (X,U)Data collection Data release

▶ A long history

▶ Dalenius (1977), Duncan & Lambert (1986):

If the release of the statistics T makes it possible to determine [a record
Xi] more accurately than is possible without access to T , a disclosure
has taken place.



What is disclosure... for a Bayesian?

If the release of the statistics T makes it possible to determine
[a record Xi] more accurately than is possible without access to
T , a disclosure has taken place.

As Bayesians, can we formalise this?

As Bayesians, can we formalise this?

▶ The attacker has a prior π on the record Xi .

▶ Without access to the statistics: π(Xi).

▶ With the release of the statistics: π(Xi | T ).
▶ There is a disclosure if π(Xi) and π(Xi | T ) differ.



What is disclosure... for a Bayesian?

If the release of the statistics T makes it possible to determine
[a record Xi] more accurately than is possible without access to
T , a disclosure has taken place.

As Bayesians, can we formalise this?

▶ The attacker has a prior π on the record Xi .

▶ Without access to the statistics: π(Xi).

▶ With the release of the statistics: π(Xi | T ).
▶ There is a disclosure if π(Xi) and π(Xi | T ) differ.



What is disclosure... for a Bayesian?

If the release of the statistics T makes it possible to determine
[a record Xi] more accurately than is possible without access to
T , a disclosure has taken place.

As Bayesians, can we formalise this?

▶ The attacker has a prior π on the record Xi .

▶ Without access to the statistics: π(Xi).

▶ With the release of the statistics: π(Xi | T ).
▶ There is a disclosure if π(Xi) and π(Xi | T ) differ.



What is disclosure... for a Bayesian?

If the release of the statistics T makes it possible to determine
[a record Xi] more accurately than is possible without access to
T , a disclosure has taken place.

As Bayesians, can we formalise this?

▶ The attacker has a prior π on the record Xi .

▶ Without access to the statistics: π(Xi).

▶ With the release of the statistics: π(Xi | T ).

▶ There is a disclosure if π(Xi) and π(Xi | T ) differ.



What is disclosure... for a Bayesian?

If the release of the statistics T makes it possible to determine
[a record Xi] more accurately than is possible without access to
T , a disclosure has taken place.

As Bayesians, can we formalise this?

▶ The attacker has a prior π on the record Xi .

▶ Without access to the statistics: π(Xi).

▶ With the release of the statistics: π(Xi | T ).
▶ There is a disclosure if π(Xi) and π(Xi | T ) differ.



What is disclosure... for a Bayesian?

If the release of the statistics T makes it possible to determine
[a record Xi] more accurately than is possible without access to
T , a disclosure has taken place.

As Bayesians, can we formalise this?

▶ There is a disclosure if π(Xi) and π(Xi | T ) differ.

▶ Dalenius (1977) recognised the impossibility of complete protection

immediately:

It may be argued that elimination of disclosure is possible only
by elimination of statistics.

▶ To produce useful statistics, we must allow for some (ideally small) amount of

disclosure.

▶ Measure “amount of disclosure” by how much π(Xi) and π(Xi | T ) differ.



What is disclosure... for a Bayesian?

If the release of the statistics T makes it possible to determine
[a record Xi] more accurately than is possible without access to
T , a disclosure has taken place.

As Bayesians, can we formalise this?

▶ There is a disclosure if π(Xi) and π(Xi | T ) differ.
▶ Dalenius (1977) recognised the impossibility of complete protection

immediately:

It may be argued that elimination of disclosure is possible only
by elimination of statistics.

▶ To produce useful statistics, we must allow for some (ideally small) amount of

disclosure.

▶ Measure “amount of disclosure” by how much π(Xi) and π(Xi | T ) differ.



What is disclosure... for a Bayesian?

If the release of the statistics T makes it possible to determine
[a record Xi] more accurately than is possible without access to
T , a disclosure has taken place.

As Bayesians, can we formalise this?

▶ There is a disclosure if π(Xi) and π(Xi | T ) differ.
▶ Dalenius (1977) recognised the impossibility of complete protection

immediately:

It may be argued that elimination of disclosure is possible only
by elimination of statistics.

