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What is disclosure...

» Releasing statistics while maintaining privacy

Data collection, Data release

A population =5 Dataset X ~~~~A5%+ Statistics T(X, U)

> A long history

» Dalenius (1977), Duncan & Lambert (1986):
If the release of the statistics T makes it possible to determine [a record
Xi] more accurately than is possible without access to T, a disclosure
has taken place.

Towards a methodology for statistical disclosure
control

by Tore Dalenius*
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What is disclosure... for a Bayesian?

If the release of the statistics T makes it possible to determine
[a record X;] more accurately than is possible without access to
T, a disclosure has taken place.

As Bayesians, can we formalise this?
» There is a disclosure if 7(X;) and w(X; | T) differ.
» Dalenius (1977) recognised the impossibility of complete protection

immediately:

It may be argued that elimination of disclosure is possible only
by elimination of statistics.

» To produce useful statistics, we must allow for some (ideally small) amount of

disclosure.

» Measure “amount of disclosure” by how much 7(X;) and w(X; | T) differ.
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The choice of dp, and determine the flavour of DP:

dpy: (g, §)-approximate DP (Dwork, Kenthapadi, et al., 2006) Rényi DP (Mironov, 2017) concentrated DP
(Bun & Steinke, 2016) f-divergence privacy (Barber & Duchi, 2014; Barthe & Olmedo, 2013) f-DP (including
Gaussian DP) (Dong et al., 2022)

dx: (R, e)-generic DP (Kifer & Machanavajjhala, 2011a) edge vs node privacy (Hay et al., 2009; McSherry
& Mahajan, 2010) d-metric DP (Chatzikokolakis et al., 2013) Blowfish privacy (He et al., 2014) element level
DP (Asi et al., 2022) distributional privacy (Zhou et al., 2009) event-level vs user-level DP (Dwork et al.,
2010)

2: privacy under invariants (Ashmead et al., 2019; Gong & Meng, 2020; Gao et al., 2022; Dharangutte et al.,
2023) conditioned or empirical DP (). M. Abowd et al., 2013; Charest & Hou, 2016) personalized DP (Ebadi
et al., 2015; Jorgensen et al., 2015) individual DP (Soria-Comas et al., 2017; Feldman & Zrnic, 2022) bootstrap DP
(O’Keefe & Charest, 2019) stratified DP (Bun et al., 2022) per-record DP (Seeman et al., 2023+) per-instance
DP (Wang, 2018; Redberg & Wang, 2021)

X: DP for network data (Hay et al., 2009) for geospatial data (Andrés et al., 2013) Pufferfish DP (Kifer &
Machanavajjhala, 2014) noiseless privacy (Bhaskar et al., 2011) privacy under partial knowledge (Seeman

et al., 2022) privacy amplification (Beimel et al., 2010; Balle et al., 2020; Bun et al., 2022)
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The derivative of differential privacy (DP)

Thinking about T as a function of x, its

is the smallest € such that
<e

Definition: The statistic T is e-differentially private if its Lipschitz constant is .
» Recall that Lipschitz continuity = differentiability.
» Lipschitz constant is the supremum of the derivative.

Takeaway: Differential privacy is a “bound on the derivative” of T.
» The choice of dp, and determine the flavour of DP.

The classic choice: pure e-DP (Dwork, McSherry, et al., 2006)

T=t
log 2=

> is the max. log-likelihood ratio dy.+(Px, Px') = sup,

> is the Hamming distance
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Recall: Control disclosure < control the “difference” between 7(X;) and
(X | T=t).

The “strongest” attacker knows the values of x_:

Then
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For a general prior ,
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(X = x;) 7(Xi = x;) [ px (T = t)dm(X = x)
a7 = 0dr(X = x| X = x)
[P (T = t)dn(X = x)

1

< ens

with equality as the records of X become totally dependent. (n is the number of

records in X) (Dwork, McSherry, et al., 2006; Kifer & Machanavajjhala, 2011b)
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The dependence is a big trouble maker

Data are accidental representation, not essential information itself

» Does e-DP guarantee the marginal prior-to-posterior ratio
m(X;=x|T =1t)
- a(Xi=x)

—€

<e, Vx,Vit?

(Kifer & Machanavajjhala, 2011b, 2012; Tschantz et al., 2020)

» Does e-DP guarantee the conditional prior-to-posterior ratio
7T(X,‘ = X,'|T = t,X,,‘)
- m(X; = x|X_;)

e—E

<e? Vx,Vt? Yes

» Thus the guaranteed limit e is only for the
variations unexplained by anyone else in the database or by knowledge on

(and beyond) the database population.
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A Bayesian characterisation of pure e-DP i cong & veng 2001)

A random statistic T € R¢ is e-DP if and only if for every prior 7 on X, every sub-o
field F of the corresponding full o-field o, every B € # (Rd), every i, and every
A € B(0;), where ©; is the state space of x;, we have

e (X eA|F)< (X, € A|TEBF)<e“m(X;€A|F), (1)

where ¢; is the size of the minimal information chamber (MIC) for X;.

