How Does Differential Privacy Limit Disclosure Risk? A Precise Prior-to-Posterior Analysis

James Bailie, Ruobin Gong and Xiao-Li Meng

ISBA World Meeting July 6, 2024

What is disclosure...

► Releasing statistics while maintaining privacy

A population $\xrightarrow{Data\ collection}$ Dataset X $\xrightarrow{Data\ release}$ Statistics T(X, U)

What is disclosure...

► Releasing statistics while maintaining privacy

A population
$$\xrightarrow{Data\ collection}$$
 Dataset $X \xrightarrow{Data\ release}$ Statistics $T(X, U)$

► A long history

What is disclosure...

Releasing statistics while maintaining privacy

A population $\xrightarrow{Data\ collection}$ Dataset $X \xrightarrow{Data\ release}$ Statistics T(X, U)

- A long history
 - ► Dalenius (1977), Duncan & Lambert (1986):

If the release of the statistics T makes it possible to determine [a record X_i] more accurately than is possible without access to T, a disclosure has taken place.

Towards a methodology for statistical disclosure

by Tore Dalenius1

If the release of the statistics T makes it possible to determine [a record X_i] more accurately than is possible without access to T, a disclosure has taken place.

If the release of the statistics T makes it possible to determine $[a \ record \ X_i]$ more accurately than is possible without access to T, a disclosure has taken place.

As Bayesians, can we formalise this?

▶ The attacker has a prior π on the record X_i .

If the release of the statistics T makes it possible to determine [a record X_i] more accurately than is possible without access to T, a disclosure has taken place.

- ▶ The attacker has a prior π on the record X_i .
- ▶ Without access to the statistics: $\pi(X_i)$.

If the release of the statistics T makes it possible to determine $[a \ record \ X_i]$ more accurately than is possible without access to T, a disclosure has taken place.

- ▶ The attacker has a prior π on the record X_i .
- Without access to the statistics: $\pi(X_i)$.
- ▶ With the release of the statistics: $\pi(X_i \mid T)$.

If the release of the statistics T makes it possible to determine $[a \operatorname{record} X_i]$ more accurately than is possible without access to T, a disclosure has taken place.

- ▶ The attacker has a prior π on the record X_i .
- ▶ Without access to the statistics: $\pi(X_i)$.
- ▶ With the release of the statistics: $\pi(X_i \mid T)$.
- ▶ There is a disclosure if $\pi(X_i)$ and $\pi(X_i \mid T)$ differ.

If the release of the statistics T makes it possible to determine $[a \ record \ X_i]$ more accurately than is possible without access to T, a disclosure has taken place.

As Bayesians, can we formalise this?

▶ There is a disclosure if $\pi(X_i)$ and $\pi(X_i \mid T)$ differ.

If the release of the statistics T makes it possible to determine [a record X_i] more accurately than is possible without access to T, a disclosure has taken place.

As Bayesians, can we formalise this?

- ▶ There is a disclosure if $\pi(X_i)$ and $\pi(X_i \mid T)$ differ.
- Dalenius (1977) recognised the impossibility of complete protection immediately:

It may be argued that elimination of disclosure is possible only by elimination of statistics.

If the release of the statistics T makes it possible to determine [a record X_i] more accurately than is possible without access to T, a disclosure has taken place.

As Bayesians, can we formalise this?

- ▶ There is a disclosure if $\pi(X_i)$ and $\pi(X_i \mid T)$ differ.
- Dalenius (1977) recognised the impossibility of complete protection immediately:

It may be argued that elimination of disclosure is possible only by elimination of statistics.

➤ To produce useful statistics, we must allow for some (ideally small) amount of disclosure.

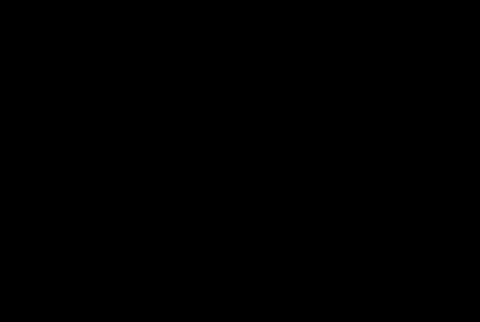
If the release of the statistics T makes it possible to determine [a record X_i] more accurately than is possible without access to T, a disclosure has taken place.

As Bayesians, can we formalise this?

- ▶ There is a disclosure if $\pi(X_i)$ and $\pi(X_i \mid T)$ differ.
- Dalenius (1977) recognised the impossibility of complete protection immediately:

It may be argued that elimination of disclosure is possible only by elimination of statistics.

- ► To produce useful statistics, we must allow for some (ideally small) amount of disclosure.
- ▶ Measure "amount of disclosure" by how much $\pi(X_i)$ and $\pi(X_i \mid T)$ differ.



Thinking about T as a function of the dataset x, its derivative is

$$\lim_{\mathbf{x}'\to\mathbf{x}}\frac{T(\mathbf{x}',U)-T(\mathbf{x},U)}{\mathbf{x}-\mathbf{x}'}.$$

Thinking about the distribution P_x of T as a function of x, its derivative is

$$\lim_{x'\to x}\frac{P_{x'}(T)-P_{x}(T)}{x'-x}.$$

Thinking about the distribution P_x of T as a function of x, its derivative is

$$\lim_{x'\to x}\frac{d_{\Pr}(P_{x'},P_x)}{x'-x}.$$

Thinking about the distribution P_x of T as a function of x, its derivative is

$$\lim_{\mathbf{x}'\to\mathbf{x}}\frac{d_{\mathsf{Pr}}(\mathsf{P}_{\mathbf{x}'},\mathsf{P}_{\mathbf{x}})}{d_{\mathcal{X}}(\mathbf{x}',\mathbf{x})}.$$

Thinking about the distribution P_x of T as a function of x, its derivative is

$$\lim_{\mathbf{x}'\to\mathbf{x}}\frac{d_{\mathsf{Pr}}(\mathsf{P}_{\mathbf{x}'},\mathsf{P}_{\mathbf{x}})}{d_{\mathcal{X}}(\mathbf{x}',\mathbf{x})},$$

for all x, x'

Thinking about the distribution P_x of T as a function of x, its derivative Lipschitz constant is the smallest ε such that

$$d_{\text{Pr}}(P_{\mathbf{x}'}, P_{\mathbf{x}}) \leq \varepsilon d_{\mathcal{X}}(\mathbf{x}', \mathbf{x}),$$

for all x, x'.

Thinking about the distribution P_x of T as a function of x, its derivative Lipschitz constant is the smallest ε such that

$$d_{\text{Pr}}(P_{\mathbf{x}'}, P_{\mathbf{x}}) \leq \varepsilon d_{\mathcal{X}}(\mathbf{x}', \mathbf{x}),$$

for all x, x'.

Definition: The statistic T is ε -differentially private if its Lipschitz constant is ε .

Thinking about the distribution P_x of T as a function of x, its derivative Lipschitz constant is the smallest ε such that

$$d_{\text{Pr}}(P_{\mathbf{x}'}, P_{\mathbf{x}}) \leq \varepsilon d_{\mathcal{X}}(\mathbf{x}', \mathbf{x}),$$

for all x, x'.

Definition: The statistic T is ε -differentially private if its Lipschitz constant is ε .

▶ Recall that Lipschitz continuity \approx differentiability.

Thinking about the distribution P_x of T as a function of x, its derivative Lipschitz constant is the smallest ε such that

$$d_{\text{Pr}}(P_{\mathbf{x}'}, P_{\mathbf{x}}) \leq \varepsilon d_{\mathcal{X}}(\mathbf{x}', \mathbf{x}),$$

for all x, x'.

Definition: The statistic T is ε -differentially private if its Lipschitz constant is ε .

- ▶ Recall that Lipschitz continuity \approx differentiability.
- ► Lipschitz constant is the supremum of the derivative.

Thinking about the distribution P_x of T as a function of x, its derivative Lipschitz constant is the smallest ε such that

$$d_{\text{Pr}}(P_{\mathbf{x}'}, P_{\mathbf{x}}) \leq \varepsilon d_{\mathcal{X}}(\mathbf{x}', \mathbf{x}),$$

for all x, x'.

Definition: The statistic T is ε -differentially private if its Lipschitz constant is ε .

- ► Recall that Lipschitz continuity \approx differentiability.
- ► Lipschitz constant is the supremum of the derivative.

Takeaway: Differential privacy is a "bound on the derivative" of *T*.

Thinking about the distribution P_x of T as a function of x, its derivative Lipschitz constant is the smallest ε such that

$$d_{\text{Pr}}(P_{\mathbf{x}'}, P_{\mathbf{x}}) \leq \varepsilon d_{\mathcal{X}}(\mathbf{x}', \mathbf{x}),$$

for all x, x'.

Definition: The statistic T is ε -differentially private if its Lipschitz constant is ε .

- ▶ Recall that Lipschitz continuity \approx differentiability.
- ► Lipschitz constant is the supremum of the derivative.

Takeaway: Differential privacy is a "bound on the derivative" of *T*.

▶ The choice of d_{Pr} and d_{χ} determine the *flavour* of DP.

Some examples in the literature

The choice of d_{Pr} and d_{χ} determine the *flavour* of DP:

Some examples in the literature

The choice of d_{Pr} and d_{χ} determine the *flavour* of DP:

 $\underline{d_{Pr}}$: (ε, δ) -approximate DP (Dwork, Kenthapadi, et al., 2006) Rényi DP (Mironov, 2017) concentrated DP (Bun & Steinke, 2016) f-divergence privacy (Barber & Duchi, 2014; Barthe & Olmedo, 2013) f-DP (including Gaussian DP) (Dong et al., 2022)

 $\underline{d_{\mathcal{X}}}$: $(\mathcal{R}, \varepsilon)$ -generic DP (Kifer & Machanavajjhala, 2011a) edge vs node privacy (Hay et al., 2009; McSherry & Mahajan, 2010) d-metric DP (Chatzikokolakis et al., 2013) Blowfish privacy (He et al., 2014) element level DP (Asi et al., 2022) distributional privacy (Zhou et al., 2009) event-level vs user-level DP (Dwork et al., 2010)

②: privacy under invariants (Ashmead et al., 2019; Gong & Meng, 2020; Gao et al., 2022; Dharangutte et al., 2023) conditioned or empirical DP (J. M. Abowd et al., 2013; Charest & Hou, 2016) personalized DP (Ebadi et al., 2015; Jorgensen et al., 2015) individual DP (Soria-Comas et al., 2017; Feldman & Zrnic, 2022) bootstrap DP (O'Keefe & Charest, 2019) stratified DP (Bun et al., 2022) per-record DP (Seeman et al., 2023+) per-instance DP (Wang, 2018; Redberg & Wang, 2021)

<u>X</u>: DP for network data (Hay et al., 2009) for geospatial data (Andrés et al., 2013) Pufferfish DP (Kifer & Machanavajjhala, 2014) noiseless privacy (Bhaskar et al., 2011) privacy under partial knowledge (Seeman et al., 2022) privacy amplification (Beimel et al., 2010; Balle et al., 2020; Bun et al., 2022)

Thinking about the distribution P_x of T as a function of x, its derivative Lipschitz constant is the smallest ε such that

$$d_{\text{Pr}}(P_{\mathbf{x}'}, P_{\mathbf{x}}) \leq \varepsilon d_{\mathcal{X}}(\mathbf{x}', \mathbf{x}).$$

Definition: The statistic T is ε -differentially private if its Lipschitz constant is ε .

- ► Recall that Lipschitz continuity ≈ differentiability.
- ► Lipschitz constant is the supremum of the derivative.

Takeaway: Differential privacy is a "bound on the derivative" of *T*.

▶ The choice of d_{Pr} and $d_{\mathcal{X}}$ determine the *flavour* of DP.