▶ To produce useful statistics, we must allow for some (ideally small) amount of

disclosure.

▶ Measure “amount of disclosure” by how much π(Xi) and π(Xi | T ) differ.



What is disclosure... for a Bayesian?

If the release of the statistics T makes it possible to determine
[a record Xi] more accurately than is possible without access to
T , a disclosure has taken place.

As Bayesians, can we formalise this?

▶ There is a disclosure if π(Xi) and π(Xi | T ) differ.
▶ Dalenius (1977) recognised the impossibility of complete protection

immediately:

It may be argued that elimination of disclosure is possible only
by elimination of statistics.

▶ To produce useful statistics, we must allow for some (ideally small) amount of

disclosure.

▶ Measure “amount of disclosure” by how much π(Xi) and π(Xi | T ) differ.



The derivative of differential privacy (DP)

Definition: The statistic T is ε-differentially private if its Lipschitz constant is ε.

▶ Recall that Lipschitz continuity ≈ differentiability.

▶ Lipschitz constant is the supremum of the derivative.

Takeaway: Differential privacy is a “bound on the derivative” of T .

▶ The choice of dPr and dX determine the flavour of DP.
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Does pure ε-DP control disclosure?

Recall: Control disclosure⇔ control the “difference” between π(Xi) and

π(Xi | T = t).

The “strongest” attacker knows the values of x−i :

π(X = x) = π(Xi = xi)δx−i=x∗−i
.

Then

π(Xi = xi | T = t)
π(Xi = xi)

=
π(Xi = xi)

∫
px(T = t)dπ(X−i = x−i | Xi = xi)

π(Xi = xi)
∫
px′(T = t)dπ(X = x′)

=

∫
px(T = t)dπ(X−i = x−i | Xi = xi)∫

px′(T = t)dπ(X = x′)

=
p(T = t | Xi = xi,X−i = x∗−i)∫

p(T = t | Xi = x ′i ,X−i = x∗−i)dπ(Xi = x ′i )

≤ eε.
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The dependence is a big trouble maker

Data are accidental representation, not essential information itself

Manipulating data values without considering their interdependence is not a

legitimate information operation in general.

▶ Does ε-DP guarantee the marginal prior-to-posterior ratio

e−ε ≤ π(Xi = x|T = t)
π(Xi = x)

≤ eε, ∀x,∀t? No, not in general

(Kifer & Machanavajjhala, 2011b, 2012; Tschantz et al., 2020)

▶ Does ε-DP guarantee the conditional prior-to-posterior ratio

e−ε ≤ π(Xi = xi|T = t,X−i)

π(Xi = x|X−i)
≤ eε? ∀x,∀t? Yes

▶ Thus the guaranteed limit eε is only for the unique individual information:
variations unexplained by anyone else in the database or by knowledge on

(and beyond) the database population.
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▶ Does ε-DP guarantee the conditional prior-to-posterior ratio

e−ε ≤ π(Xi = xi|T = t,X−i)

π(Xi = x|X−i)
≤ eε? ∀x,∀t? Yes

▶ Thus the guaranteed limit eε is only for the unique individual information:
variations unexplained by anyone else in the database or by knowledge on

(and beyond) the database population.
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A Bayesian characterisation of pure ε-DP (Bailie, Gong & Meng, 2024+)

A random statistic T ∈ Rd
is ε-DP if and only if for every prior π on X, every sub-σ

field F of the corresponding full σ-field σπ , every B ∈ B
(
Rd

)
, every i, and every

A ∈ B(Θi), where Θi is the state space of xi , we have

e−ciεπ(Xi ∈ A | F) ≤ π (Xi ∈ A | T ∈ B;F) ≤ eciεπ(Xi ∈ A | F), (1)

where ci is the size of the minimal information chamber (MIC) for Xi .

▶ MIC = C−i ∪ {Xi}: C−i ⊂ X−i is the Markov boundary for Xi , that is, the

smallest subset of X−i such that

π(Xi|X−i,F) = π(Xi|C−i,F).

▶ MIC is the Xi’s “information family” – knowing any one of them will provide

information about Xi , in addition to public knowledge coded into F .

