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Background & motivation

e The U.S. Census Bureau has committed to adopting “formal privacy” for all

their data products (U.S. Census Bureau 2022).

e Yet the “science ... does not yet exist” for a formally private solution to the

American Community Survey (for example).

e In implementing differential privacy (DP), statistical agencies’ data

products come with their own set of unique challenges and opportunities.

e See also: “Differential privacy for government agencies—Are we there yet?’

(Drechsler 2023) (Spoiler alert: No!)
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Background & motivation

e Differential privacy (and its variants) are Lipschitz continuity conditions:
dPr(PJm Px’) S 8DdX(x7 xl)

forall x,x’ € Dand all D € 9.
e Choices of X', ¥, dy and dp, determine the flavour of DP.

e ¢ is the “intensity of protection” in units dependent on X | 7, dx and dp,.

2/9



Challenge: End-to-end pipelines for DP

e DP is a property of data processing (broadly construed, including e.g. sampling)

e Statistical agencies use complex data processing procedures (imputation, non-response

adjustments, weighting, etc.)

e Efficient and true implementation of DP require translating existing processes into

“DP-friendly” versions (i.e. ground-up re-building of agencies’ infrastructure).
e Alternative: where can we safely cut corners?
e What can be safely ignored? E.g. data-dependent sample design?
e What constitutes principled corner cutting?
e Some preliminary work: “Provable privacy with non-private pre-processing” (Hu et al. 2024).

e Pufferfish is one framework for considering multi-phase pipelines (but does not compose).
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DP settings for surveys @aiic and brechster 2029

e

Two considerations

e Where does the DP mechanism start in the data pipeline?

e Which of the previous steps in the pipeline are kept invariant?

For example,

Vi i
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Ten possible settings
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Opportunity: Building connections between DP and SDC

e Traditional statistical disclosure control (SDC) has a long and established

literature starting in the 1970s.

e Almost all privacy methods currently implemented in statistical agencies
are non-DP. (And those that are cut corners.)
e Can we provide some mathematical guarantees for these methods? Can DP
inspire analogues of these methods which have guarantees?
e Example — data swapping: A close analogue to the 2010 US Census satisfies
DP subject to its invariants (Bailie et al. 2025).
e Can SDC inform the DP literature?
e Example: ‘Nosy neighbour’ and ‘journalist’ attackers in sample data (Bailic and
Drechsler 2024)
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Challenge: DP’s framing of data privacy seeman and susser 2029

1. Since DP is a Lipschitz condition,

e Conceives of data privacy as robustness

e Focuses on forward-looking, individual-based harms

2. (More exactly) DP is a restriction on the data-release model {P, : x € X'}

e Conceives of data privacy as a limit on probabilistic inference

e Focus on two aspects of forward-looking harms: the probability and strength of an
inferential, individual-based (11B) disclosure

e Assumes a way to quantify IIB disclosures (e.g. via the privacy loss random variable)
3. DPis not a holistic framework for assessing privacy

e The theory of DP brackets other privacy concerns
e The practice of DP is often left stranded

e DP needs to be integrated into broader theories of privacy (Benthall and Cummings 2024)
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Opportunity: Integrating DP into agencies’ broader toolbox

We need to fit DP into the bigger picture (Contextual Integrity, Five Safes).

Agencies have many other tools for disclosure control (e.g. access controls).

How can these tools work in tandem with statistical protections (such as

DP)? (Bailie and Gong 2023)

Are there other statistical theories of “formal privacy” beyond DP? (Why

has a Lipschitz condition been so theoretically successful?)
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Utility Considerations (1)

Privacy amplification by sampling

If T(s) is e-DP and S(f) randomly samples f fraction of the frame f, then
T' = ToS ise-DP where &' = fe. (Balle et al. 2020)
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Utility Considerations (1)

Privacy amplification by sampling

If T(s) is e-DP and S(f) randomly samples f fraction of the frame f, then
T' = ToS ise-DP where &' = fe. (Balle et al. 2020)

e Take-away: If the sampling procedure is included, less noise is required to

achieve the same privacy budget.

e Butthere is little privacy amplification when S is a complex sampling

design. (Bun et al. 2022)
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Utility Considerations (I1)

e Surveys use weighted estimators ) " | w;x;, which have increased

sensitivity.
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Utility Considerations (I1)

e Surveys use weighted estimators ) * | wix;, which have increased
sensitivity.

e Unweighted sums )" | x; have sensitivity |max x; — min x;|, where the
max, min are over all possible values of x;.

e Weighted estimators can have sensitivity
|max w;x; — min wix;| + (n — 1)(max w; — min w;) (|max x;| V |min x;|),

because changing a record can change the weights of other records.
e Hence, weighted estimators require more noise to achieve the same privacy
loss.

