Whose Data Is It Anyway? A Formal Treatment of Differential Privacy for Surveys

James Bailie* & Jörg Drechsler†

*Chalmers University, †German Institute for Employment Research

Adelaide Data Privacy Workshop 26 November 2025

These Slides Are Available Online:

jameshbailie.github.io/talks/

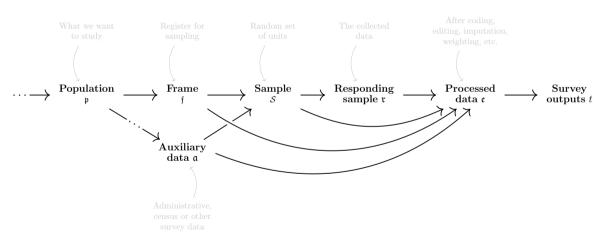
This Presentation Is Based on Two Papers:

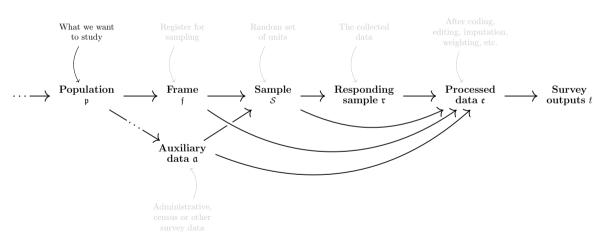
JB and Jörg Drechsler (2024). "Whose Data Is It Anyway? Towards a Formal Treatment of Differential Privacy for Surveys". *NBER Working Paper*.

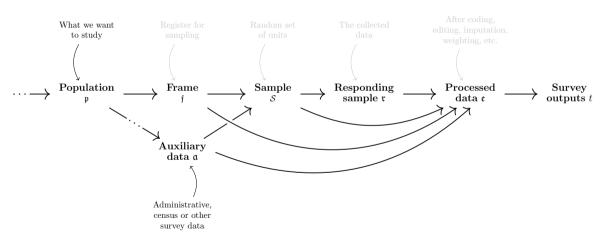
Jörg Drechsler and JB (2024). "The Complexities of Differential Privacy for Survey Data". To appear in Data Privacy Protection and the Conduct of Applied Research: Methods, Approaches and Their Consequences.

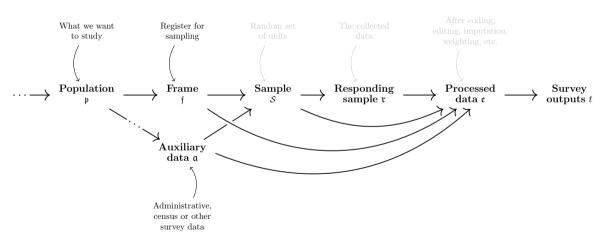
Motivation

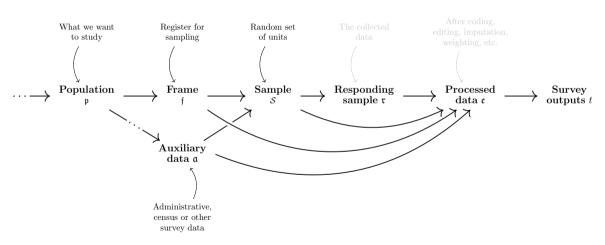
- The US Census Bureau has committed to adopting *formal privacy* for all their data products (US Census Bureau 2022).
- Most of their collections are surveys.
- Yet the "science ... does not yet exist" for a formally private solution to the American Community Survey (for example).
- In implementing differential privacy (DP), surveys come with their own set of *unique challenges and opportunities*.

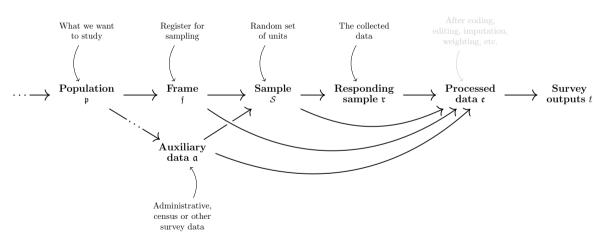


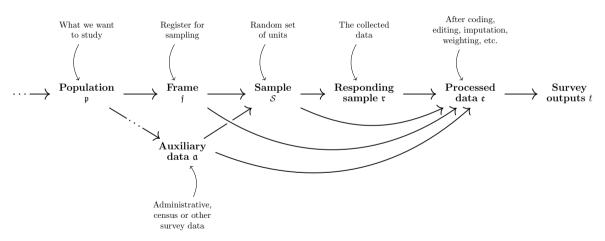












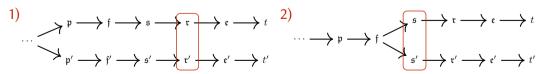
DP Settings for Surveys

$$\cdots \longrightarrow \mathfrak{p} \longrightarrow \mathfrak{f} \longrightarrow \mathfrak{s} \longrightarrow \mathfrak{e} \longrightarrow t$$

