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Background & motivation

• The U.S. Census Bureau has committed to adopting “formal privacy” for all

their data products (U.S. Census Bureau 2022).

• Yet the “science ... does not yet exist” for a formally private solution to the

American Community Survey (for example).

• In implementing differential privacy (DP), statistical agencies’ data

products come with their own set of unique challenges and opportunities.

• See also: “Differential privacy for government agencies–Are we there yet?”

(Drechsler 2023) (Spoiler alert: No!)
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Background & motivation

• Differential privacy (and its variants) are Lipschitz continuity conditions:

dPr(Px,Px′) ≤ εDdX (x, x′)

for all x, x′ ∈ D and all D ∈ D .

• Choices of X ,D , dX and dPr determine the flavour of DP.

• ε is the “intensity of protection” in units dependent on X ,D , dX and dPr.
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Challenge: End-to-end pipelines for DP

• DP is a property of data processing (broadly construed, including e.g. sampling)

• Statistical agencies use complex data processing procedures (imputation, non-response

adjustments, weighting, etc.)

• Efficient and true implementation of DP require translating existing processes into

“DP-friendly” versions (i.e. ground-up re-building of agencies’ infrastructure).

• Alternative: where can we safely cut corners?

• What can be safely ignored? E.g. data-dependent sample design?

• What constitutes principled corner cutting?

• Some preliminary work: “Provable privacy with non-private pre-processing” (Hu et al. 2024).

• Pufferfish is one framework for considering multi-phase pipelines (but does not compose).
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DP settings for surveys (Bailie and Drechsler 2024)

· · · p f s r · · · t

Two considerations

• Where does the DP mechanism start in the data pipeline?

• Which of the previous steps in the pipeline are kept invariant?

For example,

p f s r · · · t

· · ·
p′ f′ s′ r′ · · · t′

s r · · · t

· · · p f

s′ r′ · · · t′

1) 2)
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Ten possible settings
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Opportunity: Building connections between DP and SDC

• Traditional statistical disclosure control (SDC) has a long and established

literature starting in the 1970s.

• Almost all privacy methods currently implemented in statistical agencies

are non-DP. (And those that are cut corners.)

• Can we provide some mathematical guarantees for these methods? Can DP

inspire analogues of these methods which have guarantees?

• Example – data swapping: A close analogue to the 2010 US Census satisfies

DP subject to its invariants (Bailie et al. 2025).

• Can SDC inform the DP literature?

• Example: ‘Nosy neighbour’ and ‘journalist’ attackers in sample data (Bailie and

Drechsler 2024)
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Challenge: DP’s framing of data privacy (Seeman and Susser 2023)

1. Since DP is a Lipschitz condition,

• Conceives of data privacy as robustness

• Focuses on forward-looking, individual-based harms

2. (More exactly) DP is a restriction on the data-release model {Px : x ∈ X}
• Conceives of data privacy as a limit on probabilistic inference

• Focus on two aspects of forward-looking harms: the probability and strength of an

inferential, individual-based (IIB) disclosure

• Assumes a way to quantify IIB disclosures (e.g. via the privacy loss random variable)

3. DP is not a holistic framework for assessing privacy

• The theory of DP brackets other privacy concerns

• The practice of DP is often left stranded

• DP needs to be integrated into broader theories of privacy (Benthall and Cummings 2024)
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Opportunity: Integrating DP into agencies’ broader toolbox

• We need to fit DP into the bigger picture (Contextual Integrity, Five Safes).

• Agencies have many other tools for disclosure control (e.g. access controls).

• How can these tools work in tandem with statistical protections (such as

DP)? (Bailie and Gong 2023)

• Are there other statistical theories of “formal privacy” beyond DP? (Why

has a Lipschitz condition been so theoretically successful?)
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Utility Considerations (I)

Privacy amplification by sampling

If T(𝔰) is ε-DP and S(𝔣) randomly samples f fraction of the frame 𝔣, then

T ′ = T ◦ S is ε′-DP where ε′ ≈ f ε. (Balle et al. 2020)

• Take-away: If the sampling procedure is included, less noise is required to

achieve the same privacy budget.

• But there is little privacy amplification when S is a complex sampling

design. (Bun et al. 2022)
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Utility Considerations (II)

• Surveys use weighted estimators

∑n
i=1 wixi, which have increased

sensitivity.

• Unweighted sums

∑n
i=1 xi have sensitivity |max xi −min xi|, where the

max,min are over all possible values of xi.
• Weighted estimators can have sensitivity

|maxwixi −minwixi|+ (n− 1)(maxwi −minwi)(|max xi| ∨ |min xi|),

because changing a record can change the weights of other records.

• Hence, weighted estimators require more noise to achieve the same privacy

loss.