e Taking the frame as invariant means that the weights do not change.
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Privacy Considerations (I)

Posterior-to-posterior privacy semantics

What would an attacker learn about a single record if it is included in the

input dataset, relative to a counterfactual world in which it is not included?
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Privacy Considerations (I)

Posterior-to-posterior privacy semantics

What would an attacker learn about a single record if it is included in the

input dataset, relative to a counterfactual world in which it is not included?

e If T is e-DP, then the posterior-to-posterior ratio is in [e™, €°]. (kifer et al. 2022)

e What record (in what input dataset) is being protected depends on where T
starts in the data pipeline; and what counterfactual worlds are possible

depends on what steps are invariant.
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Privacy Considerations (I)

e Suppose T(s) is e-DP and S(f) randomly samples f fraction of f.
e T"=ToSisc-DP withe' = fe < e.

/

e So the posterior-to-posterior ratio of T should be in the interval [e~¢, e'].
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Privacy Considerations (I)

e Suppose T(s) is e-DP and S(f) randomly samples f fraction of f.
e T"=ToSisc-DP withe' = fe < e.

/

e So the posterior-to-posterior ratio of T should be in the interval [e~¢, e'].

Traditional statistical disclosure control attacker models

e The nosy neighbor: Knows that a record is in the sample.

e The journalist: Wants to learn about any record, so picks one in the

sample.

For these attackers, the posterior-to-posterior ratio of T’ is in the interval
[e7¢, €], not the interval [e=%, e'].
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Privacy Considerations (1)

e The composition theorem does not hold when there is dependency between

the sample designs.
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Privacy Considerations (II)

e The composition theorem does not hold when there is dependency between
the sample designs.

e Forie€ {1,2}, suppose T;(s) ise-DP,and T = T, 0 S.

e Privacy loss of the composition (T}, T,) is not the sum of T] and T,’s privacy

losses.
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Privacy Considerations (II)

The composition theorem does not hold when there is dependency between
the sample designs.

For i € {1,2}, suppose Ti(s) ise-DP,and T/ = T; o S.

Privacy loss of the composition (T}, T,) is not the sum of T] and T,’s privacy

losses.

This will complicate global privacy loss calculations.
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Privacy Considerations (1)

Privacy loss when there is dependency between samples

o
L

o
L

—— Naive calculation

— True privacy loss

Privacy loss of the composition (77, 7T%)
IS

-

0 1 2 3 4
Privacy loss of T and T»
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every dataset x in every data universe D € 7.

Derivatives measure change in output per change in input. How do we measure change?
1. Data space X (the set of all theoretically-possible datasets).

3. Divergence dy on X.

4. Divergence dp, on the space of (probability distributions over) the output.

2. Allow for multiple data universes D C X from a data multiverse Z.
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Four Components of a DP Flavour (Dy, 2, dy, dp;)

Definition
A differential privacy flavour is a tuple (Do, Z, dp,, dp: ).
A data release mechanism T satisfies DP(Dy, Z, dp,, dp;) with budget ¢ if

dpr<Pb(T S ‘), Pb/(T S )> < deo(b,b,),

for all data universes D € Z and all datasets d,d’ € D.
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Four Components of a DP Flavour (X, 2, dy, dp;)

4. dPI”: (6, 5)-appr0Ximate DP (Dwork et al. 2006) Rényi DP (Mironov 2017) Concentrated DP (Bun and Steinke
2016) f'divergence priVaCy (Barber and Duchi 2014; Barthe and Olmedo 2013) f‘DP (inCIuding Gaussian DP) (Dong

et al. 2022).
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M privacy under invariants (Ashmead et al. 2019; Gong and Meng 2020; Gao et al. 2022; Dharangutte et al. 2023)
conditioned or empirical DP (abowd et al. 2013 Charest and Hou 2016) personalized DP (evadi et al. 2015: jorgensen et al
2015) individual DP (soria-Comas et al. 2017 Feldman and Zimic 2022) bootstrap DP (o'keete and charest 2019) stratified DP
(Bun et al. 2022) per-record DP (seeman et al. 2023 per-instance DP wang 201 Redberg and Wang 2021).

1. X': Pufferfish DP (cier and Machanavajihala 2014) NOiseless privacy (shaskar etal 2011 privacy under partial
knowledge (sceman e al 2022) privacy amplification eimel et i 2010 Batle et al. 2020 Bun et al. 2022).
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3. The protection unit (who are the units for data perturbation?): as conceptualized by
the divergence dy on the dataset space X’;

4. The standard of protection (how to measure the output variations?): as captured by
the divergence dp, on the output probability distributions; and

5. The intensity of protection (how much protection is afforded?): as quantified by the
privacy-loss budget ep.
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