Two considerations

- Where does the DP mechanism *start* in the data pipeline? (What is \mathcal{X} ?)
- Which of the previous steps are kept *invariant*? (What is \mathcal{D} ?)

For example,



Why Does This Matter? One Example

Move $\mathcal X$ from the samples $\mathfrak s$ to the frames $\mathfrak f$ – i.e. start the data-release mechanism one step earlier.

Privacy amplification by sampling

If $T(\mathfrak{s})$ is arepsilon-DP and $\mathcal{S}(\mathfrak{f})$ randomly samples f fraction of the frame $\mathfrak{f},$ then $T'=T\circ\mathcal{S}$ is arepsilon'-DP where arepsilon'pprox farepsilon. (Balle et al. 2020)

Take-away: "Privacy for free" – if the sampling procedure is included, less noise is required to achieve the same privacy budget.

Why Does This Matter? One Example

Move $\mathcal X$ from the samples $\mathfrak s$ to the frames $\mathfrak f$ – i.e. start the data-release mechanism one step earlier.

Privacy amplification by sampling

If $T(\mathfrak{s})$ is ε -DP and $\mathcal{S}(\mathfrak{f})$ randomly samples f fraction of the frame \mathfrak{f} , then $T'=T\circ\mathcal{S}$ is ε' -DP where $\varepsilon'\approx f\varepsilon$. (Balle et al. 2020)

Take-away: "Privacy for free" – if the sampling procedure is included, less noise is required to achieve the same privacy budget.

Why Does This Matter? One Example

Move $\mathcal X$ from the samples $\mathfrak s$ to the frames $\mathfrak f$ – i.e. start the data-release mechanism one step earlier.

Privacy amplification by sampling

If $T(\mathfrak{s})$ is ε -DP and $\mathcal{S}(\mathfrak{f})$ randomly samples f fraction of the frame \mathfrak{f} , then $T'=T\circ\mathcal{S}$ is ε' -DP where $\varepsilon'\approx f\varepsilon$. (Balle et al. 2020)

Take-away: "Privacy for free" – if the sampling procedure is included, less noise is required to achieve the same privacy budget.

- Some fundamental results in differential privacy:
 - 1. Privacy semantics: how does DP protect your data from any possible attacker?
 - 2. *Composition*: how does ε grow as you make more releases?
- Challenges to these results in the survey context (and beyond)

- Some fundamental results in differential privacy:
 - 1. Privacy semantics: how does DP protect your data from any possible attacker?
 - 2. *Composition*: how does ε grow as you make more releases?
- Challenges to these results in the survey context (and beyond)

- Some fundamental results in differential privacy:
 - 1. Privacy semantics: how does DP protect your data from any possible attacker?
 - **2.** *Composition*: how does ε grow as you make more releases?
- Challenges to these results in the survey context (and beyond)

- Some fundamental results in differential privacy:
 - 1. Privacy semantics: how does DP protect your data from any possible attacker?
 - 2. *Composition*: how does ε grow as you make more releases?
- Challenges to these results in the survey context (and beyond)

- DP protects against any attacker, regardless of their auxiliary knowledge.
- How to formalise this? Model the attacker as a Bayesian agent with prior π .
- Suppose the attacker wants to learn a record x_i
- Pure ε -DP guarantees that the attacker's prior-to-posterior ratio is bounded by e^{ε} :

$$e^{-arepsilon} \leq rac{\pi(x_i \mid T, oldsymbol{x}_{-i})}{\pi(x_i \mid oldsymbol{x}_{-i})} \leq e^{arepsilon}.$$

- DP protects against any attacker, regardless of their auxiliary knowledge.
- How to formalise this? Model the attacker as a Bayesian agent with prior π .
- Suppose the attacker wants to learn a record *x_i*
- Pure ε -DP guarantees that the attacker's prior-to-posterior ratio is bounded by e^{ε} :

$$e^{-arepsilon} \leq rac{\pi(x_i \mid T, oldsymbol{x}_{-i})}{\pi(x_i \mid oldsymbol{x}_{-i})} \leq e^{arepsilon}.$$