Thinking about the distribution P_x of T as a function of x, its derivative Lipschitz constant is the smallest ε such that

$$d_{\text{Pr}}(P_{\mathbf{x}'}, P_{\mathbf{x}}) \leq \varepsilon d_{\mathcal{X}}(\mathbf{x}', \mathbf{x}).$$

Definition: The statistic T is ε -differentially private if its Lipschitz constant is ε .

- ▶ Recall that Lipschitz continuity \approx differentiability.
- ► Lipschitz constant is the supremum of the derivative.

Takeaway: Differential privacy is a "bound on the derivative" of *T*.

▶ The choice of d_{Pr} and $d_{\mathcal{X}}$ determine the *flavour* of DP.

The classic choice: pure ε -DP (Dwork, McSherry, et al., 2006)

- ▶ d_{P_r} is the max. log-likelihood ratio $d_{MULT}(P_x, P_{x'}) = \sup_t \left| \log \frac{p_x(T=t)}{p_{x'}(T=t)} \right|$
- ▶ d_{χ} is the *Hamming distance*

Recall: Control disclosure \Leftrightarrow control the "difference" between $\pi(X_i)$ and $\pi(X_i \mid T = t)$.

Recall: Control disclosure \Leftrightarrow control the "difference" between $\pi(X_i)$ and $\pi(X_i \mid T = t)$.

The "strongest" attacker knows the values of x_{-i} :

$$\pi(\mathbf{X}=\mathbf{x})=\pi(X_i=x_i)\delta_{\mathbf{x}_{-i}=\mathbf{x}_{-i}^*}.$$

Recall: Control disclosure \Leftrightarrow control the "difference" between $\pi(X_i)$ and $\pi(X_i \mid T = t)$.

The "strongest" attacker knows the values of x_{-i} :

$$\pi(\mathbf{X}=\mathbf{x})=\pi(X_i=x_i)\delta_{\mathbf{x}_{-i}=\mathbf{x}_{-i}^*}.$$

$$\frac{\pi(X_i = x_i \mid T = t)}{\pi(X_i = x_i)} = \frac{\pi(X_i = x_i) \int p_{\mathbf{x}}(T = t) d\pi(\mathbf{X}_{-i} = \mathbf{x}_{-i} \mid X_i = x_i)}{\pi(X_i = x_i) \int p_{\mathbf{x}'}(T = t) d\pi(\mathbf{X} = \mathbf{x}')}$$

Recall: Control disclosure \Leftrightarrow control the "difference" between $\pi(X_i)$ and $\pi(X_i \mid T = t)$.

The "strongest" attacker knows the values of x_{-i} :

$$\pi(\mathbf{X}=\mathbf{x})=\pi(X_i=x_i)\delta_{\mathbf{x}_{-i}=\mathbf{x}_{-i}^*}.$$

$$\frac{\pi(X_i = x_i \mid T = t)}{\pi(X_i = x_i)} = \frac{\pi(X_i = x_i) \int p_{\mathbf{x}}(T = t) d\pi(\mathbf{X}_{-i} = \mathbf{x}_{-i} \mid X_i = x_i)}{\pi(X_i = x_i) \int p_{\mathbf{x}'}(T = t) d\pi(\mathbf{X} = \mathbf{x}')}$$
$$= \frac{\int p_{\mathbf{x}}(T = t) d\pi(\mathbf{X}_{-i} = \mathbf{x}_{-i} \mid X_i = x_i)}{\int p_{\mathbf{x}'}(T = t) d\pi(\mathbf{X} = \mathbf{x}')}$$

Recall: Control disclosure \Leftrightarrow control the "difference" between $\pi(X_i)$ and $\pi(X_i \mid T = t)$.

The "strongest" attacker knows the values of x_{-i} :

$$\pi(\mathbf{X}=\mathbf{x})=\pi(X_i=x_i)\delta_{\mathbf{x}_{-i}=\mathbf{x}_{-i}^*}.$$

$$\frac{\pi(X_{i} = x_{i} \mid T = t)}{\pi(X_{i} = x_{i})} = \frac{\pi(X_{i} = x_{i}) \int p_{\mathbf{x}}(T = t) d\pi(\mathbf{X}_{-i} = \mathbf{x}_{-i} \mid X_{i} = x_{i})}{\pi(X_{i} = x_{i}) \int p_{\mathbf{x}'}(T = t) d\pi(\mathbf{X} = \mathbf{x}')}$$

$$= \frac{\int p_{\mathbf{x}}(T = t) d\pi(\mathbf{X}_{-i} = \mathbf{x}_{-i} \mid X_{i} = x_{i})}{\int p_{\mathbf{x}'}(T = t) d\pi(\mathbf{X} = \mathbf{x}')}$$

$$= \frac{p(T = t \mid X_{i} = x_{i}, \mathbf{X}_{-i} = \mathbf{x}^{*}_{-i})}{\int p(T = t \mid X_{i} = x'_{i}, \mathbf{X}_{-i} = \mathbf{x}^{*}_{-i}) d\pi(X_{i} = x'_{i})}$$

Recall: Control disclosure \Leftrightarrow control the "difference" between $\pi(X_i)$ and $\pi(X_i \mid T = t)$.

The "strongest" attacker knows the values of x_{-i} :

$$\pi(\mathbf{X}=\mathbf{x})=\pi(X_i=x_i)\delta_{\mathbf{x}_{-i}=\mathbf{x}_{-i}^*}.$$

$$\frac{\pi(X_i = x_i \mid T = t)}{\pi(X_i = x_i)} = \frac{\pi(X_i = x_i) \int p_{\mathbf{x}}(T = t) d\pi(\mathbf{X}_{-i} = \mathbf{x}_{-i} \mid X_i = x_i)}{\pi(X_i = x_i) \int p_{\mathbf{x}'}(T = t) d\pi(\mathbf{X} = \mathbf{x}')}$$

$$= \frac{\int p_{\mathbf{x}}(T = t) d\pi(\mathbf{X}_{-i} = \mathbf{x}_{-i} \mid X_i = x_i)}{\int p_{\mathbf{x}'}(T = t) d\pi(\mathbf{X} = \mathbf{x}')}$$

$$= \frac{p(T = t \mid X_i = x_i, \mathbf{X}_{-i} = \mathbf{x}_{-i}^*)}{\int p(T = t \mid X_i = x_i', \mathbf{X}_{-i} = \mathbf{x}_{-i}^*) d\pi(X_i = x_i')}$$

$$\leq e^{\varepsilon}.$$

For a general prior π ,

$$\frac{\pi(X_i = x_i \mid T = t)}{\pi(X_i = x_i)} = \frac{\pi(X_i = x_i) \int p_{\mathbf{x}}(T = t) d\pi(\mathbf{X}_{-i} = \mathbf{x}_{-i} \mid X_i = x_i)}{\pi(X_i = x_i) \int p_{\mathbf{x}'}(T = t) d\pi(\mathbf{X} = \mathbf{x}')}$$

Does pure ε -DP control disclosure?

For a general prior π ,

$$\frac{\pi(X_i = x_i \mid T = t)}{\pi(X_i = x_i)} = \frac{\pi(X_i = x_i) \int p_{\mathbf{x}}(T = t) d\pi(\mathbf{X}_{-i} = \mathbf{x}_{-i} \mid X_i = x_i)}{\pi(X_i = x_i) \int p_{\mathbf{x}'}(T = t) d\pi(\mathbf{X} = \mathbf{x}')}$$
$$= \frac{\int p_{\mathbf{x}}(T = t) d\pi(\mathbf{X}_{-i} = \mathbf{x}_{-i} \mid X_i = x_i)}{\int p_{\mathbf{x}'}(T = t) d\pi(\mathbf{X} = \mathbf{x}')}$$

Does pure ε -DP control disclosure?

For a general prior π ,

$$\frac{\pi(X_i = x_i \mid T = t)}{\pi(X_i = x_i)} = \frac{\pi(X_i = x_i) \int p_{\mathbf{x}}(T = t) d\pi(\mathbf{X}_{-i} = \mathbf{x}_{-i} \mid X_i = x_i)}{\pi(X_i = x_i) \int p_{\mathbf{x}'}(T = t) d\pi(\mathbf{X} = \mathbf{x}')}$$

$$= \frac{\int p_{\mathbf{x}}(T = t) d\pi(\mathbf{X}_{-i} = \mathbf{x}_{-i} \mid X_i = x_i)}{\int p_{\mathbf{x}'}(T = t) d\pi(\mathbf{X} = \mathbf{x}')}$$

$$= \int \frac{1}{\int \frac{p_{\mathbf{x}'}(T = t)}{p_{\mathbf{x}}(T = t)} d\pi(\mathbf{X} = \mathbf{x}')} d\pi(\mathbf{X}_{-i} = \mathbf{x}_{-i} \mid X_i = x_i)$$

Does pure ε -DP control disclosure?

For a general prior π ,

$$\frac{\pi(X_i = x_i \mid T = t)}{\pi(X_i = x_i)} = \frac{\pi(X_i = x_i) \int p_{\mathbf{x}}(T = t) d\pi(\mathbf{X}_{-i} = \mathbf{x}_{-i} \mid X_i = x_i)}{\pi(X_i = x_i) \int p_{\mathbf{x}'}(T = t) d\pi(\mathbf{X} = \mathbf{x}')}$$

$$= \frac{\int p_{\mathbf{x}}(T = t) d\pi(\mathbf{X}_{-i} = \mathbf{x}_{-i} \mid X_i = x_i)}{\int p_{\mathbf{x}'}(T = t) d\pi(\mathbf{X} = \mathbf{x}')}$$

$$= \int \frac{1}{\int \frac{p_{\mathbf{x}'}(T = t)}{p_{\mathbf{x}}(T = t)} d\pi(\mathbf{X} = \mathbf{x}')} d\pi(\mathbf{X}_{-i} = \mathbf{x}_{-i} \mid X_i = x_i)}$$

$$\leq e^{n\varepsilon},$$

with equality as the records of X become totally dependent. (n is the number of records in X.) (Dwork, McSherry, et al., 2006; Kifer & Machanavajjhala, 2011b)

Data are *accidental* representation, not *essential* information itself Manipulating data values without considering their interdependence is not a legitimate information operation in general.

Data are *accidental* representation, not *essential* information itself Manipulating data values without considering their interdependence is not a legitimate information operation in general.

▶ Does ε -DP guarantee the marginal prior-to-posterior ratio

$$e^{-\varepsilon} \le \frac{\pi(X_i = x | T = t)}{\pi(X_i = x)} \le e^{\varepsilon}, \quad \forall x, \forall t$$
? No, not in general

(Kifer & Machanavajjhala, 2011b, 2012; Tschantz et al., 2020)

Data are *accidental* representation, not *essential* information itself Manipulating data values without considering their interdependence is not a legitimate information operation in general.

▶ Does ε -DP guarantee the marginal prior-to-posterior ratio

$$e^{-\varepsilon} \le \frac{\pi(X_i = x | T = t)}{\pi(X_i = x)} \le e^{\varepsilon}, \quad \forall x, \forall t$$
? No, not in general

(Kifer & Machanavajjhala, 2011b, 2012; Tschantz et al., 2020)

▶ Does ε -DP guarantee the conditional prior-to-posterior ratio

$$e^{-\varepsilon} \leq \frac{\pi(X_i = x_i | T = t, \mathbf{X}_{-i})}{\pi(X_i = x | \mathbf{X}_{-i})} \leq e^{\varepsilon}$$
? $\forall x, \forall t$? Yes

Data are *accidental* representation, not *essential* information itself Manipulating data values without considering their interdependence is not a legitimate information operation in general.