> MIC = C_;U{X;}: C_; C X_; is the Markov boundary for X;, that is, the
smallest subset of X_; such that

m(Xi|X_j, F) = m(X;|C_, F).
» MIC is the X;’s “information family” — knowing any one of them will provide
information about X;, in addition to public knowledge coded into F.

» Protecting relative risk against “strongest attacker" is the easiest —
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» Law: Privacy is the right to be let alone.
Warren & Brandeis (1890). The Right to Privacy. Harvard Law Review.

» Econmics: Privacy is the price of divulging information.
Acquisti et al. (2016) The Economics of Privacy.

Journal of Economic Literature.

» Political Science: The boundaries of power over the individual ascribe
the rights of the individual to privacy.
Raab (2019). Political Science and Privacy. In The Handbook of Privacy Studies:

An Interdisciplinary Introduction. Amsterdam University Press.

» Philosophy: “Privacy . . . is a concept in disarray. ... Currently privacy is a
sweeping concept. . . . Philosophers . . . have frequently lamented the great
difficulty in reaching a satisfying conception of privacy.”

Solove (2008) Understanding Privacy. Harvard University Press.
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Data Privacy — What does that mean?

Data Content Privacy

Protect information that can be revealed by the recorded data values.

Metadata Privacy

Protect the identities of the sender and the receiver, time of communication, etc.

Right To Be Forgotten

Right to have personal data erased.

» But how do we operationalize erasure? Do we erasure all copies? All

consequences?
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Protecting Privacy via Randomized Response (Warner, 1965)

» Estimating exam cheating rate pcheat. X = 1: cheated; X = 0, not cheated.

\{

Each student tosses a biased coin (with p > 0.5) secretly before answering.
R = 1if head, and R = 0 if tail.

\{

Report Y = 1if X = R, and otherwise report Y = 0.

v

At the individual level, Y; = 1 can mean a cheater or not a cheater.

v

But in aggregation:

Py = Pr(R = X) = P X Pcheat T (1 - p) X (1 - Pcheat)

Recovering pepeat: Estimate Ex: Y, = 0.45, p=06

5 _Yatp—1 _ 0454061
cheat 2p_] Pcheat = 2% 0.6 — 1 -
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Define Pure DP: Dwork et al. (2006) vs Dwork et al. (2016)

Let the database X = {xq, ..., x,} be a vector of n entries from some domain D,
typically of the form {0, 1} or R9. Let T4 be a random mechanism (map) from D"
to a state space T, corresponding to a query from an adversary A.

Definition 1 of Dwork, McSherry, et al. (2006)

A mechanism is e-indistinguishable if for all pairs X, X" € D" which differ in only
one entry, for all adversaries A, and for all transcripts t:
Pr(Ta(X) = 1)
n———~——~|<e¢
Pr(Ta(X’) =1)
Definition 2.1 of Dwork et al. (2016)

A noninteractive mechanism M is e-differentially private (with respect to a given
distance measure) if for all neighboring datasets X, X’ € NIPI, and for all events

(measurable sets) S in the space of outputs of M:

Pr(M(X) € S) < & Pr(M(X') € S).

The probabilities are over the coin flips of M.



Differential Privacy for the 2020 U.S. Census:
Can We Make Data Both Private and Useful?

FROM THE EDITORS

Harnessing the Known Unknowns:
Privacy and the 2020 Census

CENSUS: IMPORTANCE, HISTORY, AND TECHNICAL CHANGES

Disclosure Protectioninthe
Context of Statistical Agency
Operations: Data Quality and
Related Constraints

£ Coming to Our Census: How
Social Statistics Underpin Our
Democracy (and Republic)



Does DP control the posterior-to-prior ratio ?

Revisit the Random Response Mechanism: Y; = 1;x_g;.
Suppose an adversary’s prior for X; is Pr(X; = 1) = 7.
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Revisit the Random Response Mechanism: Y; = 1;x_g;.
Suppose an adversary’s prior for X; is Pr(X; = 1) = 7.
Pr(X1 = 1|Y1 = y) N Pr(Y1 = y|X1 = 1)

Pr(X; =1) a Pr(Yi=vy)

LR(y)
LR(y)m+ (1 —m)’

Cx(y) =

where LR(y) =

LR(y) 21 = 1< Ciy) < LR(y) LR(y) <1 = LR(y) < Cx(y) <1

max Cr(y) = Go(y) = LR(y) max Cr(y) = Gi(y) =1

min Cr(y) = Gi(y) =1 min Cr(y) = Go(y) = LR(y)

The prior-to-posterior semantic for differential privacy:



However, what if X; and X, are a priori dependent?