- DP protects against any attacker, regardless of their auxiliary knowledge.
- How to formalise this? Model the attacker as a Bayesian agent with prior π .
- Suppose the attacker wants to learn a record x_i .
- Pure ε -DP guarantees that the attacker's prior-to-posterior ratio is bounded by e^{ε} :

$$e^{-\varepsilon} \le \frac{\pi(x_i \mid T, \mathbf{x}_{-i})}{\pi(x_i \mid \mathbf{x}_{-i})} \le e^{\varepsilon}$$

- DP protects against any attacker, regardless of their auxiliary knowledge.
- How to formalise this? Model the attacker as a Bayesian agent with prior π .
- Suppose the attacker wants to learn a record x_i .
- Pure ε -DP guarantees that the attacker's prior-to-posterior ratio is bounded by e^{ε} :

$$e^{-\varepsilon} \leq \frac{\pi(x_i \mid T, \boldsymbol{x}_{-i})}{\pi(x_i \mid \boldsymbol{x}_{-i})} \leq e^{\varepsilon}.$$

- DP protects against any attacker, regardless of their auxiliary knowledge.
- How to formalise this? Model the attacker as a Bayesian agent with prior π .
- Suppose the attacker wants to learn a record x_i .
- Pure ε -DP guarantees that the attacker's prior-to-posterior ratio is bounded by e^{ε} :

$$e^{-\varepsilon} \leq \frac{\pi(x_i \mid T, \boldsymbol{x}_{-i})}{\pi(x_i \mid \boldsymbol{x}_{-i})} \leq e^{\varepsilon}.$$

Posterior-to-posterior privacy semantics

What would an attacker learn about a single record if it is included in the input dataset, relative to a counterfactual world in which it is not included?

- If T is arepsilon-DP, then the posterior-to-posterior ratio is in $[e^{-arepsilon},e^{arepsilon}]$. (Kifer et al. 2022)
- What record (in what input dataset) is being protected depends on where T
 starts in the data pipeline; and what counterfactual worlds are possible
 depends on what steps are invariant.

Posterior-to-posterior privacy semantics

What would an attacker learn about a single record if it is included in the input dataset, relative to a counterfactual world in which it is not included?

- ullet If T is arepsilon-DP, then the posterior-to-posterior ratio is in $[e^{-arepsilon},e^{arepsilon}]$. (Kifer et al. 2022)
- What record (in what input dataset) is being protected depends on where T
 starts in the data pipeline; and what counterfactual worlds are possible
 depends on what steps are invariant.

Posterior-to-posterior privacy semantics

What would an attacker learn about a single record if it is included in the input dataset, relative to a counterfactual world in which it is not included?

- If T is arepsilon-DP, then the posterior-to-posterior ratio is in $[e^{-arepsilon},e^{arepsilon}]$. (Kifer et al. 2022)
- What record (in what input dataset) is being protected depends on where T starts in the data pipeline; and what counterfactual worlds are possible depends on what steps are invariant.

- Suppose $T(\mathfrak{s})$ is ε -DP and $\mathcal{S}(\mathfrak{f})$ randomly samples f fraction of \mathfrak{f} .
- $T' = T \circ S$ is ε' -DP with $\varepsilon' \approx f \varepsilon < \varepsilon$.
- So the posterior-to-posterior ratio of T' should be in the interval $[e^{-\varepsilon'},e^{\varepsilon'}]$.

Traditional statistical disclosure control attacker models

- The nosy neighbor: Knows that a record is in the sample.
- The journalist: Wants to learn about any record, so picks one in the sample.
- For these attackers, the posterior-to-posterior ratio (or prior-to-posterior ratio) of T' is in the interval $[e^{-\varepsilon}, e^{\varepsilon}]$, not the interval $[e^{-\varepsilon'}, e^{\varepsilon'}]$.

- Suppose $T(\mathfrak{s})$ is ε -DP and $\mathcal{S}(\mathfrak{f})$ randomly samples f fraction of \mathfrak{f} .
- $T' = T \circ S$ is ε' -DP with $\varepsilon' \approx f \varepsilon < \varepsilon$.
- So the posterior-to-posterior ratio of T' should be in the interval $[e^{-\varepsilon'},e^{\varepsilon'}]$.