▶ Does ε -DP guarantee the marginal prior-to-posterior ratio

$$e^{-\varepsilon} \le \frac{\pi(X_i = x | T = t)}{\pi(X_i = x)} \le e^{\varepsilon}, \quad \forall x, \forall t$$
? No, not in general

(Kifer & Machanavajjhala, 2011b, 2012; Tschantz et al., 2020)

▶ Does ε -DP guarantee the conditional prior-to-posterior ratio

$$e^{-\varepsilon} \leq \frac{\pi(X_i = x_i | T = t, \mathbf{X}_{-i})}{\pi(X_i = x | \mathbf{X}_{-i})} \leq e^{\varepsilon}$$
? $\forall x, \forall t$? Yes

► Thus the guaranteed limit e^{ε} is only for the unique individual information: variations unexplained by anyone else in the database or by knowledge on (and beyond) the database population.

A Bayesian characterisation of pure $\varepsilon ext{-}\mathsf{DP}$ (Bailie, Gong & Meng, 2024+)

A random statistic $T \in \mathbb{R}^d$ is ε -DP if and only if for every prior π on X, every sub- σ field \mathcal{F} of the corresponding full σ -field σ_{π} , every $B \in \mathcal{B}\left(\mathbb{R}^d\right)$, every i, and every $A \in \mathcal{B}(\Theta_i)$, where Θ_i is the state space of x_i , we have

$$e^{-c_i\varepsilon}\pi(X_i\in A\mid \mathcal{F})\leq \pi(X_i\in A\mid T\in B;\mathcal{F})\leq e^{c_i\varepsilon}\pi(X_i\in A\mid \mathcal{F}),$$
 (1)

where c_i is the size of the *minimal information chamber* (MIC) for X_i .

A random statistic $T \in \mathbb{R}^d$ is ε -DP if and only if for every prior π on X, every sub- σ field \mathcal{F} of the corresponding full σ -field σ_{π} , every $B \in \mathcal{B}\left(\mathbb{R}^d\right)$, every i, and every $A \in \mathcal{B}(\Theta_i)$, where Θ_i is the state space of x_i , we have

$$e^{-c_i\varepsilon}\pi(X_i\in A\mid \mathcal{F})\leq \pi(X_i\in A\mid T\in B;\mathcal{F})\leq e^{c_i\varepsilon}\pi(X_i\in A\mid \mathcal{F}),$$
 (1)

where c_i is the size of the *minimal information chamber* (MIC) for X_i .

▶ $MIC = C_{-i} \cup \{X_i\}$: $C_{-i} \subset X_{-i}$ is the *Markov boundary* for X_i , that is, the smallest subset of X_{-i} such that

$$\pi(X_i|\mathbf{X}_{-i},\mathcal{F})=\pi(X_i|C_{-i},\mathcal{F}).$$

▶ MIC is the X_i 's "information family" – knowing any one of them will provide information about X_i , in addition to public knowledge coded into \mathcal{F} .

A Bayesian characterisation of pure $\varepsilon ext{-}DP$ (Bailie, Gong & Meng, 2024+)

A random statistic $T \in \mathbb{R}^d$ is ε -DP if and only if for every prior π on X, every sub- σ field \mathcal{F} of the corresponding full σ -field σ_{π} , every $B \in \mathcal{B}\left(\mathbb{R}^d\right)$, every i, and every $A \in \mathcal{B}(\Theta_i)$, where Θ_i is the state space of x_i , we have

$$e^{-c_i\varepsilon}\pi(X_i\in A\mid \mathcal{F})\leq \pi(X_i\in A\mid T\in B;\mathcal{F})\leq e^{c_i\varepsilon}\pi(X_i\in A\mid \mathcal{F}),$$
 (1)

where c_i is the size of the *minimal information chamber* (MIC) for X_i .

▶ $MIC = C_{-i} \cup \{X_i\}$: $C_{-i} \subset X_{-i}$ is the *Markov boundary* for X_i , that is, the smallest subset of X_{-i} such that

$$\pi(X_i|\mathbf{X}_{-i},\mathcal{F})=\pi(X_i|C_{-i},\mathcal{F}).$$

- ▶ MIC is the X_i 's "information family" knowing any one of them will provide information about X_i , in addition to public knowledge coded into \mathcal{F} .
- ► Protecting *relative* risk against "strongest attacker" is the easiest the more the attacker's prior information, the less left for protection.

HARVARD

LAW REVIEW.

VOL. IV.

DECEMBER 15, 1890.

NO. 5.

THE RIGHT TO PRIVACY.

"It could be done only on principles of private justice, moral fitness, and public convenience, which, when applied to a new subject, make

Samuel D. Warren II

Louis Brandeis

he right to be **let alone**.

► Law: Privacy is the right to be let alone.

Warren & Brandeis (1890). The Right to Privacy. Harvard Law Review.

► Law: Privacy is the right to be let alone.

Warren & Brandeis (1890). The Right to Privacy. Harvard Law Review.

► Econmics: Privacy is the price of divulging information.

Acquisti et al. (2016) The Economics of Privacy.

Journal of Economic Literature.

- ► Law: Privacy is the right to be let alone.
 - Warren & Brandeis (1890). The Right to Privacy. Harvard Law Review.
- ► Econmics: Privacy is the price of divulging information.

 Acquisti et al. (2016) The Economics of Privacy.

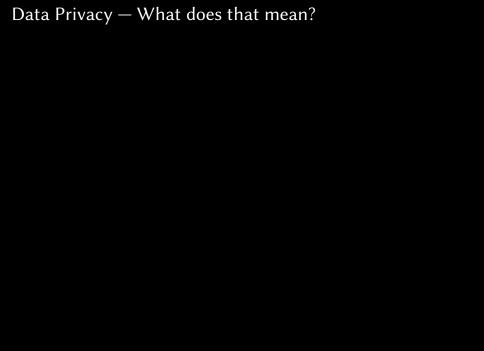
 Journal of Economic Literature.
- Political Science: The boundaries of power over the individual ascribe the rights of the individual to privacy.
 - Raab (2019). Political Science and Privacy. In *The Handbook of Privacy Studies:* An Interdisciplinary Introduction. Amsterdam University Press.

- ► Law: Privacy is the right to be let alone.

 Warren & Brandeis (1890). The Right to Privacy. Harvard Law Review.
- ► Econmics: Privacy is the price of divulging information.

 Acquisti et al. (2016) The Economics of Privacy.

 Journal of Economic Literature.
- ► Political Science: The boundaries of power over the individual ascribe the rights of the individual to privacy.
 - Raab (2019). Political Science and Privacy. In *The Handbook of Privacy Studies:* An Interdisciplinary Introduction. Amsterdam University Press.
- Philosophy: "Privacy... is a concept in disarray. ... Currently privacy is a sweeping concept.... Philosophers... have frequently lamented the great difficulty in reaching a satisfying conception of privacy."Solove (2008) Understanding Privacy. Harvard University Press.



Data Privacy — What does that mean?

Data Content Privacy

Protect information that can be revealed by the recorded data values.

Data Privacy — What does that mean?

Data Content Privacy

Protect information that can be revealed by the recorded data values.

Metadata Privacy

Protect the identities of the sender and the receiver, time of communication, etc.

Data Privacy — What does that mean?

Data Content Privacy

Protect information that can be revealed by the recorded data values.

Metadata Privacy

Protect the identities of the sender and the receiver, time of communication, etc.

Right To Be Forgotten

Right to have personal data erased.

But how do we operationalize erasure? Do we erasure all copies? All consequences?

► Estimating exam cheating rate p_{cheat} . X = 1: cheated; X = 0, not cheated.

- ▶ Estimating exam cheating rate p_{cheat} . X = 1: cheated; X = 0, not cheated.
- ▶ Each student tosses a biased coin (with p > 0.5) secretly before answering. R = 1 if head, and R = 0 if tail.

- ▶ Estimating exam cheating rate p_{cheat} . X = 1: cheated; X = 0, not cheated.
- ► Each student tosses a biased coin (with p > 0.5) secretly before answering. R = 1 if head, and R = 0 if tail.
- ▶ Report Y = 1 if X = R, and otherwise report Y = 0.

- ▶ Estimating exam cheating rate p_{cheat} . X = 1: cheated; X = 0, not cheated.
- ► Each student tosses a biased coin (with p > 0.5) secretly before answering.
 R = 1 if head, and R = 0 if tail.
- ▶ Report Y = 1 if X = R, and otherwise report Y = 0.
- At the individual level, $Y_i = 1$ can mean a cheater or not a cheater.

- ▶ Estimating exam cheating rate p_{cheat} . X = 1: cheated; X = 0, not cheated.
- ► Each student tosses a biased coin (with p > 0.5) secretly before answering.
 R = 1 if head, and R = 0 if tail.
- ▶ Report Y = 1 if X = R, and otherwise report Y = 0.
- ▶ At the individual level, $Y_i = 1$ can mean a cheater or not a cheater.
- ► But in aggregation:

$$p_Y = \Pr(R = X) = p \times p_{\text{cheat}} + (1 - p) \times (1 - p_{\text{cheat}})$$

- ▶ Estimating exam cheating rate p_{cheat} . X = 1: cheated; X = 0, not cheated.
- ► Each student tosses a biased coin (with p > 0.5) secretly before answering.
 R = 1 if head, and R = 0 if tail.
- ▶ Report Y = 1 if X = R, and otherwise report Y = 0.
- \blacktriangleright At the individual level, $Y_i = 1$ can mean a cheater or not a cheater.
- But in aggregation:

$$p_Y = \Pr(R = X) = p \times p_{\text{cheat}} + (1 - p) \times (1 - p_{\text{cheat}})$$

Recovering p_{cheat} :

$$p_{\text{cheat}} = \frac{p_Y + p - 1}{2p - 1}$$

- ▶ Estimating exam cheating rate p_{cheat} . X = 1: cheated; X = 0, not cheated.
- ► Each student tosses a biased coin (with p > 0.5) secretly before answering.
 R = 1 if head, and R = 0 if tail.
- ▶ Report Y = 1 if X = R, and otherwise report Y = 0.
- ▶ At the individual level, $Y_i = 1$ can mean a cheater or not a cheater.
- But in aggregation:

$$p_Y = \Pr(R = X) = p \times p_{\text{cheat}} + (1 - p) \times (1 - p_{\text{cheat}})$$

Recovering p_{cheat} : Estimate

$$\hat{p}_{\text{cheat}} = \frac{p_{\gamma} + p - 1}{2p - 1}$$

$$\hat{p}_{\text{cheat}} = \frac{\bar{Y}_n + p - 1}{2p - 1}$$

- **Estimating exam** cheating rate p_{cheat} . X = 1: cheated; X = 0, not cheated.
- ► Each student tosses a biased coin (with p > 0.5) secretly before answering. R = 1 if head, and R = 0 if tail.
- ▶ Report Y = 1 if X = R, and otherwise report Y = 0.
- ▶ At the individual level, $Y_i = 1$ can mean a cheater or not a cheater.
- ► But in aggregation:

$$p_Y = \Pr(R = X) = p \times p_{\text{cheat}} + (1 - p) \times (1 - p_{\text{cheat}})$$

Recovering p_{cheat} :

Estimate

Ex: $\bar{Y}_n = 0.45, p = 0.6$

$$p_{\text{cheat}} = \frac{p_Y + p - 1}{2p - 1}$$
 $\hat{p}_{\text{cheat}} = \frac{Y_n + p - 1}{2p - 1}$ $\hat{p}_{\text{cheat}} = \frac{0.45 + 0.6 - 1}{2 \times 0.6 - 1} = 0.25$

Increased Variance

$$\operatorname{Var}(\hat{p}_{\operatorname{cheat}}) = \frac{1}{n} \frac{p_Y(1-p_Y)}{(2p-1)^2} \le \frac{1}{16n} \frac{1}{(p-0.5)^2}$$

Increased Variance

$$\operatorname{Var}(\hat{p}_{\operatorname{cheat}}) = rac{1}{n} rac{p_{Y}(1-p_{Y})}{(2p-1)^{2}} \leq rac{1}{16n} rac{1}{(p-0.5)^{2}}$$