▶ Protecting relative risk against “strongest attacker" is the easiest — the more

the attacker’s prior information, the less left for protection.
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Privacy – Can you define it?

▶ Law: Privacy is the right to be let alone.
Warren & Brandeis (1890). The Right to Privacy. Harvard Law Review.

▶ Econmics: Privacy is the price of divulging information.
Acquisti et al. (2016) The Economics of Privacy.

Journal of Economic Literature.

▶ Political Science: The boundaries of power over the individual ascribe
the rights of the individual to privacy.
Raab (2019). Political Science and Privacy. In The Handbook of Privacy Studies:

An Interdisciplinary Introduction. Amsterdam University Press.

▶ Philosophy: “Privacy . . . is a concept in disarray. ... Currently privacy is a

sweeping concept. . . . Philosophers . . . have frequently lamented the great

difficulty in reaching a satisfying conception of privacy.”

Solove (2008) Understanding Privacy. Harvard University Press.
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Data Privacy — What does that mean?

Data Content Privacy

Protect information that can be revealed by the recorded data values.

Metadata Privacy

Protect the identities of the sender and the receiver, time of communication, etc.

Right To Be Forgotten

Right to have personal data erased.

▶ But how do we operationalize erasure? Do we erasure all copies? All

consequences?
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Protecting Privacy via Randomized Response (Warner, 1965)

▶ Estimating exam cheating rate pcheat. X = 1: cheated; X = 0, not cheated.

▶ Each student tosses a biased coin (with p > 0.5) secretly before answering.

R = 1 if head, and R = 0 if tail.

▶ Report Y = 1 if X = R, and otherwise report Y = 0.

▶ At the individual level, Yi = 1 can mean a cheater or not a cheater.

▶ But in aggregation:

pY = Pr(R = X) = p× pcheat + (1− p)× (1− pcheat)

Recovering pcheat:

pcheat=
pY + p− 1

2p− 1

Estimate

p̂cheat =
Ȳn + p− 1

2p− 1

Ex: Ȳn = 0.45, p = 0.6

p̂cheat =
0.45+ 0.6− 1

2× 0.6− 1

= 0.25
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Ex: Ȳn = 0.45, p = 0.6

p̂cheat =
0.45+ 0.6− 1

2× 0.6− 1

= 0.25



Protecting Privacy via Randomized Response (Warner, 1965)

▶ Estimating exam cheating rate pcheat. X = 1: cheated; X = 0, not cheated.

▶ Each student tosses a biased coin (with p > 0.5) secretly before answering.

R = 1 if head, and R = 0 if tail.

▶ Report Y = 1 if X = R, and otherwise report Y = 0.

▶ At the individual level, Yi = 1 can mean a cheater or not a cheater.

▶ But in aggregation:

pY = Pr(R = X) = p× pcheat + (1− p)× (1− pcheat)

Recovering pcheat:

pcheat=
pY + p− 1

2p− 1

Estimate

p̂cheat =
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What is the loss of information or the gain in privacy?

Increased Variance

Var(p̂cheat) =
1

n
pY (1− pY )
(2p− 1)2

≤ 1

16n
1

(p− 0.5)2

Control Relative Risk via Controlling Likelihood Ratio

Pr(Xi = 1|Yi)

Pr(Xi = 0|Yi)
=

Pr(Yi|Xi = 1)

Pr(Yi|Xi = 0)

Pr(Xi = 1)

Pr(Xi = 0)

The “first” example of differential privacy

Pr (Yi = 1 | Xi = 1)

Pr (Yi = 1 | Xi = 0)
=

p
1− p

= eε, with ε = logit(p)

Pr (Yi = 0 | Xi = 1)

Pr (Yi = 0 | Xi = 0)
=

1− p
p

= e−ε

e−ε ≤ Pr (Yi = y | Xi = 1)

Pr (Yi = y | Xi = 0)
≤ eε, for y = 0, 1

1

2

3

4

5

0.6 0.7 0.8 0.9
p

V
al

ue

Legend

Privacy Loss Budget

Standard Error

Standard Error and Privacy Loss Budget vs. p
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Define Pure DP: Dwork et al. (2006) vs Dwork et al. (2016)

Let the database X = {x1, . . . , xn} be a vector of n entries from some domain D,

typically of the form {0, 1}d or Rd
. Let TA be a random mechanism (map) from Dn

to a state space T , corresponding to a query from an adversary A.