Suppose our prior for (X;, X;) is Pr(X; = a, X, = b) = 74. Let
PF(X1:1|Y1:y],Y2:y2) _ PF(Y1:y1,Y2:y2|X1:])
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PF(X1 = 1|Y1 =Y Yz = y2) _ PF(Y1 =Y Y2 = y2|X1 = ])
PI’(X] = 1) Pr( Y1 =Y, Yz = yz)

Cr(yr,y2) =

Transferring the bound on likelihood ratio to posterior-to-prior ratio
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LR(y17 y2)7T1. + (1 - 7'('1.)7

Cr(y1,y2) = M. = Pr(X; = 1) = m1 + o

Pr(Y1 =Y Yz = y2|X1 = 1)
Pr(Yi = y1, Y2 = yo|Xi = 0)°

LR(y1,y2) =

Consider the case y; = 1,y, = 1, and recall & = p/(1 — p)

e
LR(1,1) = ——T—

o1 e
01 4 e—e& T
To. .



The dependence is a big trouble maker

This means that when my = 7y; = 0, LR(1,1) = €* > ¢°.
» But 7y = m; = 0 means that X, = Xj, hence X; can be learned from the
information for X,. Consequently, the “individual information unit” for X;
should be the pair {X;, X}, not merely X;.



The dependence is a big trouble maker

This means that when my = 7y; = 0, LR(1,1) = €* > ¢°.
» But 7y = m; = 0 means that X, = Xj, hence X; can be learned from the
information for X,. Consequently, the “individual information unit” for X;
should be the pair {X;, X}, not merely X;.

> In fact as soon as Cov(Xj, X;) > 0, LR(1,1) > €°. This is because

LR(1,1)>€E <~ PF(X2:1|X1 :1)>P|'(X2:]‘X] :0)
But
COV(X],Xz) = Pr(X] = 1,X2 = 1) — Pr(X1 = 1) PI’(XZ = 1)
= [Pl’(Xz = 1‘X1 = 1) - PI’(XZ = 1|X1 = 0)] PI’(X1 = 0) Pl’(X] = 1)

Data are accidental representation, not essential information itself



In general, what does DP actual guarantee?

An attacker A is interested in learning about X4 = {x;, i € I4} in a database
X = {X;,i € I}, where I4 could contain a single individual or everyone in I. Suppose
the attacker has prior knowledge about the entire X in the form of w(X).
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In general, what does DP actual guarantee?

An attacker A is interested in learning about X4 = {x;, i € I4} in a database
X = {X;,i € I}, where I4 could contain a single individual or everyone in I. Suppose
the attacker has prior knowledge about the entire X in the form of w(X).
Let ma(X;) be the marginal prior, and m4(X;|X_;) be the conditional
prior, conditioning on X_; = {X;,j # i}. Upon learning M = m,

» Does e-DP guarantees the marginal posterior-to-prior ratio

PA(X; = x|M = m)
- wA(Xi = x)

676

<e, V¥YxeX? No,notin general

(Kifer & Machanavajjhala, 2011b, 2012; Tschantz et al., 2020)

» Does e-DP guarantees the conditional posterior-to-prior ratio
o < Pa(Xi = xIM=m,X_))
TA(X; = x|X_)

<e? VxeX? Yes

» Thus the guaranteed limit €° is only for the
variations unexplained by anyone else in the database or by knowledge on
(and beyond) the database population.



Theorem (Bailie, Gong & Meng, 2023)

A random map M delivers e-DP under Hamming distance if and only if for every prior
7 on D, every sub-c field F of the corresponding full o-field o(X), every
Bec A (]Rd), every i, and every A € $(O;), where ©; is the state space of x;, we have

e “r(XeA|F)<Pr(X;cA|Me B F)<e“n(xi€ Al F), &)

where w(x;|F) is the marginal prior for X; (conditional on F), Pr is the marginal

posterior for X;, and c; is the size of the minimal information chamber (MIC) for X;.
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smallest subset of X_; such that

m(Xi|X_i, F) = m(X;|C_;, F).

» MIC is the X;’s “information family” — knowing any one of them will provide
information about X;, in addition to public knowledge coded into F.



Theorem (Bailie, Gong & Meng, 2023)

A random map M delivers e-DP under Hamming distance if and only if for every prior
7 on D, every sub-c field F of the corresponding full o-field o(X), every
B € % (RY), every i, and every A € (0,), where ©; is the state space of x;, we have

e “r(XeA|F)<Pr(X;cA|Me B F)<e“n(xi€ Al F), &)

where w(x;|F) is the marginal prior for X; (conditional on F), Pr is the marginal

posterior for X;, and c; is the size of the minimal information chamber (MIC) for X;.