Control Relative Risk via Controlling Likelihood Ratio

$$\frac{\Pr(X_i = 1 | Y_i)}{\Pr(X_i = 0 | Y_i)} = \frac{\Pr(Y_i | X_i = 1)}{\Pr(Y_i | X_i = 0)} \frac{\Pr(X_i = 1)}{\Pr(X_i = 0)}$$

Increased Variance

$$\operatorname{Var}(\hat{p}_{\operatorname{cheat}}) = \frac{1}{n} \frac{p_Y(1 - p_Y)}{(2p - 1)^2} \le \frac{1}{16n} \frac{1}{(p - 0.5)^2}$$

Control Relative Risk via Controlling Likelihood Ratio

$$\frac{\Pr(X_i = 1 | Y_i)}{\Pr(X_i = 0 | Y_i)} = \frac{\Pr(Y_i | X_i = 1)}{\Pr(Y_i | X_i = 0)} \frac{\Pr(X_i = 1)}{\Pr(X_i = 0)}$$

$$\frac{\Pr(Y_i = 1 \mid X_i = 1)}{\Pr(Y_i = 1 \mid X_i = 0)} = \frac{p}{1 - p} = e^{\varepsilon}, \text{ with } \varepsilon = \text{logit}(p)$$

Increased Variance

$$Var(\hat{p}_{cheat}) = \frac{1}{n} \frac{p_Y(1-p_Y)}{(2p-1)^2} \le \frac{1}{16n} \frac{1}{(p-0.5)^2}$$

Control Relative Risk via Controlling Likelihood Ratio

$$\frac{\Pr(X_i = 1 | Y_i)}{\Pr(X_i = 0 | Y_i)} = \frac{\Pr(Y_i | X_i = 1)}{\Pr(Y_i | X_i = 0)} \frac{\Pr(X_i = 1)}{\Pr(X_i = 0)}$$

$$\frac{\Pr(Y_i = 1 \mid X_i = 1)}{\Pr(Y_i = 1 \mid X_i = 0)} = \frac{p}{1 - p} = e^{\varepsilon}, \text{ with } \varepsilon = \text{logit}(p)$$

$$\frac{\Pr(Y_i = 0 \mid X_i = 1)}{\Pr(Y_i = 0 \mid X_i = 0)} = \frac{1 - p}{p} = e^{-\varepsilon}$$

Increased Variance

$$\operatorname{Var}(\hat{p}_{\text{cheat}}) = \frac{1}{n} \frac{p_Y(1 - p_Y)}{(2p - 1)^2} \le \frac{1}{16n} \frac{1}{(p - 0.5)^2}$$

Control Relative Risk via Controlling Likelihood Ratio

$$\frac{\Pr(X_i = 1|Y_i)}{\Pr(X_i = 0|Y_i)} = \frac{\Pr(Y_i|X_i = 1)}{\Pr(Y_i|X_i = 0)} \frac{\Pr(X_i = 1)}{\Pr(X_i = 0)}$$

$$\frac{\Pr\left(Y_{i}=1\mid X_{i}=1\right)}{\Pr\left(Y_{i}=1\mid X_{i}=0\right)}=\frac{p}{1-p}=e^{\varepsilon}, \quad \text{with } \varepsilon=\text{logit}(p)$$

$$\frac{\Pr(Y_i = 0 \mid X_i = 1)}{\Pr(Y_i = 0 \mid X_i = 0)} = \frac{1 - p}{p} = e^{-\varepsilon}$$

$$e^{-\varepsilon} \le \frac{\Pr(Y_i = y \mid X_i = 1)}{\Pr(Y_i = y \mid X_i = 0)} \le e^{\varepsilon}, \quad \text{for } y = 0, 1$$

Increased Variance

$$Var(\hat{p}_{cheat}) = \frac{1}{n} \frac{p_Y(1-p_Y)}{(2p-1)^2} \le \frac{1}{16n} \frac{1}{(p-0.5)^2}$$

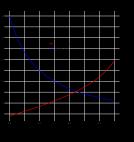
Control Relative Risk via Controlling Likelihood Ratio

$$\frac{\Pr(X_i = 1 | Y_i)}{\Pr(X_i = 0 | Y_i)} = \frac{\Pr(Y_i | X_i = 1)}{\Pr(Y_i | X_i = 0)} \frac{\Pr(X_i = 1)}{\Pr(X_i = 0)}$$

$$\frac{\Pr(Y_i = 1 \mid X_i = 1)}{\Pr(Y_i = 1 \mid X_i = 0)} = \frac{p}{1 - p} = e^{\varepsilon}, \quad \text{with } \varepsilon = \text{logit}(p)$$

$$\frac{\Pr(Y_i = 0 \mid X_i = 1)}{\Pr(Y_i = 0 \mid X_i = 0)} = \frac{1 - p}{p} = e^{-\varepsilon}$$

$$e^{-\varepsilon} \le \frac{\Pr(Y_i = y \mid X_i = 1)}{\Pr(Y_i = y \mid X_i = 0)} \le e^{\varepsilon}, \text{ for } y = 0, 1$$



Define Pure DP: Dwork et al. (2006) vs Dwork et al. (2016)

Let the database $X = \{x_1, \dots, x_n\}$ be a vector of n entries from some domain D, typically of the form $\{0, 1\}^d$ or \mathbb{R}^d . Let T_A be a random mechanism (map) from D^n to a state space \mathcal{T} , corresponding to a query from an adversary \mathcal{A} .

Define Pure DP: Dwork et al. (2006) vs Dwork et al. (2016)

Let the database $X = \{x_1, \ldots, x_n\}$ be a vector of n entries from some domain D, typically of the form $\{0, 1\}^d$ or \mathbb{R}^d . Let $T_{\mathcal{A}}$ be a random mechanism (map) from D^n to a state space \mathcal{T} , corresponding to a query from an adversary \mathcal{A} .

Definition 1 of Dwork, McSherry, et al. (2006)

A mechanism is ε -indistinguishable if for all pairs $X, X' \in D^n$ which differ in only one entry, for all adversaries A, and for all transcripts t:

$$\left| \ln \frac{\Pr(T_{\mathcal{A}}(\mathbf{X}) = t)}{\Pr(T_{\mathcal{A}}(\mathbf{X}') = t)} \right| \leq \varepsilon.$$

Define Pure DP: Dwork et al. (2006) vs Dwork et al. (2016)

Let the database $X = \{x_1, \dots, x_n\}$ be a vector of n entries from some domain D, typically of the form $\{0, 1\}^d$ or \mathbb{R}^d . Let T_A be a random mechanism (map) from D^n to a state space \mathcal{T} , corresponding to a query from an adversary \mathcal{A} .

Definition 1 of Dwork, McSherry, et al. (2006)

A mechanism is ε -indistinguishable if for all pairs $X, X' \in D^n$ which differ in only one entry, for all adversaries A, and for all transcripts t:

$$\left| \ln \frac{\Pr(T_{\mathcal{A}}(\mathbf{X}) = t)}{\Pr(T_{\mathcal{A}}(\mathbf{X}') = t)} \right| \leq \varepsilon.$$

Define Pure DP: Dwork et al. (2006) vs Dwork et al. (2016)

Let the database $X = \{x_1, \dots, x_n\}$ be a vector of n entries from some domain D, typically of the form $\{0, 1\}^d$ or \mathbb{R}^d . Let T_A be a random mechanism (map) from D^n to a state space \mathcal{T} , corresponding to a query from an adversary \mathcal{A} .

Definition 1 of Dwork, McSherry, et al. (2006)

A mechanism is ε -indistinguishable if for all pairs $X, X' \in D^n$ which differ in only one entry, for all adversaries A, and for all transcripts t:

$$\left| \ln \frac{\Pr\left(T_{\mathcal{A}}(\mathbf{X}) = t \right)}{\Pr\left(T_{\mathcal{A}}(\mathbf{X}') = t \right)} \right| \leq \varepsilon.$$

Definition 2.1 of Dwork et al. (2016)

A noninteractive mechanism \mathcal{M} is ε -differentially private (with respect to a given distance measure) if for all neighboring datasets $\mathbf{X}, \mathbf{X}' \in \mathbb{N}^{|D|}$, and for all events (measurable sets) S in the space of outputs of \mathcal{M} :

$$\Pr(M(\mathbf{X}) \in S) \leq e^{\varepsilon} \Pr(M(\mathbf{X}') \in S).$$

The probabilities are over the coin flips of *M*.

SECTIONS ▼ COLUMNS ▼ COLLECTIONS ▼ PODCAST SUBMIT ▼ ABOUT ▼ MASTHEAD ▼

Differential Privacy for the 2020 U.S. Census: Can We Make Data Both Private and Useful?

Special Issue 2

Coming to Our Census: How Social Statistics Underpin Our Democracy (and Republic) by Tenesa A. Sullivan

Published: Jan 31, 2020

& CONNECTIONS

Disclosure Protection in the Context of Statistical Agency Operations: Data Quality and Related Constraints

by John L. Eltinge

Published: Jun 24, 2022

Revisit the Random Response Mechanism: $Y_i = 1_{\{X_i = R_i\}}$.

Suppose an adversary's prior for X_1 is $Pr(X_1 = 1) = \pi$.

$$C_{\pi}(y) \equiv \frac{\Pr(X_1 = 1 | Y_1 = y)}{\Pr(X_1 = 1)} = \frac{\Pr(Y_1 = y | X_1 = 1)}{\Pr(Y_1 = y)}$$
$$= \frac{LR(y)}{LR(y)\pi + (1 - \pi)}, \quad \text{where } LR(y) = \frac{\Pr(Y_1 = y | X_1 = 1)}{\Pr(Y_1 = y | X_1 = 0)}$$

Revisit the Random Response Mechanism: $Y_i = 1_{\{X_i = R_i\}}$.

Suppose an adversary's prior for X_1 is $Pr(X_1 = 1) = \pi$.

$$C_{\pi}(y) \equiv \frac{\Pr(X_{1} = 1 | Y_{1} = y)}{\Pr(X_{1} = 1)} = \frac{\Pr(Y_{1} = y | X_{1} = 1)}{\Pr(Y_{1} = y)}$$
$$= \frac{LR(y)}{LR(y)\pi + (1 - \pi)}, \quad \text{where } LR(y) = \frac{\Pr(Y_{1} = y | X_{1} = 1)}{\Pr(Y_{1} = y | X_{1} = 0)}$$

$$LR(y) \geq 1 \Rightarrow 1 \leq C_{\pi}(y) \leq LR(y)$$

$$\max_{\pi} C_{\pi}(y) = C_0(y) = \mathit{LR}(y)$$
 $\min C_{\pi}(y) = C_1(y) = 1$

$$(y) = \frac{1}{2}$$

Revisit the Random Response Mechanism: $Y_i = 1_{\{X_i = R_i\}}$.

Suppose an adversary's prior for X_1 is $Pr(X_1 = 1) = \pi$.

$$C_{\pi}(y) \equiv \frac{\Pr(X_1 = 1|Y_1 = y)}{\Pr(X_1 = 1)} = \frac{\Pr(Y_1 = y|X_1 = 1)}{\Pr(Y_1 = y)}$$

$$= \frac{LR(y)}{LR(y)\pi + (1-\pi)}, \text{ where } LR(y) = \frac{\Pr(Y_1 = y \mid X_1 = 1)}{\Pr(Y_1 = y \mid X_1 = 0)}$$

$$LR(y) \ge 1 \implies 1 \le C_{\pi}(y) \le LR(y) \quad LR(y) \le 1 \implies LR(y) \le C_{\pi}(y) \le 1$$

$$LR(y) \ge 1 \Rightarrow 1 \le C_{\pi}(y) \le LR(y)$$
 $LR(y) \le 1 \Rightarrow LR(y) \le C_{\pi}(y) \le$

$$\max_{\pi} C_{\pi}(y) = C_{0}(y) = LR(y)$$

$$\max_{\pi} C_{\pi}(y) = C_{1}(y) = 1$$

$$\min_{\pi} C_{\pi}(y) = C_{1}(y) = 1$$
 $\min_{\pi} C_{\pi}(y) = C_{0}(y) = LR(y)$

Revisit the Random Response Mechanism: $Y_i = 1_{\{X_i = R_i\}}$.