Definition 1 of Dwork, McSherry, et al. (2006)

A mechanism is ε-indistinguishable if for all pairs X,X′ ∈ Dn
which differ in only

one entry, for all adversaries A, and for all transcripts t :∣∣∣∣ln Pr (TA(X) = t)
Pr (TA(X′) = t)

∣∣∣∣ ≤ ε.

Definition 2.1 of Dwork et al. (2016)

A noninteractive mechanismM is ε-differentially private (with respect to a given

distance measure) if for all neighboring datasets X,X′ ∈ N|D|
, and for all events

(measurable sets) S in the space of outputs of M:

Pr (M(X) ∈ S) ≤ eε Pr (M(X′) ∈ S) .

The probabilities are over the coin flips of M.
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Does DP control the posterior-to-prior ratio ?

Revisit the Random Response Mechanism: Yi = 1{Xi=Ri}.

Suppose an adversary’s prior for X1 is Pr(X1 = 1) = π.

Cπ(y) ≡
Pr(X1 = 1|Y1 = y)

Pr(X1 = 1)
=

Pr(Y1 = y|X1 = 1)

Pr(Y1 = y)

=
LR(y)

LR(y)π + (1− π)
, where LR(y) =

Pr (Y1 = y | X1 = 1)

Pr (Y1 = y | X1 = 0)

LR(y) ≥ 1 ⇒ 1 ≤ Cπ(y) ≤ LR(y)

max
π

Cπ(y) = C0(y) = LR(y)

min
π

Cπ(y) = C1(y) = 1

LR(y) ≤ 1 ⇒ LR(y) ≤ Cπ(y) ≤ 1

max
π

Cπ(y) = C1(y) = 1

min
π

Cπ(y) = C0(y) = LR(y)

The prior-to-posterior semantic for differential privacy:

e−ε ≤ Cπ(y) ≤ eε for all π if and only if e−ε ≤ LR(y) ≤ eε
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However, what if X1 and X2 are a priori dependent?

Suppose our prior for (X1,X2) is Pr(X1 = a,X2 = b) = πab. Let

Cπ(y1, y2) ≡
Pr(X1 = 1|Y1 = y1,Y2 = y2)

Pr(X1 = 1)
=

Pr(Y1 = y1,Y2 = y2|X1 = 1)

Pr(Y1 = y1,Y2 = y2)

Transferring the bound on likelihood ratio to posterior-to-prior ratio

Cπ(y1, y2) =
LR(y1, y2)

LR(y1, y2)π1· + (1− π1·)
, π1· = Pr(X1 = 1) = π11 + π10

LR(y1, y2) =
Pr(Y1 = y1,Y2 = y2|X1 = 1)

Pr(Y1 = y1,Y2 = y2|X1 = 0)
.

Consider the case y1 = 1, y2 = 1, and recall eε = p/(1− p)

LR(1, 1) =
eε π11

π1·
+ π10

π1·
π01

π0·
+ e−ε π00

π0·
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The dependence is a big trouble maker

This means that when π10 = π01 = 0, LR(1, 1) = e2ε > eε.
▶ But π10 = π01 = 0 means that X2 = X1, hence X1 can be learned from the

information for X2. Consequently, the “individual information unit” for X1

should be the pair {X1,X2}, not merely X1.

▶ In fact as soon as Cov(X1,X2) > 0, LR(1, 1) > eε. This is because

LR(1, 1) > eε ⇐⇒ Pr(X2 = 1|X1 = 1) > Pr(X2 = 1|X1 = 0)

But

Cov(X1,X2) = Pr(X1 = 1,X2 = 1)− Pr(X1 = 1) Pr(X2 = 1)

= [Pr(X2 = 1|X1 = 1)− Pr(X2 = 1|X1 = 0)] Pr(X1 = 0) Pr(X1 = 1).

Data are accidental representation, not essential information itself

Manipulating data values without considering their interdependence is not a

legitimate information operation in general
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In general, what does DP actual guarantee?