Traditional statistical disclosure control attacker models

- The nosy neighbor: Knows that a record is in the sample.
- The journalist: Wants to learn about any record, so picks one in the sample.
- For these attackers, the posterior-to-posterior ratio (or prior-to-posterior ratio) of T' is in the interval $[e^{-\varepsilon}, e^{\varepsilon}]$, *not* the interval $[e^{-\varepsilon'}, e^{\varepsilon'}]$.

- Suppose $T(\mathfrak{s})$ is ε -DP and $\mathcal{S}(\mathfrak{f})$ randomly samples f fraction of \mathfrak{f} .
- $T' = T \circ S$ is ε' -DP with $\varepsilon' \approx f \varepsilon < \varepsilon$.
- So the posterior-to-posterior ratio of T' should be in the interval $[e^{-\varepsilon'},e^{\varepsilon'}]$.

Traditional statistical disclosure control attacker models

- The nosy neighbor: Knows that a record is in the sample.
- The journalist: Wants to learn about any record, so picks one in the sample.
- For these attackers, the posterior-to-posterior ratio (or prior-to-posterior ratio) of T' is in the interval $[e^{-\varepsilon}, e^{\varepsilon}]$, *not* the interval $[e^{-\varepsilon'}, e^{\varepsilon'}]$.

- For these attackers, the posterior-to-posterior ratio (or prior-to-posterior ratio) of T' is in the interval $[e^{-\varepsilon}, e^{\varepsilon}]$, *not* the interval $[e^{-\varepsilon'}, e^{\varepsilon'}]$.
- So DP does not provide the nominal protection against an attacker with arbitrary side knowledge.
- This also applies wherever sampling is used for privacy.

- For these attackers, the posterior-to-posterior ratio (or prior-to-posterior ratio) of T' is in the interval $[e^{-\varepsilon}, e^{\varepsilon}]$, *not* the interval $[e^{-\varepsilon'}, e^{\varepsilon'}]$.
- So DP does not provide the nominal protection against an attacker with arbitrary side knowledge.
- This also applies wherever sampling is used for privacy.

- For these attackers, the posterior-to-posterior ratio (or prior-to-posterior ratio) of T' is in the interval $[e^{-\varepsilon}, e^{\varepsilon}]$, *not* the interval $[e^{-\varepsilon'}, e^{\varepsilon'}]$.
- So DP does not provide the nominal protection against an attacker with arbitrary side knowledge.
- This also applies wherever sampling is used for privacy.
 - For example, in DP stochastic gradient descent which is used for privately training neural networks.

- For these attackers, the posterior-to-posterior ratio (or prior-to-posterior ratio) of T' is in the interval $[e^{-\varepsilon}, e^{\varepsilon}]$, *not* the interval $[e^{-\varepsilon'}, e^{\varepsilon'}]$.
- So DP does not provide the nominal protection against an attacker with arbitrary side knowledge.
- This also applies wherever sampling is used for privacy.
 - For example, in DP stochastic gradient descent which is used for privately training neural networks.

Composition

- How does ε grow as you make more releases?
- How to formalise this? Suppose you have two data-releases T_1 and T_2 which are both ε -DP. Then (T_1, T_2) is 2ε -DP.
- This assumes that the randomness in T_1 and T_2 are independent

Composition

- How does ε grow as you make more releases?
- How to formalise this? Suppose you have two data-releases T_1 and T_2 which are both ε -DP. Then (T_1, T_2) is 2ε -DP.
- This assumes that the randomness in T₁ and T₂ are independent

- How does ε grow as you make more releases?
- How to formalise this? Suppose you have two data-releases T_1 and T_2 which are both ε -DP. Then (T_1, T_2) is 2ε -DP.
- This assumes that the randomness in T_1 and T_2 are independent.

- Statistical agencies often use sample designs which are dependent.
 - For example, to reduce respondent burden.
- For $i \in \{1, 2\}$, suppose $T_i(\mathfrak{s})$ is ε -DP, and $T_i' = T_i \circ \mathcal{S}$.
- Privacy loss of the composition (T'_1, T'_2) is not the sum of T'_1 and T'_2 's privacy losses.
- More generally, this holds whenever the sampling in T_1 is dependent on the sampling in T_2 .
- This will complicate global privacy loss calculations