Suppose an adversary's prior for X_1 is $Pr(X_1 = 1) = \pi$.

$$C_{\pi}(y) \equiv \frac{\Pr(X_{1} = 1 | Y_{1} = y)}{\Pr(X_{1} = 1)} = \frac{\Pr(Y_{1} = y | X_{1} = 1)}{\Pr(Y_{1} = y)}$$
$$= \frac{LR(y)}{LR(y)\pi + (1 - \pi)}, \quad \text{where } LR(y) = \frac{\Pr(Y_{1} = y | X_{1} = 1)}{\Pr(Y_{1} = y | X_{1} = 0)}$$

$$LR(y) \ge 1 \ \Rightarrow 1 \le C_{\pi}(y) \le LR(y) \quad LR(y) \le 1 \ \Rightarrow LR(y) \le C_{\pi}(y) \le 1$$
 $\max_{\pi} C_{\pi}(y) = C_0(y) = LR(y) \quad \max_{\pi} C_{\pi}(y) = C_1(y) = 1$
 $\min_{\pi} C_{\pi}(y) = C_1(y) = 1 \quad \min_{\pi} C_{\pi}(y) = C_0(y) = LR(y)$

The prior-to-posterior semantic for differential privacy:

$$e^{-\varepsilon} < C_{\pi}(y) < e^{\varepsilon}$$
 for all π if and only if $e^{-\varepsilon} < LR(y) < e^{\varepsilon}$

However, what if X_1 and X_2 are a priori dependent?

Suppose our prior for (X_1, X_2) is $Pr(X_1 = a, X_2 = b) = \pi_{ab}$. Let $C_{\pi}(y_1, y_2) \equiv \frac{Pr(X_1 = 1 | Y_1 = y_1, Y_2 = y_2)}{Pr(X_1 = 1)} = \frac{Pr(Y_1 = y_1, Y_2 = y_2 | X_1 = 1)}{Pr(Y_1 = y_1, Y_2 = y_2)}$

Transferring the bound on likelihood ratio to posterior-to-prior ratio

$$C_{\pi}(y_1, y_2) = \frac{LR(y_1, y_2)}{LR(y_1, y_2)\pi_{1.} + (1 - \pi_{1.})}, \quad \pi_{1.} = \Pr(X_1 = 1) = \pi_{11} + \pi_{10}$$

$$LR(y_1, y_2) = \frac{\Pr(Y_1 = y_1, Y_2 = y_2 | X_1 = 1)}{\Pr(Y_1 = y_1, Y_2 = y_2 | X_1 = 0)}.$$

However, what if X_1 and X_2 are a priori dependent?

Suppose our prior for (X_1, X_2) is $Pr(X_1 = a, X_2 = b) = \pi_{ab}$. Let

$$C_{\pi}(y_1, y_2) \equiv \frac{\Pr(X_1 = 1 | Y_1 = y_1, Y_2 = y_2)}{\Pr(X_1 = 1)} = \frac{\Pr(Y_1 = y_1, Y_2 = y_2 | X_1 = 1)}{\Pr(Y_1 = y_1, Y_2 = y_2)}$$

Transferring the bound on likelihood ratio to posterior-to-prior ratio

$$C_{\pi}(y_1, y_2) = \frac{LR(y_1, y_2)}{LR(y_1, y_2)\pi_{1.} + (1 - \pi_{1.})}, \quad \pi_{1.} = \Pr(X_1 = 1) = \pi_{11} + \pi_{10}$$

$$LR(y_1, y_2) = \frac{\Pr(Y_1 = y_1, Y_2 = y_2 | X_1 = 1)}{\Pr(Y_1 = y_1, Y_2 = y_2 | X_1 = 0)}.$$

Consider the case $y_1 = 1$, $y_2 = 1$, and recall $e^{\varepsilon} = p/(1-p)$ $LR(1,1) = \frac{e^{\varepsilon \frac{\pi_{11}}{\pi_{1.}} + \frac{\pi_{10}}{\pi_{1.}}}}{\frac{\pi_{01}}{\pi_{0.}} + e^{-\varepsilon \frac{\pi_{00}}{\pi_{0.}}}}$

The dependence is a big trouble maker

This means that when $\pi_{10}=\pi_{01}=0$, $LR(1,1)=e^{2\varepsilon}>e^{\varepsilon}$.

▶ But $\pi_{10} = \pi_{01} = 0$ means that $X_2 = X_1$, hence X_1 can be learned from the information for X_2 . Consequently, the "individual information unit" for X_1 should be the pair $\{X_1, X_2\}$, not merely X_1 .

The dependence is a big trouble maker

This means that when $\pi_{10}=\pi_{01}=0$, $LR(1,1)=e^{2\varepsilon}>e^{\varepsilon}$.

- ▶ But $\pi_{10} = \pi_{01} = 0$ means that $X_2 = X_1$, hence X_1 can be learned from the information for X_2 . Consequently, the "individual information unit" for X_1 should be the pair $\{X_1, X_2\}$, not merely X_1 .
- ▶ In fact as soon as $Cov(X_1, X_2) > 0$, $LR(1, 1) > e^{\varepsilon}$. This is because

$$LR(1,1) > e^{\varepsilon} \iff \Pr(X_2 = 1 | X_1 = 1) > \Pr(X_2 = 1 | X_1 = 0)$$

But
 $Cov(X_1, X_2) = \Pr(X_1 = 1, X_2 = 1) - \Pr(X_1 = 1) \Pr(X_2 = 1)$
 $= [\Pr(X_2 = 1 | X_1 = 1) - \Pr(X_2 = 1 | X_1 = 0)] \Pr(X_1 = 0) \Pr(X_1 = 1).$

Data are *accidental* representation, not *essential* information itself Manipulating data values without considering their interdependence is not a legitimate information operation in general

An attacker A is interested in learning about $X_A = \{x_i, i \in I_A\}$ in a database $X = \{X_i, i \in I\}$, where I_A could contain a single individual or everyone in I. Suppose the attacker has prior knowledge about the entire X in the form of $\pi(X)$.

An attacker A is interested in learning about $\mathbf{X}_A = \{x_i, i \in I_A\}$ in a database $\mathbf{X} = \{X_i, i \in I\}$, where I_A could contain a single individual or everyone in I. Suppose the attacker has prior knowledge about the entire \mathbf{X} in the form of $\pi(\mathbf{X})$. Let $\pi_A(X_i)$ be the marginal prior, and $\pi_A(X_i|\mathbf{X}_{-i})$ be the conditional prior, conditioning on $\mathbf{X}_{-i} = \{X_j, j \neq i\}$. Upon learning M = m,

▶ Does ε -DP guarantees the marginal posterior-to-prior ratio

$$e^{-\varepsilon} \leq \frac{P_A(X_i = x | M = m)}{\pi_A(X_i = x)} \leq e^{\varepsilon}, \quad \forall x \in \mathcal{X}_i$$
? No, not in general

(Kifer & Machanavajjhala, 2011b, 2012; Tschantz et al., 2020)

An attacker A is interested in learning about $\mathbf{X}_A = \{x_i, i \in I_A\}$ in a database $\mathbf{X} = \{X_i, i \in I\}$, where I_A could contain a single individual or everyone in I. Suppose the attacker has prior knowledge about the entire \mathbf{X} in the form of $\pi(\mathbf{X})$. Let $\pi_A(X_i)$ be the marginal prior, and $\pi_A(X_i|\mathbf{X}_{-i})$ be the conditional prior, conditioning on $\mathbf{X}_{-i} = \{X_j, j \neq i\}$. Upon learning M = m,

▶ Does ε -DP guarantees the marginal posterior-to-prior ratio

$$e^{-\varepsilon} \leq \frac{P_A(X_i = x | M = m)}{\pi_A(X_i = x)} \leq e^{\varepsilon}, \quad \forall x \in \mathcal{X}_i$$
? No, not in general

(Kifer & Machanavajjhala, 2011b, 2012; Tschantz et al., 2020)

lacktriangle Does arepsilon-DP guarantees the conditional posterior-to-prior ratio

$$e^{-\varepsilon} \le \frac{P_A(X_i = x | M = m, \mathbf{X}_{-i})}{\pi_A(X_i = x | \mathbf{X}_{-i})} \le e^{\varepsilon}$$
? $\forall x \in \mathcal{X}_i$? Yes

An attacker A is interested in learning about $X_A = \{x_i, i \in I_A\}$ in a database $X = \{X_i, i \in I\}$, where I_A could contain a single individual or everyone in I. Suppose the attacker has prior knowledge about the entire X in the form of $\pi(X)$.

Let $\pi_A(X_i)$ be the marginal prior, and $\pi_A(X_i|X_{-i})$ be the conditional prior, conditioning on $X_{-i} = \{X_j, j \neq i\}$. Upon learning M = m,

▶ Does ε -DP guarantees the marginal posterior-to-prior ratio $e^{-\varepsilon} \leq \frac{P_A(X_i = x | M = m)}{\pi_A(X_i = x)} \leq e^{\varepsilon}, \quad \forall x \in \mathcal{X}_i? \quad \text{No, not in general}$

▶ Does ε -DP guarantees the conditional posterior-to-prior ratio

$$e^{-\varepsilon} \leq \frac{P_A(X_i = x | M = m, \mathbf{X}_{-i})}{\pi_A(X_i = x | \mathbf{X}_{-i})} \leq e^{\varepsilon}$$
? $\forall x \in \mathcal{X}_i$? Yes

▶ Thus the guaranteed limit e^{ε} is only for the unique individual information: variations unexplained by anyone else in the database or by knowledge on (and beyond) the database population.

Theorem (Bailie, Gong & Meng, 2023)

A random map M delivers ε -DP under Hamming distance if and only if for every prior π on \mathcal{D} , every sub- σ field \mathcal{F} of the corresponding full σ -field $\sigma_{\pi}(\mathcal{X})$, every $B \in \mathcal{B}(\mathbb{R}^d)$, every $A \in \mathcal{B}(\Theta_i)$, where Θ_i is the state space of x_i , we have

$$e^{-c_i\varepsilon}\pi(X_i\in A\mid \mathcal{F})\leq \Pr(X_i\in A\mid M\in \mathcal{B};\mathcal{F})\leq e^{c_i\varepsilon}\pi(x_i\in A\mid \mathcal{F}),$$
 (2)

where $\pi(x_i|\mathcal{F})$ is the marginal prior for X_i (conditional on \mathcal{F}), Pr is the marginal posterior for X_i , and c_i is the size of the minimal information chamber (MIC) for X_i .

Theorem (Bailie, Gong & Meng, 2023)

A random map M delivers ε -DP under Hamming distance if and only if for every prior π on \mathcal{D} , every sub- σ field \mathcal{F} of the corresponding full σ -field $\sigma_{\pi}(\mathcal{X})$, every $B \in \mathcal{B}(\mathbb{R}^d)$, every $A \in \mathcal{B}(\Theta_i)$, where Θ_i is the state space of x_i , we have

$$e^{-c_i\varepsilon}\pi(X_i\in A\mid \mathcal{F})\leq \Pr(X_i\in A\mid M\in B;\mathcal{F})\leq e^{c_i\varepsilon}\pi(x_i\in A\mid \mathcal{F}),$$
 (2)

where $\pi(x_i|\mathcal{F})$ is the marginal prior for X_i (conditional on \mathcal{F}), Pr is the marginal posterior for X_i , and c_i is the size of the minimal information chamber (MIC) for X_i .