An attacker A is interested in learning about XA = {xi, i ∈ IA} in a database

X = {Xi, i ∈ I}, where IA could contain a single individual or everyone in I. Suppose

the attacker has prior knowledge about the entire X in the form of π(X).

Let πA(Xi) be the marginal prior, and πA(Xi|X−i) be the conditional

prior, conditioning on X−i = {Xj, j ̸= i}. Upon learningM = m,

▶ Does ε-DP guarantees the marginal posterior-to-prior ratio

e−ε ≤ PA(Xi = x|M = m)

πA(Xi = x)
≤ eε, ∀x ∈ Xi? No, not in general

(Kifer & Machanavajjhala, 2011b, 2012; Tschantz et al., 2020)

▶ Does ε-DP guarantees the conditional posterior-to-prior ratio

e−ε ≤ PA(Xi = x|M = m,X−i)

πA(Xi = x|X−i)
≤ eε? ∀x ∈ Xi? Yes

▶ Thus the guaranteed limit eε is only for the unique individual information:
variations unexplained by anyone else in the database or by knowledge on

(and beyond) the database population.
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Theorem (Bailie, Gong & Meng, 2023)

A random map M delivers ε-DP under Hamming distance if and only if for every prior

π on D, every sub-σ field F of the corresponding full σ-field σπ(X ), every

B ∈ B
(
Rd

)
, every i, and every A ∈ B(Θi), where Θi is the state space of xi , we have

e−ciεπ(Xi ∈ A | F) ≤ Pr (Xi ∈ A | M ∈ B;F) ≤ eciεπ(xi ∈ A | F), (2)

where π(xi|F) is the marginal prior for Xi (conditional on F ), Pr is the marginal

posterior for Xi , and ci is the size of the minimal information chamber (MIC) for Xi .

▶ MIC = C−i ∪ {Xi}: C−i ⊂ X−i is the Markov boundary for Xi , that is, the

smallest subset of X−i such that

π(Xi|X−i,F) = π(Xi|C−i,F).

▶ MIC is the Xi’s “information family” – knowing any one of them will provide

information about Xi , in addition to public knowledge coded into F .

▶ Protecting relative risk against “strong adversary" is the easiest — the more the

adversary’s prior information, the less left for protection.
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Information spreads like a virus — we need to quarantine

not only the infected individual but also everyone they’ve

come into contact with.



Why is it called “Differential Privacy”?

Let the probability space for M(X) be {M,F , PX} (with PX(S) = Pr(M(X) ∈ S|X))

“Differential” comes from “derivative”, essential for studying changes
For log-likelihood ℓ(X|S) = ln Pr(M(X) ∈ S|X), pure DP is equivalent to requiring

supS∈F |ℓ(X|S)− ℓ(X′|S)|
dX (X,X′)

≤ ε, for all X,X′,

because “divergence” dX (X,X′) = 1 for “neighboring” pair {X,X′}.

A general DP Specification (?)
A data-release mechanism M : X → M satisfies a DP specification

(X ,D , dX , dPr, εD) if

dPr
[
PX, PX′

]
≤ εDdX (X,X′), (3)

for all X,X′
in every data universe D in the data multiverse D .
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Five Building Blocks

A general DP Specification (?)

A data-release mechanism M : X → M satisfies a DP specification

(X ,D , dX , dPr, εD) if

dPr
[
PX, PX′

]
≤ εDdX (X,X′), (4)

for all X,X′
in every data universe D in the data multiverse D .

▶ The protection domain (what can be protected?): dataset space X ;

▶ The scope of protection (to where does the protection extend?): data

multiverse D (essential), a collection of data universes D ⊂ X (accidental);
▶ The protection units (who are the units of protection): the input divergence

dX on X ;

▶ The standard of protection (how to measure protection): the divergence dPr
on probabilities;

▶ The intensity of protection (how much protection is afforded): privacy loss

budget εD ∈ R≥0
, for each data universe D.
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Examples in the Literature

4. dPr: (ε, δ)-approximate DP (Dwork, Kenthapadi, et al., 2006) Rényi DP (Mironov, 2017)

concentrated DP (Bun & Steinke, 2016) f -divergence privacy (Barber & Duchi, 2014; Barthe & Olmedo,

2013) f -DP (including Gaussian DP) (Dong et al., 2022).