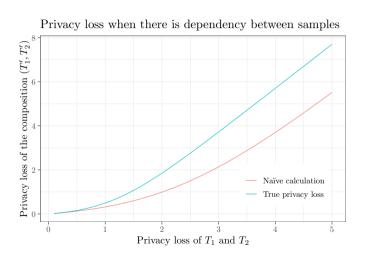
- Statistical agencies often use sample designs which are *dependent*.
 - For example, to reduce respondent burden.
- For $i \in \{1, 2\}$, suppose $T_i(\mathfrak{s})$ is ε -DP, and $T'_i = T_i \circ \mathcal{S}$.
- Privacy loss of the composition (T'_1, T'_2) is not the sum of T'_1 and T'_2 's privacy losses.
- More generally, this holds whenever the sampling in T_1 is dependent on the sampling in T_2 .
- This will complicate global privacy loss calculations

- Statistical agencies often use sample designs which are dependent.
 - For example, to reduce respondent burden.
- For $i \in \{1, 2\}$, suppose $T_i(\mathfrak{s})$ is ε -DP, and $T'_i = T_i \circ \mathcal{S}$.
- Privacy loss of the composition (T'_1, T'_2) is not the sum of T'_1 and T'_2 's privacy losses.
- More generally, this holds whenever the sampling in T_1 is dependent on the sampling in T_2 .
- This will complicate global privacy loss calculations

- Statistical agencies often use sample designs which are dependent.
 - For example, to reduce respondent burden.
- For $i \in \{1, 2\}$, suppose $T_i(\mathfrak{s})$ is ε -DP, and $T'_i = T_i \circ \mathcal{S}$.
- Privacy loss of the composition (T'_1, T'_2) is not the sum of T'_1 and T''_2 's privacy losses.
- More generally, this holds whenever the sampling in T_1 is dependent on the sampling in T_2 .
- This will complicate global privacy loss calculations

- Statistical agencies often use sample designs which are *dependent*.
 - For example, to reduce respondent burden.
- For $i \in \{1, 2\}$, suppose $T_i(\mathfrak{s})$ is ε -DP, and $T'_i = T_i \circ \mathcal{S}$.
- Privacy loss of the composition (T'_1, T'_2) is not the sum of T'_1 and T'_2 's privacy losses.
- More generally, this holds whenever the sampling in T_1 is dependent on the sampling in T_2 .
- This will complicate global privacy loss calculations

- Statistical agencies often use sample designs which are *dependent*.
 - For example, to reduce respondent burden.
- For $i \in \{1, 2\}$, suppose $T_i(\mathfrak{s})$ is ε -DP, and $T'_i = T_i \circ \mathcal{S}$.
- Privacy loss of the composition (T'_1, T'_2) is not the sum of T'_1 and T'_2 's privacy losses.
- More generally, this holds whenever the sampling in T_1 is dependent on the sampling in T_2 .
- This will complicate global privacy loss calculations.



Privacy amplification by sampling

If $T(\mathfrak{s})$ is ε -DP and $\mathcal{S}(\mathfrak{f})$ randomly samples f fraction of the frame \mathfrak{f} , then $T'=T\circ\mathcal{S}$ is ε' -DP where $\varepsilon'\approx f\varepsilon$. (Balle et al. 2020)

- Take-away: If the sampling procedure is included, less noise is required to achieve the same privacy budget.
- But there is little privacy amplification when S is a complex sampling design. (Bun et al. 2022)

Privacy amplification by sampling

If $T(\mathfrak{s})$ is ε -DP and $\mathcal{S}(\mathfrak{f})$ randomly samples f fraction of the frame \mathfrak{f} , then $T'=T\circ\mathcal{S}$ is ε' -DP where $\varepsilon'\approx f\varepsilon$. (Balle et al. 2020)

- *Take-away:* If the sampling procedure is included, less noise is required to achieve the same privacy budget.
- But there is little privacy amplification when ${\cal S}$ is a complex sampling design. (Bun et al. 2022)

Privacy amplification by sampling

If $T(\mathfrak{s})$ is ε -DP and $\mathcal{S}(\mathfrak{f})$ randomly samples f fraction of the frame \mathfrak{f} , then $T'=T\circ\mathcal{S}$ is ε' -DP where $\varepsilon'\approx f\varepsilon$. (Balle et al. 2020)

- *Take-away:* If the sampling procedure is included, less noise is required to achieve the same privacy budget.
- But there is little privacy amplification when ${\cal S}$ is a complex sampling design. (Bun et al. 2022)

- Surveys use weighted estimators $\sum_{i=1}^{n} w_i x_i$, which have increased sensitivity.
- Unweighted sums $\sum_{i=1}^{n} x_i$ have sensitivity $|\max x_i \min x_i|$, where the max, min are over all possible values of x_i .
- Weighted estimators can have sensitivity

```
|\max w_i x_i - \min w_i x_i| + (n-1)(\max w_i - \min w_i)(|\max x_i| \vee |\min x_i|),
```

- Hence, weighted estimators require more noise to achieve the same privacy loss.
- Taking the frame as invariant means that the weights do not change.