• Taking the frame as invariant means that the weights do not change.
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Privacy Considerations (I)

Posterior-to-posterior privacy semantics

What would an attacker learn about a single record if it is included in the

input dataset, relative to a counterfactual world in which it is not included?

• If T is ε-DP, then the posterior-to-posterior ratio is in [e−ε, eε]. (Kifer et al. 2022)

• What record (in what input dataset) is being protected depends on where T
starts in the data pipeline; and what counterfactual worlds are possible

depends on what steps are invariant.
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Privacy Considerations (I)

• Suppose T(𝔰) is ε-DP and S(𝔣) randomly samples f fraction of 𝔣.

• T ′ = T ◦ S is ε′-DP with ε′ ≈ f ε < ε.

• So the posterior-to-posterior ratio of T ′
should be in the interval [e−ε′ , eε′ ].

Traditional statistical disclosure control attacker models

• The nosy neighbor: Knows that a record is in the sample.

• The journalist: Wants to learn about any record, so picks one in the

sample.

For these attackers, the posterior-to-posterior ratio of T ′
is in the interval

[e−ε, eε], not the interval [e−ε′ , eε′ ].
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Privacy Considerations (II)

• The composition theorem does not hold when there is dependency between

the sample designs.

• For i ∈ {1, 2}, suppose Ti(𝔰) is ε-DP, and T ′
i = Ti ◦ S .

• Privacy loss of the composition (T ′
1, T

′
2) is not the sum of T ′

1 and T ′
2’s privacy

losses.

• This will complicate global privacy loss calculations.
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Privacy Considerations (II)
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Four Components of a DP Flavour (X ,D , dX , dPr)

Intuition: DP is a bound on the derivative of a data-release mechanism
d
dxPx(T ∈ ·) at

every dataset x in every data universe D ∈ D .

Derivatives measure change in output per change in input. How do we measure change?

1. Data space X (the set of all theoretically-possible datasets).

3. Divergence dX on X .

4. Divergence dPr on the space of (probability distributions over) the output.

2. Allow for multiple data universes D ⊂ X from a data multiverse D .
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Four Components of a DP Flavour (D0,D , dX , dPr)

Definition

A differential privacy flavour is a tuple (D0,D , dD0 , dPr).
A data release mechanism T satisfies DP(D0,D , dD0 , dPr) with budget ϵ if

dPr
(
P𝔡(T ∈ ·),P𝔡′(T ∈ ·)

)
≤ ϵdD0(𝔡, 𝔡

′),

for all data universes D ∈ D and all datasets 𝔡, 𝔡′ ∈ D.
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Four Components of a DP Flavour (X ,D , dX , dPr)

4. dPr: (ϵ, δ)-approximate DP (Dwork et al. 2006) Rényi DP (Mironov 2017) concentrated DP (Bun and Steinke

2016) f -divergence privacy (Barber and Duchi 2014; Barthe and Olmedo 2013) f -DP (including Gaussian DP) (Dong

et al. 2022).

3. dX : (R, ϵ)-generic DP (Kifer and Machanavajjhala 2011) edge vs node privacy (Hay et al. 2009; McSherry and Mahajan

2010) d-metric DP (Chatzikokolakis et al. 2013) Blowfish privacy (He et al. 2014) element level DP (Asi et al. 2022)

distributional privacy (Zhou et al. 2009) event-level vs user-level DP (Dwork et al. 2010).

2. D : privacy under invariants (Ashmead et al. 2019; Gong and Meng 2020; Gao et al. 2022; Dharangutte et al. 2023)

conditioned or empirical DP (Abowd et al. 2013; Charest and Hou 2016) personalized DP (Ebadi et al. 2015; Jorgensen et al.

2015) individual DP (Soria-Comas et al. 2017; Feldman and Zrnic 2022) bootstrap DP (O’Keefe and Charest 2019) stratified DP

(Bun et al. 2022) per-record DP (Seeman et al. 2023+) per-instance DP (Wang 2018; Redberg and Wang 2021).

1. X : Pufferfish DP (Kifer and Machanavajjhala 2014) noiseless privacy (Bhaskar et al. 2011) privacy under partial

knowledge (Seeman et al. 2022) privacy amplification (Beimel et al. 2010; Balle et al. 2020; Bun et al. 2022).
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Five Building Blocks of DP (X ,D , dD0, dPr, ϵD)

1. The protection domain (what can be protected?): as defined by the dataset space X ;

2. The scope of protection (to where does the protection extend?): as instantiated by

the data multiverse D , which is a collection of data universes D ⊂ X ;

3. The protection unit (who are the units for data perturbation?): as conceptualized by

the divergence dX on the dataset space X ;

4. The standard of protection (how to measure the output variations?): as captured by

the divergence dPr on the output probability distributions; and

5. The intensity of protection (how much protection is afforded?): as quantified by the

privacy-loss budget ϵD .
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