> MIC = C_;U{X;}: C_; C X_; is the Markov boundary for X;, that is, the
smallest subset of X_; such that

m(Xi|X—j, F) = m(X;|C—, F).
» MIC is the X;’s “information family” — knowing any one of them will provide
information about X;, in addition to public knowledge coded into F.

» Protecting relative risk against “strong adversary" is the easiest —



Information spreads like a virus — we need to quarantine
not only the infected individual but also everyone they’ve

come into contact with.
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because “divergence” dx (X, X’) = 1 for “neighboring” pair {X, X'}.
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Let the probability space for M(X) be { M, F, Px} (with Px(S) = Pr(M(X) € S|X))

“Differential” comes from “derivative”, essential for studying changes
For log-likelihood £(X|S) = In Pr(M(X) € S|X), pure DP is equivalent to requiring

supse r [€(X]S) — (X']9)] <e for all X, X’
dv (X, X) = o
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Five Building Blocks

A general DP Specification (?)

A data-release mechanism M : X — M satisfies a DP specification
(X7 @a dX7 dPra ED) if
dpe[Px, Px'] < epdx(X,X'), @)

for all X, X’ in every data universe D in the data multiverse 2.

» The protection domain ( ): dataset space X;

» The scope of protection ( ): data
multiverse 2 (essential), a collection of data universes D C X (accidental);

» The protection units ( ): the input divergence
dy on X;

» The standard of protection ( ): the divergence dp,

on probabilities;
» The intensity of protection ( ): privacy loss
budget ep € RZ?, for each data universe D.
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Examples from the US Decennial Censuses

‘ dpy dx (Unit) Invariants Privacy Loss Budget
TopDown™ Dhor dﬁam (person) Population (state) PL & DHC:
Total housing units (block) p* =15.29

Occupied group quarters (block) € =15283(5 =10""7)
Structural zeros

SafeTab™* Dyor

df,.. (person)

None DDHC-A: p? = 19.776
DDHC-B & S-DHC: TBD.

Swapping dmur

dﬁam (household)

Varies but greater € between 9.37-19.38
than TDA

* I
(J. Abowd et al., 2022)

* ok
(Tumult Labs, 2022)

P X is always the space of possible Census Edited Files, Xcgr.

» Dnor(P, Q) = sup,, ﬁ max [x/D.](PHQ), V/ DQ(QHP)] is the normalised Rényi metric [zero

concentrated DP] (with D, the Rényi divergence of order);

P duur(P, Q) = supse ’ln %‘ is the multiplicative distance (pure DP); and

iy

am

is the Hamming distance (on units u).



Swapping Satisfies DP, Subject to its Invariants

Permutation Swapping

Input: a dataset x.
Define strata as groups of records which match on the swap key Vs agify -
Within each stratum:

o

Q
Output: the swapped dataset w.




Swapping Satisfies DP, Subject to its Invariants

Permutation Swapping

Input: a dataset x.
Define strata as groups of records which match on the swap key Vs agify -
Within each stratum:

(%)
Q
Output: the swapped dataset w.

is DP subject to its invariants, with input divergence

dx = dff,,, output divergence dp, = dwyr and budget

In(b+1)—1Ino ifo<p<o.s,
max {Ino,In(b+ 1) —Ino} if0.5<p<T,

where o = p/(1 — p) and b is the maximum stratum size.
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The TopDown Algorithm (TDA) ¢ avowd et 202)

Two-step procedure:
® Start with a Census edited file x € Xcgr.

# Add Gaussian noise to cells:
T(x) = q(x) + W,

where , so that T satisfies DP(Xcgr, { Xcgr }, dfy

budget PTDA (Canonne et al., 2022).

Dyor) with

am?’

® “Post-process”: find dataset z with q(z) close to T(x) such that

CTDA(Z ) = CTDA(X)~

TDA satisfies DP(Xcer, Zemy » Gams Pnor) With budget prpa.

Ham>
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Theorem: TDA Satisfies DP, Subject to its Invariants

Let cpa : Xcpr — R! be the invariants of TDA and let 2., be the induced data

multiverse:

TDA

@CTDA = {D C XCEF | CTDA(X) = CTDA(X/) VX, X/ S D}

d¥.ms Dnor) With privacy budget ptpa = 2.63 (for

the PL Redistricting File) and prpa = 15.29 (for the DHC).

» TDA satisfies DP(Xcgr, 2.

CTDA )

» Let ¢’ be any proper subset of TDA’s invariants. TDA does not satisfy
DP(XcEr, Zer, day Dnor) With any finite budget p.
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