- Surveys use weighted estimators $\sum_{i=1}^{n} w_i x_i$, which have increased sensitivity.
- Unweighted sums $\sum_{i=1}^{n} x_i$ have sensitivity $|\max x_i \min x_i|$, where the \max, \min are over all possible values of x_i .
- Weighted estimators can have sensitivity

```
|\max w_i x_i - \min w_i x_i| + (n-1)(\max w_i - \min w_i)(|\max x_i| \vee |\min x_i|),
```

- because changing a record can change the weights of other records.
- Hence, weighted estimators require more noise to achieve the same privacy loss.
- Taking the frame as invariant means that the weights do not change.

- Surveys use weighted estimators $\sum_{i=1}^{n} w_i x_i$, which have increased sensitivity.
- Unweighted sums $\sum_{i=1}^{n} x_i$ have sensitivity $|\max x_i \min x_i|$, where the \max, \min are over all possible values of x_i .
- Weighted estimators can have sensitivity

$$|\max w_i x_i - \min w_i x_i| + (n-1)(\max w_i - \min w_i)(|\max x_i| \vee |\min x_i|),$$

- Hence, weighted estimators require more noise to achieve the same privacy loss.
- Taking the frame as invariant means that the weights do not change.

- Surveys use weighted estimators $\sum_{i=1}^{n} w_i x_i$, which have increased sensitivity.
- Unweighted sums $\sum_{i=1}^{n} x_i$ have sensitivity $|\max x_i \min x_i|$, where the \max, \min are over all possible values of x_i .
- Weighted estimators can have sensitivity

$$|\max w_i x_i - \min w_i x_i| + (n-1)(\max w_i - \min w_i)(|\max x_i| \vee |\min x_i|),$$

- Hence, weighted estimators require more noise to achieve the same privacy loss.
- Taking the frame as invariant means that the weights do not change

- Surveys use weighted estimators $\sum_{i=1}^{n} w_i x_i$, which have increased sensitivity.
- Unweighted sums $\sum_{i=1}^{n} x_i$ have sensitivity $|\max x_i \min x_i|$, where the \max , \min are over all possible values of x_i .
- Weighted estimators can have sensitivity

$$|\max w_i x_i - \min w_i x_i| + (n-1)(\max w_i - \min w_i)(|\max x_i| \vee |\min x_i|),$$

- Hence, weighted estimators require more noise to achieve the same privacy loss.
- Taking the frame as invariant means that the weights do not change.

Additional Complications

- Data-dependent sampling designs are typical; but these pose a challenge unless the frame is fixed.
- Steps of the data release mechanism must be "algorithmised".
- Nonresponse must be included in the mechanism if starting from the sample-level or earlier.
 - In order to satisfy DP, one must assume that the nonresponse indicators are independent.

References I

- Balle, Borja, Gilles Barthe, and Marco Gaboardi (Jan. 2020). "Privacy Profiles and Amplification by Subsampling". In: *Journal of Privacy and Confidentiality* 10.1. ISSN: 2575-8527. DOI: 10.29012/jpc.726.
- Bun, Mark, Jörg Drechsler, Marco Gaboardi, Audra McMillan, and Jayshree Sarathy (June 2022). "Controlling Privacy Loss in Sampling Schemes: An Analysis of Stratified and Cluster Sampling". In: Foundations of Responsible Computing (FORC 2022), 1:1–1:24.
- Kifer, Daniel, John M. Abowd, Robert Ashmead, Ryan Cumings-Menon, Philip Leclerc, Ashwin Machanavajjhala, William Sexton, and Pavel Zhuravlev (Sept. 2022). Bayesian and Frequentist Semantics for Common Variations of Differential Privacy: Applications to the 2020 Census. Tech. rep. arXiv:2209.03310. DOI: 10.48550/arXiv.2209.03310. eprint: 2209.03310 (cs, stat). (Visited on 10/23/2022).

References II

US Census Bureau (Dec. 2022). *Disclosure Avoidance Protections for the American Community Survey*. https://www.census.gov/newsroom/blogs/random-samplings/2022/12/disclosure-avoidance-protections-acs.html. (Visited on 12/17/2023).