▶ $MIC = C_{-i} \cup \{X_i\}$: $C_{-i} \subset X_{-i}$ is the *Markov boundary* for X_i , that is, the smallest subset of X_{-i} such that

$$\pi(X_i|\mathbf{X}_{-i},\mathcal{F})=\pi(X_i|C_{-i},\mathcal{F}).$$

▶ MIC is the X_i 's "information family" – knowing any one of them will provide information about X_i , in addition to public knowledge coded into \mathcal{F} .

Theorem (Bailie, Gong & Meng, 2023)

A random map M delivers ε -DP under Hamming distance if and only if for every prior π on \mathcal{D} , every sub- σ field \mathcal{F} of the corresponding full σ -field $\sigma_{\pi}(\mathcal{X})$, every $B \in \mathscr{B}(\mathbb{R}^d)$, every $A \in \mathscr{B}(\Theta_i)$, where Θ_i is the state space of x_i , we have

$$e^{-c_i\varepsilon}\pi(X_i\in A\mid \mathcal{F})\leq \Pr(X_i\in A\mid M\in B;\mathcal{F})\leq e^{c_i\varepsilon}\pi(x_i\in A\mid \mathcal{F}),$$
 (2)

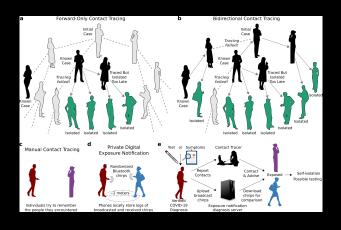
where $\pi(x_i|\mathcal{F})$ is the marginal prior for X_i (conditional on \mathcal{F}), Pr is the marginal posterior for X_i , and c_i is the size of the minimal information chamber (MIC) for X_i .

▶ $MIC = C_{-i} \cup \{X_i\}$: $C_{-i} \subset X_{-i}$ is the *Markov boundary* for X_i , that is, the smallest subset of X_{-i} such that

$$\pi(X_i|\mathbf{X}_{-i},\mathcal{F}) = \pi(X_i|C_{-i},\mathcal{F}).$$

- ▶ MIC is the X_i 's "information family" knowing any one of them will provide information about X_i , in addition to public knowledge coded into \mathcal{F} .
- ► Protecting *relative* risk against "strong adversary" is the easiest the more the adversary's prior information, the less left for protection.

Information spreads like a virus — we need to quarantine not only the infected individual but also everyone they've come into contact with.



Why is it called "Differential Privacy"?

Let the probability space for M(X) be $\{M, \mathcal{F}, P_X\}$ (with $P_X(S) = \Pr(M(X) \in S|X)$)

Why is it called "Differential Privacy"?

Let the probability space for M(X) be $\{M, \mathcal{F}, P_X\}$ (with $P_X(S) = \Pr(M(X) \in S|X)$)

"Differential" comes from "derivative", essential for studying *changes* For log-likelihood $\ell(\mathbf{X}|S) = \ln \Pr(\mathcal{M}(\mathbf{X}) \in S|\mathbf{X})$, pure DP is equivalent to requiring

$$rac{\sup_{S \in \mathcal{F}} |\ell(m{X}|S) - \ell(m{X}'|S)|}{d_{\mathcal{X}}(m{X},m{X}')} \leq arepsilon, \quad ext{ for all } m{X},m{X}',$$

because "divergence" $d_{\mathcal{X}}(\mathbf{X}, \mathbf{X}') = 1$ for "neighboring" pair $\{\mathbf{X}, \mathbf{X}'\}$.

Why is it called "Differential Privacy"?

Let the probability space for M(X) be $\{M, \mathcal{F}, P_X\}$ (with $P_X(S) = \Pr(M(X) \in S|X)$)

"Differential" comes from "derivative", essential for studying *changes* For log-likelihood $\ell(X|S) = \ln \Pr(M(X) \in S|X)$, pure DP is equivalent to requiring

$$\frac{\sup_{S \in \mathcal{F}} |\ell(\mathbf{X}|S) - \ell(\mathbf{X}'|S)|}{d_{\mathcal{X}}(\mathbf{X}, \mathbf{X}')} \le \varepsilon, \quad \text{ for all } \mathbf{X}, \mathbf{X}',$$

because "divergence" $d_{\mathcal{X}}(\mathbf{X}, \mathbf{X}') = 1$ for "neighboring" pair $\{\mathbf{X}, \mathbf{X}'\}$.

A general DP Specification (?)

A data-release mechanism $M: \mathcal{X} \to \mathcal{M}$ satisfies a *DP specification* $(\mathcal{X}, \mathcal{D}, d_{\mathcal{X}}, d_{\mathsf{Pr}}, \varepsilon_{\mathcal{D}})$ if

$$d_{\mathsf{Pr}}\big[P_{\mathbf{X}}, P_{\mathbf{X}'}\big] \le \varepsilon_{\mathcal{D}} d_{\mathcal{X}}(\mathbf{X}, \mathbf{X}'), \tag{3}$$

for all X, X' in every data universe \mathcal{D} in the data multiverse \mathcal{D} .

A general DP Specification (?)

A data-release mechanism $M: \mathcal{X} \to \mathcal{M}$ satisfies a *DP specification* $(\mathcal{X}, \mathcal{D}, d_{\mathcal{X}}, d_{\mathsf{Pr}}, \varepsilon_{\mathcal{D}})$ if

$$d_{\mathsf{Pr}}\big[P_{\mathbf{X}}, P_{\mathbf{X}'}\big] \leq \varepsilon_{\mathcal{D}} d_{\mathcal{X}}(\mathbf{X}, \mathbf{X}'), \tag{4}$$

for all \mathbf{X}, \mathbf{X}' in every data universe \mathcal{D} in the data multiverse $\mathscr{D}.$

A general DP Specification (?)

A data-release mechanism $M: \mathcal{X} \to \mathcal{M}$ satisfies a *DP specification* $(\mathcal{X}, \mathcal{D}, d_{\mathcal{X}}, d_{\mathsf{Pr}}, \varepsilon_{\mathcal{D}})$ if

$$d_{\mathsf{Pr}}\big[P_{\mathbf{X}}, P_{\mathbf{X}'}\big] \le \varepsilon_{\mathcal{D}} d_{\mathcal{X}}(\mathbf{X}, \mathbf{X}'), \tag{4}$$

for all \mathbf{X}, \mathbf{X}' in every data universe \mathcal{D} in the data multiverse \mathscr{D} .

▶ The **protection domain** (*what* can be protected?): dataset space \mathcal{X} ;

A general DP Specification (?)

A data-release mechanism $M: \mathcal{X} \to \mathcal{M}$ satisfies a $\overline{\mathit{DP}}$ specification $(\mathcal{X}, \mathcal{D}, d_{\mathcal{X}}, d_{\mathsf{Pr}}, \varepsilon_{\mathcal{D}})$ if

$$d_{\mathsf{Pr}}\big[P_{\boldsymbol{X}},P_{\boldsymbol{X}'}\big] \leq \varepsilon_{\mathcal{D}}d_{\mathcal{X}}(\boldsymbol{X},\boldsymbol{X}'),\tag{4}$$

for all X, X' in every data universe \mathcal{D} in the data multiverse \mathscr{D} .

- ▶ The **protection domain** (*what* can be protected?): dataset space \mathcal{X} ;
- ▶ The **scope of protection** (*to where* does the protection extend?): data multiverse \mathscr{D} (*essential*), a collection of data universes $\mathcal{D} \subset \mathcal{X}$ (*accidental*);

A general DP Specification (?)

A data-release mechanism $M: \mathcal{X} \to \mathcal{M}$ satisfies a *DP specification* $(\mathcal{X}, \mathcal{D}, d_{\mathcal{X}}, d_{\mathsf{Pr}}, \varepsilon_{\mathcal{D}})$ if

$$d_{\mathsf{Pr}}\big[P_{\boldsymbol{X}}, P_{\boldsymbol{X}'}\big] \leq \varepsilon_{\mathcal{D}} d_{\mathcal{X}}(\boldsymbol{X}, \boldsymbol{X}'), \tag{4}$$

for all X, X' in every data universe \mathcal{D} in the data multiverse \mathcal{D} .

- ▶ The **protection domain** (*what* can be protected?): dataset space \mathcal{X} ;
- ▶ The scope of protection (to where does the protection extend?): data multiverse \mathscr{D} (essential), a collection of data universes $\mathcal{D} \subset \mathcal{X}$ (accidental);
- ▶ The **protection units** (*who* are the units of protection): the input divergence $d_{\mathcal{X}}$ on \mathcal{X} ;

A general DP Specification (?)

A data-release mechanism $M: \mathcal{X} \to \overline{\mathcal{M}}$ satisfies a *DP specification* $(\mathcal{X}, \mathcal{D}, d_{\mathcal{X}}, d_{\mathsf{Pr}}, \varepsilon_{\mathcal{D}})$ if

$$d_{\mathsf{Pr}}\big[P_{\mathbf{X}}, P_{\mathbf{X}'}\big] \le \varepsilon_{\mathcal{D}} d_{\mathcal{X}}(\mathbf{X}, \mathbf{X}'), \tag{4}$$

for all X, X' in every data universe \mathcal{D} in the data multiverse \mathscr{D} .

- ▶ The **protection domain** (*what* can be protected?): dataset space \mathcal{X} ;
- ▶ The scope of protection (to where does the protection extend?): data multiverse \mathscr{D} (essential), a collection of data universes $\mathscr{D} \subset \mathscr{X}$ (accidental);
- ► The **protection units** (*who* are the units of protection): the input divergence $d_{\mathcal{X}}$ on \mathcal{X} ;
- ► The **standard of protection** (*how* to measure protection): the divergence *d*_{Pr} on probabilities;

A general DP Specification (?)

A data-release mechanism $M: \mathcal{X} \to \mathcal{M}$ satisfies a *DP specification* $(\mathcal{X}, \mathcal{D}, d_{\mathcal{X}}, d_{\mathsf{Pr}}, \varepsilon_{\mathcal{D}})$ if

$$d_{\mathsf{Pr}}\big[P_{\boldsymbol{X}}, P_{\boldsymbol{X}'}\big] \leq \varepsilon_{\mathcal{D}} d_{\mathcal{X}}(\boldsymbol{X}, \boldsymbol{X}'), \tag{4}$$

for all X, X' in every data universe \mathcal{D} in the data multiverse \mathcal{D} .

- ▶ The **protection domain** (*what* can be protected?): dataset space \mathcal{X} ;
- ▶ The scope of protection (to where does the protection extend?): data multiverse \mathscr{D} (essential), a collection of data universes $\mathscr{D} \subset \mathscr{X}$ (accidental);
- ► The **protection units** (*who* are the units of protection): the input divergence $d_{\mathcal{X}}$ on \mathcal{X} ;
- ► The **standard of protection** (*how* to measure protection): the divergence d_{Pr} on probabilities;
- ▶ The intensity of protection (how much protection is afforded): privacy loss budget $\varepsilon_{\mathcal{D}} \in \mathbb{R}^{\geq 0}$, for each data universe \mathcal{D} .

4. d_{Pr} : (ε, δ) -approximate DP (Dwork, Kenthapadi, et al., 2006) Rényi DP (Mironov, 2017) concentrated DP (Bun & Steinke, 2016) f-divergence privacy (Barber & Duchi, 2014; Barthe & Olmedo, 2013) f-DP (including Gaussian DP) (Dong et al., 2022).

- 4. d_{Pr} : (ε, δ) -approximate DP (Dwork, Kenthapadi, et al., 2006) Rényi DP (Mironov, 2017) concentrated DP (Bun & Steinke, 2016) f-divergence privacy (Barber & Duchi, 2014; Barthe & Olmedo, 2013) f-DP (including Gaussian DP) (Dong et al., 2022).
- 3. d_X : $(\mathcal{R}, \varepsilon)$ -generic \overline{DP} (Kifer & Machanavajjhala, 2011a) edge vs node privacy (Hay et al., 2009; McSherry & Mahajan, 2010) d-metric \overline{DP} (Chatzikokolakis et al., 2013) Blowfish privacy (He et al., 2014) element level \overline{DP} (Asi et al., 2022) distributional privacy (Zhou et al., 2009) event-level vs user-level \overline{DP} (Dwork et al., 2010).