3. dX : (R, ε)-generic DP (Kifer & Machanavajjhala, 2011a) edge vs node privacy (Hay et al., 2009;

McSherry & Mahajan, 2010) d-metric DP (Chatzikokolakis et al., 2013) Blowfish privacy (He et al., 2014)

element level DP (Asi et al., 2022) distributional privacy (Zhou et al., 2009) event-level vs

user-level DP (Dwork et al., 2010).

2. D : privacy under invariants (Ashmead et al., 2019; Gong & Meng, 2020; Gao et al., 2022; Dharangutte et

al., 2023) conditioned or empirical DP (J. M. Abowd et al., 2013; Charest & Hou, 2016) personalized

DP (Ebadi et al., 2015; Jorgensen et al., 2015) individual DP (Soria-Comas et al., 2017; Feldman & Zrnic, 2022)
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Examples from the US Decennial Censuses

dPr dX (Unit) Invariants Privacy Loss Budget

TopDown
∗ Dnor dp

Ham (person) Population (state) PL & DHC:

Total housing units (block) ρ2 = 15.29

Occupied group quarters (block) ε = 52.83 (δ = 10
−10

)

Structural zeros

SafeTab
∗∗ Dnor dp

Ham (person) None DDHC-A: ρ2 = 19.776

DDHC-B & S-DHC: TBD.

Swapping dMult dh
Ham (household) Varies but greater ε between 9.37-19.38

than TDA

∗
(J. Abowd et al., 2022)

∗∗
(Tumult Labs, 2022)

▶ X is always the space of possible Census Edited Files, XCEF .

▶ Dnor(P,Q) = supα>1

1√
α

max
[√

Dα(P||Q),
√

Dα(Q||P)
]
is the normalised Rényi metric [zero

concentrated DP] (with Dα the Rényi divergence of order);

▶ dMult(P,Q) = supS∈F

∣∣∣ln P(S)
Q(S)

∣∣∣ is the multiplicative distance (pure DP); and

▶ du
Ham is the Hamming distance (on units u).



Swapping Satisfies DP, Subject to its Invariants

Permutation Swapping

Input: a dataset x.
Define strata as groups of records which match on the swap key VStratify.

Within each stratum:

1 Select each record independently with probability p (the swap rate).

2 Randomly derange swapping variable VSwap of selected records.

Output: the swapped dataset w.

Permutation Swapping is DP subject to its invariants, with input divergence

dX = du
Ham, output divergence dPr = dMult and budget

ε =

ln(b + 1)− ln o if 0 < p ≤ 0.5,

max
{
ln o, ln(b + 1)− ln o

}
if 0.5 < p < 1,

where o = p/(1− p) and b is the maximum stratum size.
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The TopDown Algorithm (TDA) (J. Abowd et al., 2022)

Two-step procedure:

0 Start with a Census edited file x ∈ XCEF.

1 Add Gaussian noise to cells:

T(x) = q(x) +W,

whereW ∼ NZ(0,Σ), so that T satisfies DP(XCEF, {XCEF}, dp
Ham,Dnor) with

budget ρTDA (Canonne et al., 2022).

2 “Post-process”: find dataset z with q(z) close to T(x) such that

cTDA(z) = cTDA(x).

TDA satisfies DP(XCEF,DcTDA , d
p
Ham,Dnor) with budget ρTDA.
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Theorem: TDA Satisfies DP, Subject to its Invariants

Let cTDA : XCEF → Rl
be the invariants of TDA and let DcTDA be the induced data

multiverse:

DcTDA = {D ⊂ XCEF | cTDA(x) = cTDA(x′) ∀x, x′ ∈ D}.

▶ TDA satisfies DP(XCEF,DcTDA , d
p
Ham,Dnor) with privacy budget ρTDA = 2.63 (for

the PL Redistricting File) and ρTDA = 15.29 (for the DHC).

▶ Let c′ be any proper subset of TDA’s invariants. TDA does not satisfy

DP(XCEF,Dc′ , dX ,Dnor) with any finite budget ρ.
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