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Because of a lack of high-frequency human-development data across time and space, 
scholarship on poverty is limited.
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DHS surveys
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Ground "truth"
• International wealth index 

(material assets)

• 57 000 DHS survey units 

(“clusters”)


• From 36 countries

• 1984 – 2019


• Unit of analysis: clusters 
consisting of about 20-30 
households

≈
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But… Noise Is Added For Privacy
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Cluster center
Displaced location (released coordinates)

Noise Is Added For Privacy
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Correcting For Privacy Using Multiple Imputation?

• What is being imputed?
• True location  of each cluster L i

• Known: Perturbed location  and perturbation distribution Di Pr(Di |Li)

• Imputation: Given a prior , sample from posterior π(Li) π(Li |Di) ∝ π(Di) Pr(Di |Li)

• Train and test model using the satellite images at the imputed locations .L̂i
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Human Settlement Maps 
as Prior Information
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A simulation 
study 

predicting 
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Satellite
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X(L̂iM)

Imputation 1

Imputation 2

Imputation 3

Imputation M
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Can We Trust the Imputed Data?

- Ideal (A): Evaluate a fitted model  on the confidential dataset .𝒜 𝒟
- Pragmatic (B): Evaluate  on a ‘synthetic’ dataset .𝒜 𝒟Syn

- What can (B) tell us about (A), specifically with respect to R-squared: 
?R2 = 1 − RSS/TSS

- With some simple algebra, , where R2 = R2
Syn + (1 − R2

Syn)fSyn

fSyn =
RSSSyn/RSS − TSSSyn/TSS

RSSSyn/RSS
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Can We Trust the Imputed Data? 

- We have  RSSSyn = RSS + [1 − 2 ̂βr,δ]∑
i

δ2
i

where  is the regression coefficient when regressing the benchmark 

residuals  on the difference of residuals . 

̂βr,δ

ri δi = ri − rSyn
i

- Then  if and only if  (assuming ).R2 ≥ R2
Syn

̂βr,δ ≤ 0.5 TSS = TSSSyn

- I.e.  is a lower bound as long as  is not informative of .R2
Syn δi ri

Yes, at least for a lower bound on the true performance
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Compare MI average distance with distance 
to average of MI

22



 
 
 
Comparing 5 DL models  
 
(1) DL trained on confidential  data  
 
(2) DL on released data 
 
(3.a) DL on each imputation and than taking 
average 
 
(3.b) DL on the average location of the imputed 
data 
 
(3.c) DL on all imputed data collectively      
 
 

23



 
 
 
Comparing 5 DL models  
 
(1) DL trained on confidential  data  
 
(2) DL on released data 
 
(3.a) DL on each imputation and than taking 
average 
 
(3.b) DL on the average location of the imputed 
data 
 
(3.c) DL on all imputed data collectively      
 
 

23

(1)



 
 
 
Comparing 5 DL models  
 
(1) DL trained on confidential  data  
 
(2) DL on released data 
 
(3.a) DL on each imputation and than taking 
average 
 
(3.b) DL on the average location of the imputed 
data 
 
(3.c) DL on all imputed data collectively      
 
 

23

(1)

(2)



 
 
 
Comparing 5 DL models  
 
(1) DL trained on confidential  data  
 
(2) DL on released data 
 
(3.a) DL on each imputation and than taking 
average 
 
(3.b) DL on the average location of the imputed 
data 
 
(3.c) DL on all imputed data collectively      
 
 

23

(1)

(2)

(3.a)

(3.a)

(3.a)
(3.a)



 
 
 
Comparing 5 DL models  
 
(1) DL trained on confidential  data  
 
(2) DL on released data 
 
(3.a) DL on each imputation and than taking 
average 
 
(3.b) DL on the average location of the imputed 
data 
 
(3.c) DL on all imputed data collectively      
 
 

23

(1)

(2)

(3.a)

(3.a)

(3.a)
(3.a)

(3.b)X(g-avg)



 
 
 
Comparing 5 DL models  
 
(1) DL trained on confidential  data  
 
(2) DL on released data 
 
(3.a) DL on each imputation and than taking 
average 
 
(3.b) DL on the average location of the imputed 
data 
 
(3.c) DL on all imputed data collectively      
 
 

23

(1)

(2)

(3.a)

(3.a)

(3.a)
(3.a)

(3.b)

(3.c)

X(g-avg)



 
 
 
Comparing 5 DL models  
 
(1) DL trained on confidential  data  
 
(2) DL on released data 
 
(3.a) DL on each imputation and than taking 
average 
 
(3.b) DL on the average location of the imputed 
data 
 
(3.c) DL on all imputed data collectively      
 
 

23

(1)

(2)

(3.a)

(3.a)

(3.a)
(3.a)

(3.b)

(3.c)

Which one predicts most accurately, and which one least?

X(g-avg)



 
 
 
Comparing 5 DL models  
 
(1) DL trained on confidential  data  
 
(2) DL on released data 
 
(3.a) DL on each imputation and than taking 
average 
 
(3.b) DL on the average location of the imputed 
data 
 
(3.c) DL on all imputed data collectively      
 
 

23

(1)

(2)

(3.a)

(3.a)

(3.a)
(3.a)

(3.b)

(3.c)

Which one predicts most accurately, and which one least?
When measuring accuracy against what benchmark?

X(g-avg)



 
 
 
Evaluating the 5 DL models on five different test 
datasets  
 
(1) Test on confidential data  
 
(2) Test on released data 
 
(3.a) Test on each imputation and than taking 
average 
 
(3.b) Test on the average location of the imputed 
data 
 
(3.c) Test on all imputed data collectively      
 
 

24

(1)

(2)

(3.a)

(3.a)

(3.a)
(3.a)

(3.b)

(3.c)

Which one predicts most accurately, and which one least?
When measuring accuracy against what benchmark?

X(g-avg)



 
 
 
Evaluating the 5 DL models on five different test 
datasets  
 
(1) Test on confidential data  
 
(2) Test on released data 
 
(3.a) Test on each imputation and than taking 
average 
 
(3.b) Test on the average location of the imputed 
data 
 
(3.c) Test on all imputed data collectively 
 
(4) Test on a single imputed data 
 
 

Which one predicts most accurately, and which one least?
When measuring accuracy against what benchmark?

(1)          (2)         (4)         (3b)        (3c)             (3a)
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(3b)
(3c)



International 
Wealth Index (IWI)

https://globaldatalab.org/iwi/form/



International 
Wealth Index (IWI)

https://globaldatalab.org/iwi/form/

With TV =12.73


Without TV = 4.12



27



28

Block 1 Block 2 Block 3