- 4. d_{Pr} : (ε, δ) -approximate DP (Dwork, Kenthapadi, et al., 2006) Rényi DP (Mironov, 2017) concentrated DP (Bun & Steinke, 2016) f-divergence privacy (Barber & Duchi, 2014; Barthe & Olmedo, 2013) f-DP (including Gaussian DP) (Dong et al., 2022).
- 3. $d_{\mathcal{X}}$: $(\mathcal{R}, \varepsilon)$ -generic \overline{DP} (Kifer & Machanavajjhala, 2011a) edge vs node privacy (Hay et al., 2009; McSherry & Mahajan, 2010) d-metric \overline{DP} (Chatzikokolakis et al., 2013) Blowfish privacy (He et al., 2014) element level \overline{DP} (Asi et al., 2022) distributional privacy (Zhou et al., 2009) event-level vs user-level \overline{DP} (Dwork et al., 2010).
- 2. *9*: privacy under invariants (Ashmead et al., 2019; Gong & Meng, 2020; Gao et al., 2022; Dharangutte et al., 2023) conditioned or empirical DP (J. M. Abowd et al., 2013; Charest & Hou, 2016) personalized DP (Ebadi et al., 2015; Jorgensen et al., 2015) individual DP (Soria-Comas et al., 2017; Feldman & Zrnic, 2022) bootstrap DP (O'Keefe & Charest, 2019) stratified DP (Bun et al., 2022) per-record DP (Seeman et al., 2023+) per-instance DP (Wang, 2018; Redberg & Wang, 2021).

- 3. $d_{\mathcal{X}}$: $(\mathcal{R}, \varepsilon)$ -generic \overline{DP} (Kifer & Machanavajjhala, 2011a) edge vs node privacy (Hay et al., 2009; McSherry & Mahajan, 2010) d-metric \overline{DP} (Chatzikokolakis et al., 2013) Blowfish privacy (He et al., 2014) element level \overline{DP} (Asi et al., 2022) distributional privacy (Zhou et al., 2009) event-level vs user-level \overline{DP} (Dwork et al., 2010).
- 2. \mathscr{D} : privacy under invariants (Ashmead et al., 2019; Gong & Meng, 2020; Gao et al., 2022; Dharangutte et al., 2023) conditioned or empirical DP (J. M. Abowd et al., 2013; Charest & Hou, 2016) personalized DP (Ebadi et al., 2015; Jorgensen et al., 2015) individual DP (Soria-Comas et al., 2017; Feldman & Zrnic, 2022) bootstrap DP (O'Keefe & Charest, 2019) stratified DP (Bun et al., 2022) per-record DP (Seeman et al., 2023+) per-instance DP (Wang, 2018; Redberg & Wang, 2021).
- 1. X: DP for network data (Hay et al., 2009) for geospatial data (Andrés et al., 2013) Pufferfish DP (Kifer & Machanavajjhala, 2014) noiseless privacy (Bhaskar et al., 2011) privacy under partial knowledge (Seeman et al., 2022) privacy amplification (Beimel et al., 2010; Balle et al., 2020; Bun et al., 2022).

Examples from the US Decennial Censuses

	d _{Pr}	$d_{\mathcal{X}}$ (Unit)	Invariants	Privacy Loss Budget
TopDown*	D _{nor}	$d_{ m Ham}^p$ (person)	Population (state) Total housing units (block) Occupied group quarters (block) Structural zeros	PL & DHC: $ ho^2 = 15.29$ $\varepsilon = 52.83 (\delta = 10^{-10})$
SafeTab**	D _{nor}	$d_{ m Ham}^p$ (person)	None	DDHC-A: $\rho^2 = 19.776$ DDHC-B & S-DHC: <i>TBD</i> .
Swapping	d _{Mult}	$d_{ m Ham}^h$ (household)	Varies but greater than TDA	arepsilon between 9.37-19.38

^{*(}J. Abowd et al., 2022)

- $ightharpoonup \mathcal{X}$ is always the space of possible Census Edited Files, \mathcal{X}_{CEF} .
- ▶ $D_{\text{nor}}(P, Q) = \sup_{\alpha > 1} \frac{1}{\sqrt{\alpha}} \max \left[\sqrt{D_{\alpha}(P||Q)}, \sqrt{D_{\alpha}(Q||P)} \right]$ is the normalised Rényi metric [zero concentrated DP] (with D_{α} the Rényi divergence of order);
- ► $d_{\text{Mult}}(P, Q) = \sup_{S \in \mathcal{F}} \left| \ln \frac{P(S)}{Q(S)} \right|$ is the multiplicative distance (pure DP); and
- $ightharpoonup d_{\text{Ham}}^u$ is the Hamming distance (on units u).

^{**(}Tumult Labs, 2022)

Swapping Satisfies DP, Subject to its Invariants

Permutation Swapping

Input: a dataset x.

Define strata as groups of records which match on the swap key V_{Stratify} . Within each stratum:

Output: the *swapped* dataset **w**.

Output: the swapped dataset **w**.

Swapping Satisfies DP, Subject to its Invariants

Permutation Swapping

Input: a dataset x.

Define strata as groups of records which match on the swap key V_{Stratify} . Within each stratum:

- Select each record independently with probability p (the swap rate
- Randomly derange swapping variable V_{Swap} of selected records,

Output: the *swapped* dataset **w**.

Permutation Swapping is DP subject to its invariants, with input divergence $d_{\mathcal{X}}=d_{\mathrm{Ham}}^u$, output divergence $d_{\mathrm{Pr}}=d_{\mathrm{MULT}}$ and budget

$$\varepsilon = \begin{cases} \ln(b+1) - \ln o & \text{if } 0$$

where o = p/(1-p) and b is the maximum stratum size.

The TopDown Algorithm (TDA) (J. Abowd et al., 2022)

Two-step procedure:

• Start with a Census edited file $x \in \mathcal{X}_{\text{CEF}}$.

Two-step procedure:

- Start with a Census edited file $x \in \mathcal{X}_{CEF}$.
- Add Gaussian noise to cells:

$$T(x)=q(x)+W,$$

where $W \sim \mathcal{N}_{\mathbb{Z}}(0, \Sigma)$, so that T satisfies $\mathrm{DP}(\mathcal{X}_{\mathrm{CEF}}, \{\mathcal{X}_{\mathrm{CEF}}\}, d_{\mathrm{Ham}}^{P}, D_{\mathrm{nor}})$ with budget ρ_{TDA} (Canonne et al., 2022).

Two-step procedure:

- Start with a Census edited file $x \in \mathcal{X}_{\text{CEF}}$.
- Add Gaussian noise to cells:

$$T(x)=q(x)+W,$$

where $W \sim \mathcal{N}_{\mathbb{Z}}(0, \Sigma)$, so that T satisfies $\mathsf{DP}(\mathcal{X}_{\mathsf{CEF}}, \{\mathcal{X}_{\mathsf{CEF}}\}, d_{\mathsf{Ham}}^P, D_{\mathsf{nor}})$ with budget ρ_{TDA} (Canonne et al., 2022).

* "Post-process": find dataset z with q(z) close to T(x) such that $c_{\mathrm{TDA}}(z) = c_{\mathrm{TDA}}(x)$.

Two-step procedure:

- Start with a Census edited file $x \in \mathcal{X}_{\text{CEF}}$.
- Add Gaussian noise to cells:

$$T(x)=q(x)+W,$$

where $W \sim \mathcal{N}_{\mathbb{Z}}(0, \Sigma)$, so that T satisfies $\mathsf{DP}(\mathcal{X}_{\mathsf{CEF}}, \{\mathcal{X}_{\mathsf{CEF}}\}, d_{\mathsf{Ham}}^P, D_{\mathsf{nor}})$ with budget ρ_{TDA} (Canonne et al., 2022).

* "Post-process": find dataset z with q(z) close to T(x) such that $c_{\mathrm{TDA}}(z) = c_{\mathrm{TDA}}(x)$.

Two-step procedure:

- Start with a Census edited file $x \in \mathcal{X}_{\text{CEF}}$.
- Add Gaussian noise to cells:

$$T(x)=q(x)+W,$$

where $W \sim \mathcal{N}_{\mathbb{Z}}(0, \Sigma)$, so that T satisfies $\mathsf{DP}(\mathcal{X}_{\mathsf{CEF}}, \{\mathcal{X}_{\mathsf{CEF}}\}, d_{\mathsf{Ham}}^P, D_{\mathsf{nor}})$ with budget ρ_{TDA} (Canonne et al., 2022).

* "Post-process": find dataset z with q(z) close to T(x) such that $c_{\mathrm{TDA}}(z) = c_{\mathrm{TDA}}(x)$.

TDA satisfies $\mathsf{DP}(\mathcal{X}_{\mathsf{CEF}}, \mathscr{D}_{\boldsymbol{c}_{\mathsf{TDA}}}, d^{p}_{\mathsf{Ham}}, D_{\mathsf{nor}})$ with budget ρ_{TDA} .

Theorem: TDA Satisfies DP, Subject to its Invariants

Let $c_{\text{TDA}}: \mathcal{X}_{\text{CEF}} \to \mathbb{R}^I$ be the invariants of TDA and let $\mathscr{D}_{c_{\text{TDA}}}$ be the induced data multiverse:

$$\mathscr{D}_{m{c}_{ ext{TDA}}} = \{ \mathcal{D} \subset \mathcal{X}_{ ext{CEF}} \mid m{c}_{ ext{TDA}}(m{x}) = m{c}_{ ext{TDA}}(m{x}') \ orall m{x}, m{x}' \in \mathcal{D} \}.$$

Theorem: TDA Satisfies DP, Subject to its Invariants

Let $c_{TDA}: \mathcal{X}_{CEF} \to \mathbb{R}^l$ be the invariants of TDA and let $\mathscr{D}_{c_{TDA}}$ be the induced data multiverse:

$$\mathscr{D}_{c_{\text{TDA}}} = \{ \mathcal{D} \subset \mathcal{X}_{\text{CEF}} \mid c_{\text{TDA}}(\mathbf{x}) = c_{\text{TDA}}(\mathbf{x}') \ \forall \mathbf{x}, \mathbf{x}' \in \mathcal{D} \}.$$

► TDA satisfies DP($\mathcal{X}_{\text{CEF}}, \mathcal{D}_{c_{\text{TDA}}}, d_{\text{Ham}}^p, D_{\text{nor}}$) with privacy budget $\rho_{\text{TDA}} = 2.63$ (for the PL Redistricting File) and $\rho_{\text{TDA}} = 15.29$ (for the DHC).

Theorem: TDA Satisfies DP, Subject to its Invariants

Let $c_{\text{TDA}}: \mathcal{X}_{\text{CEF}} \to \mathbb{R}^l$ be the invariants of TDA and let $\mathscr{D}_{c_{\text{TDA}}}$ be the induced data multiverse:

$$\mathscr{D}_{c_{\text{TDA}}} = \{ \mathcal{D} \subset \mathcal{X}_{\text{CEF}} \mid c_{\text{TDA}}(\mathbf{x}) = c_{\text{TDA}}(\mathbf{x}') \ \forall \mathbf{x}, \mathbf{x}' \in \mathcal{D} \}.$$

- ► TDA satisfies DP($\mathcal{X}_{\text{CEF}}, \mathcal{D}_{c_{\text{TDA}}}, d_{\text{Ham}}^p, D_{\text{nor}}$) with privacy budget $\rho_{\text{TDA}} = 2.63$ (for the PL Redistricting File) and $\rho_{\text{TDA}} = 15.29$ (for the DHC).
- ▶ Let c' be any proper subset of TDA's invariants. TDA does not satisfy $DP(\mathcal{X}_{CEF}, \mathcal{D}_{c'}, d_{\mathcal{X}}, D_{nor})$ with any finite budget ρ .

References I

- Abowd, J., Ashmead, R., Cumings-Menon, R., Garfinkel, S., Heineck, M., Heiss, C., ... Zhuravlev, P. (2022, June). The 2020 Census disclosure avoidance system TopDown algorithm. *Harvard Data Science Review*(Special Issue 2). doi: 10.1162/99608f92.529e3cb9
- Abowd, J. M., Schneider, M. J., & Vilhuber, L. (2013). Differential privacy applications to Bayesian and linear mixed model estimation. *Journal of Privacy and Confidentiality*, 5(1).
- Acquisti, A., Taylor, C., & Wagman, L. (2016). The economics of privacy. *Journal of Economic Literature*, 54(2), 442–92.
- Andrés, M. E., Bordenabe, N. E., Chatzikokolakis, K., & Palamidessi, C. (2013, November). Geo-indistinguishability: Differential privacy for location-based systems. In *Proceedings of the 2013 ACM SIGSAC conference on Computer & communications security* (pp. 901–914). New York, NY, USA: Association for Computing Machinery. doi: 10.1145/2508859.2516735

References II

- Ashmead, R., Kifer, D., Leclerc, P., Machanavajjhala, A., & Sexton, W. (2019).

 Effective privacy after adjusting for invariants with applications to the 2020 Census (Tech. Rep.). https://github.com/uscensusbureau/census2020-das-e2e/blob/master/doc/20190711_0941

 _Effective_Privacy_after_Adjusting_for_Constraints_With applications to the 2020 Census.pdf.
- Asi, H., Duchi, J. C., & Javidbakht, O. (2022). Element level differential privacy: The right granularity of privacy. In *AAAI Workshop on Privacy-Preserving Artificial Intelligence*. Association for the Advancement of Artificial Intelligence.
- Balle, B., Barthe, G., & Gaboardi, M. (2020, January). Privacy profiles and amplification by subsampling. *Journal of Privacy and Confidentiality*, 10(1). doi: 10.29012/jpc.726

References III

- Barber, R. F., & Duchi, J. C. (2014, December). *Privacy and statistical risk: Formalisms and minimax bounds* (No. arXiv:1412.4451).
 - http://arxiv.org/abs/1412.4451.arXiv.doi:
 - 10.48550/arXiv.1412.4451
- Barthe, G., & Olmedo, F. (2013). Beyond differential privacy: Composition theorems and relational logic for f-divergences between probabilistic programs. In
 - F. V. Fomin, R. Freivalds, M. Kwiatkowska, & D. Peleg (Eds.), *Automata, languages, and programming* (pp. 49–60). Berlin, Heidelberg: Springer. doi:
 - 10.1007/978-3-642-39212-2_8
- Beimel, A., Kasiviswanathan, S. P., & Nissim, K. (2010, February). Bounds on the sample complexity for private learning and private data release. In D. Micciancio (Ed.), Proceedings of the 7th theory of cryptography conference, TCC 2010, Zurich, Switzerland (pp. 437–454). Berlin, Heidelberg: Springer. doi:
 - 10.1007/978-3-642-11799-2_26

References IV

- Bhaskar, R., Bhowmick, A., Goyal, V., Laxman, S., & Thakurta, A. (2011). Noiseless database privacy. In D. H. Lee & X. Wang (Eds.), *Advances in cryptology ASIACRYPT 2011* (pp. 215–232). Berlin, Heidelberg: Springer. doi: 10.1007/978-3-642-25385-0_12
- Bun, M., Drechsler, J., Gaboardi, M., McMillan, A., & Sarathy, J. (2022, June).
 Controlling privacy loss in sampling schemes: An analysis of stratified and cluster sampling. In *Foundations of Responsible Computing (FORC 2022)* (p. 24).
- Bun, M., & Steinke, T. (2016). Concentrated differential privacy: Simplifications, extensions, and lower bounds. In M. Hirt & A. Smith (Eds.), *Theory of cryptography* (pp. 635–658). Berlin, Heidelberg: Springer. doi: 10.1007/978-3-662-53641-4 24
- Canonne, C., Kamath, G., & Steinke, T. (2022, July). The discrete Gaussian for differential privacy. *Journal of Privacy and Confidentiality*, 12(1). doi: 10.29012/jpc.784

References V

- Charest, A.-S., & Hou, Y. (2016). On the meaning and limits of empirical differential privacy. *Journal of Privacy and Confidentiality*, 7(3), 53–66.
- Chatzikokolakis, K., Andrés, M. E., Bordenabe, N. E., & Palamidessi, C. (2013). Broadening the Scope of Differential Privacy Using Metrics. In E. De Cristofaro & M. Wright (Eds.), *Privacy Enhancing Technologies* (pp. 82–102). Berlin, Heidelberg: Springer. doi: 10.1007/978-3-642-39077-7_5
- Dharangutte, P., Gao, J., Gong, R., & Yu, F.-Y. (2023). Integer subspace differential privacy. In *Proceedings of the aaai conference on artificial intelligence (aaai-23).*
- Dong, J., Roth, A., & Su, W. J. (2022). Gaussian differential privacy. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, 84(1), 3–37. doi: 10.1111/rssb.12454

References VI

- Dwork, C., Kenthapadi, K., McSherry, F., Mironov, I., & Naor, M. (2006). Our data, ourselves: Privacy via distributed noise generation. In S. Vaudenay (Ed.), Advances in cryptology - EUROCRYPT 2006 (pp. 486–503). Berlin, Heidelberg: Springer. doi: 10.1007/11761679_29
- Dwork, C., McSherry, F., Nissim, K., & Smith, A. (2006). Calibrating noise to sensitivity in private data analysis. In *Theory of cryptography conference* (pp. 265–284).
- Dwork, C., McSherry, F., Nissim, K., & Smith, A. (2016). Calibrating noise to sensitivity in private data analysis. *Journal of Privacy and Confidentiality*, 7(3), 17–51.

References VII

- Dwork, C., Naor, M., Pitassi, T., & Rothblum, G. N. (2010, June). Differential privacy under continual observation. In *Proceedings of the forty-second ACM symposium on Theory of computing* (pp. 715–724). New York, NY, USA: Association for Computing Machinery.
 - (https://dl.acm.org/doi/10.1145/1806689.1806787) doi: 10.1145/1806689.1806787
- Ebadi, H., Sands, D., & Schneider, G. (2015, January). Differential Privacy: Now it's Getting Personal. *ACM SIGPLAN Notices*, 50(1), 69–81. doi: 10.1145/2775051.2677005
- Feldman, V., & Zrnic, T. (2022, January). *Individual privacy accounting via a Rényi filter* (No. arXiv:2008.11193). http://arxiv.org/abs/2008.11193. arXiv.

References VIII

- Gao, J., Gong, R., & Yu, F.-Y. (2022, June). Subspace differential privacy. In *Proceedings of the aaai conference on artificial intelligence* (Vol. 36, pp. 3986–3995). doi: 10.1609/aaai.v36i4.20315
- Gong, R., & Meng, X.-L. (2020). Congenial differential privacy under mandated disclosure. In *Proceedings of the 2020 acm-ims on foundations of data science conference* (pp. 59–70).
- Hay, M., Li, C., Miklau, G., & Jensen, D. (2009, December). Accurate estimation of the degree distribution of private networks. In 2009 Ninth IEEE International Conference on Data Mining (pp. 169–178). doi: 10.1109/ICDM.2009.11
- He, X., Machanavajjhala, A., & Ding, B. (2014). Blowfish privacy: Tuning privacy-utility trade-offs using policies. In Proceedings of the 2014 acm sigmod international conference on management of data (pp. 1447–1458).

References IX

- Jorgensen, Z., Yu, T., & Cormode, G. (2015, April). Conservative or liberal? Personalized differential privacy. In 2015 IEEE 31st International Conference on Data Engineering (pp. 1023–1034).
 - (https://ieeexplore.ieee.org/document/7113353) doi: 10.1109/ICDE.2015.7113353
- Kifer, D., & Machanavajjhala, A. (2011a). No free lunch in data privacy. In *Proceedings of the 2011 international conference on Management of data SIGMOD* '11 (pp. 193–204). Athens, Greece: ACM Press. doi: 10.1145/1989323.1989345
- Kifer, D., & Machanavajjhala, A. (2011b). No free lunch in data privacy. In Proceedings of the 2011 acm sigmod international conference on management of data (pp. 193–204).
- Kifer, D., & Machanavajjhala, A. (2012). A rigorous and customizable framework for privacy. In *Proceedings of the 31st acm sigmod-sigact-sigai symposium on principles of database systems* (pp. 77–88).

References X

- Kifer, D., & Machanavajjhala, A. (2014). Pufferfish: A framework for mathematical privacy definitions. *ACM Transactions on Database Systems (TODS)*, *39*(1), 1–36.
- McSherry, F., & Mahajan, R. (2010, August). Differentially-private network trace analysis. In *Proceedings of the ACM SIGCOMM 2010 conference* (pp. 123–134).
 New York, NY, USA: Association for Computing Machinery. doi: 10.1145/1851182.1851199
- Mironov, I. (2017, August). Rényi differential privacy. 2017 IEEE 30th Computer Security Foundations Symposium (CSF), 263–275. doi: 10.1109/CSF.2017.11
- O'Keefe, C. M., & Charest, A.-S. (2019). Bootstrap differential privacy. *Transactions* on *Data Privacy*, 12, 1–28.
- Raab, C. (2019). Political science and privacy. The handbook of privacy studies: An interdisciplinary introduction, 257.

References XI

- Redberg, R., & Wang, Y.-X. (2021). Privately publishable per-instance privacy. In *Advances in Neural Information Processing Systems* (Vol. 34, pp. 17335–17346). Curran Associates, Inc.
- Seeman, J., Reimherr, M., & Slavkovic, A. (2022, May). Formal privacy for partially private data (No. arXiv:2204.01102).
 - http://arxiv.org/abs/2204.01102.arXiv.
- Seeman, J., Sexton, W., Pujol, D., & Machanavajjhala, A. (2023+). Per-record differential privacy: Modeling dependence between individual privacy loss and confidential records.
- Solove, D. J. (2008). *Understanding Privacy*. Cambridge, MA: Harvard University Press.

References XII

- Soria-Comas, J., Domingo-Ferrer, J., Sánchez, D., & Megías, D. (2017, June). Individual differential privacy: A utility-preserving formulation of differential privacy guarantees. *IEEE Transactions on Information Forensics and Security*, 12(6), 1418–1429. doi: 10.1109/TIFS.2017.2663337
- Tschantz, M. C., Sen, S., & Datta, A. (2020). SoK: Differential privacy as a causal property. In *2020 ieee symposium on security and privacy (sp)* (pp. 354–371).
- Tumult Labs. (2022, March). SafeTab: DP algorithms for 2020 Census Detailed DHC Race & Ethnicity (Tech. Rep.).
 - https://www2.census.gov/about/partners/cac/sac/meetings/2022-03/dhc-attachment-1-safetab-dp-algorithms.pdf.
- Wang, Y.-X. (2018, November). *Per-instance Differential Privacy* (No. arXiv:1707.07708). http://arxiv.org/abs/1707.07708. arXiv.
- Warner, S. L. (1965). Randomized response: A survey technique for eliminating evasive answer bias. *Journal of the American Statistical Association*, 60(309), 63–69.

References XIII

- Warren, S., & Brandeis, L. (1890). The right to privacy. *Harvard Law Review*, 4(5), 193–220.
- Zhou, S., Ligett, K., & Wasserman, L. (2009, June). Differential privacy with compression. In *Proceedings of the 2009 IEEE international conference on Symposium on Information Theory - Volume 4* (pp. 2718–2722). Coex, Seoul, Korea: IEEE Press.